Association for Information Systems

AIS Electronic Library (AISeL)

Americas Conference on Information Systems

AMCIS 2001 Proceedings (AMCIS)

December 2001

A Comparison of Requirements Engineering in
Extreme Programming (XP) and Conventional
Software Development Methodologies

Thomas Cohn
Managed Health Care Associates

Ravi Paul
New Jersey Institute of Technology

Follow this and additional works at: http://aisel.aisnet.org/amcis2001

Recommended Citation
Cohn, Thomas and Paul, Ravi, "A Comparison of Requirements Engineering in Extreme Programming (XP) and Conventional

Software Development Methodologies" (2001). AMCIS 2001 Proceedings. 256.
http://aisel.aisnet.org/amcis2001/256

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2001 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2001%2F256&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2001?utm_source=aisel.aisnet.org%2Famcis2001%2F256&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2001%2F256&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2001%2F256&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2001?utm_source=aisel.aisnet.org%2Famcis2001%2F256&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2001/256?utm_source=aisel.aisnet.org%2Famcis2001%2F256&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

A COMPARISON OF REQUIREMENTS ENGINEERING IN
EXTREME PROGRAMMING (XP) AND CONVENTIONAL
SOFTWARE DEVELOPMENT METHODOLOGIES

Thomas M. Cohn Ravi C. Paul
Managed Health Care Associates New Jersey Institute of Technology
tcohn@mhax.com paulr@cis.njit.edu
Abstract

Extreme Programming (XP) is the latest software development methodology to hit the stands. XP is being
touted as the methodology of choice for creating business applications in “Internet time”. One of the ways XP
supports rapid application development is by collapsing the requirements phase. How is this done and how
is requirements engineering in XP different from the conventional methodologies? What issues does this raise
for research? This paper addresses these questions. First, a brief introduction to requirements engineering
in conventional development methodologies is provided. Next, the Extreme Programming development cycle
is presented. Finally, the differences in requirements engineering processes between XP and conventional
methodologies are explored and research questions presented.

Requirements Engineering Overview

Organizations that do not use amethodology to develop software have been shown to constantly operate in crisis mode, to have
difficulty meeting commitments and to depend on the heroics of individuals (Paulk 1995). In other words, it makes sense to
develop software systemsin an orderly, planned and repeatable way using a standard methodology. The following are some of
themore popular lifecycle methodologies: Waterfall, Prototyping, Incremental Devel opment, Evolutionary, and Spiral (Dorfman
1997). Therequirements phase of these methodsis generally implemented by the requirementsengineer, whoisideally not also
involved in the design or development phase of the system.

Requirements Engineering can be divided into two main activities— Requirements devel opment and Requirements management.
The requirements development phase typically includes €elicitation, analysis, specification and verification & validation. The
requirements management phase extends throughout the life cycle and is mainly focused on change management and impact
analysis.

Faulk (1997) describes the requirements phase as having two goals.

Problem Analysis: Thisisthe process of the requirements engineer understanding the customer’ s problem, the purpose of
the system being developed and the constraints on the system.

Requirements Specification: The product of this goal is a document known as the Software Requirements Specification
(SRS) that details what a system should do without saying how to do it. This document captures everything learned in
problem analysis. Thisisthe document that will guide the software design, development and testing phases.

There are many techniquesto assist in the requirements phase of development. Theseinclude interviews, prototypes, JAD/RAD
sessions, Protocol Analysis, and Use Cases (Gougen and Linde 1993, Gause 1989, Dorfman 1997, Rumbaugh 1994). The
development of specification documents using one or more of these techniques is the “traditional” way of developing
requirements.

2001 — Seventh Americas Conference on Information Systems 1327

1S and S/W Design, Development, and Use

An Introduction to Extreme Programming

Extreme Programming (X P) was devel oped asaresponse to some of the problemswith conventional methodol ogies such aslack
of adaptability and flexibility. The creators of XP werelooking for an alternative to the traditional methodologies, which they
considered “heavy”. Proponents of the XP methodology claim that the combination of the X P devel opment process along with
the X P programming principles produces an effective and efficient development life cycle. McGregor (2001) describes an XP
project in thefollowing way: “ The goal of an Extreme Project seemsto be producing a software product with acceptable quality
in the least amount of time possible.” Beck (2000) originally described X P as amethod with the following lifecycle (Figure 1).

w
P < " d Extreme Programming Project

Ertreine Profuwamming

Test Scenarios

User Stories Mewr Liger Stary

Reqguirements Froject Yelacity Bugs
. Svetem | Release Latest Custamer
Arc}ntecm'ﬂlnﬂetaphur Release pj3, Tteration version Aeceptance ppproval . Small
. _— 0 : — »
Spike Planning Tests Releases
Lincertain Confident Mext lteration
Estimates Estimates
Splkc Loparizhd 2060 eavan Wells

Figure 1. The Extreme Programming Lifecycle

A customer writeswhat areknown as*“ User Stories” on numbered index cards. These user storiesare one-paragraph descriptions
in plain English of what they want the system to do. Next, an iteration planning meeting isheld. At this meeting, the customer
reads the user stories and the devel opment team asks questions until they understand the story. Based on this, the development
team determines what tasks are required to meet the needs of the story. They then estimate the time required to complete the
development of astory. These time estimates, along with arisk ranking, are written on the back of each user story.

Therisk ranking isbased on the devel oper’ s confidencein being abletoimplement asolution. If thedevel opersarenot sureabout
how to implement a solution to the user story, they create a“ Spike Solution”. The spike solution isan exploratory exercise that
gives the devel oper the domain or technical knowledge required to create a time estimate.

The next step is a release planning meeting which is held with the customer. At this meeting, the customer prioritizes the user
stories taking into account the time estimate for each one. The team then develops arelease plan, which details the stories that
will beincluded in the next three software releases. Subsequently, developers create unit tests along with the actual code. At
completion, the codefor each individual story isreleased for acceptance testing with therest of the baseline code. Thishappens,
minimally, once per day. The customer plansthe acceptance test. After customer approval of the acceptance tests, areleaseis
created.

XP and Requirements Engineering Activities

The following section highlights the main differences between XP and conventional development methodologies across the
primary requirements engineering activities.

Elicitation

One of the primary artifacts of interest and the sole method for requirements gathering in XP are user stories. As the name
suggests, user storiesare simply descriptions of what the system needsto do, written by the actual user asaconcise, free-flowing,

story on index cards. They are similar, but not the same, asavery popular tool in traditional requirements elicitation —the Use
Case. Thefollowing table (Table 1) compares these two techniques.

1328 2001 — Seventh Americas Conference on Information Systems

Cohn & Paul/Requirements Engineering in Extreme Programming (XP)

Table 1. Comparison of Use Cases and User Stories (XP)

Use Cases User Stories
Consistent, complete, do not overlap, do not contradict | Arejust stories—they may break these rules
One cannot contain other use cases that are not related | Do not distinguish between different scenarios

Structured Unstructured — A set of cards written in plain English
Do not have any measurements Measured by risk, estimated time and priority
Can only be from the perspective of one actor Have no perspective constraints

User stories do not need to be decomposed until they reveal every detail of aprocess. Infact, it is difficult to get a customer to
write down al of the details of astory. Inthiscase, the user story functions asthe starting point for afuture conversation between
the customer and the developer. For this reason the user story should contain enough information to remind the customer of all
the details that need to be discussed when the story is explored later.

Thefollowing isan example of auser story: “When a customer orders an item they are charged based on either adiscount off of
list price or a markup above cost depending on how the customer is setup. Discounts off of list price are maintained by the
marketing department while markups from cost are maintained by the sales department. In either case the customer may be
eligiblefor aquarterly rebatethat isnegotiated by the buying department.” Inthetraditional devel opment scenario, thisuser story
would be represented by multiple use casesfrom the perspective of at | east five actors. Additional elicitation would need to occur
before parts of this user story could be converted into a use case.

Analysis

Thegoal of requirements analysisisto develop acomplete understanding of the problem to be solved and to uncover conflicting
needs. Some of the popular, traditional techniquesused to analyzerequirementsare: structured analysis, object-oriented analysis
and formal methods. 1n an XP project the programmers have continuous feedback with one customer who is the voice of all
requirements. Having asingle voice for al requirements helps eliminate conflicting needs that are typically uncovered during
requirements analysis. XP does not have a separate requirements analysis phase, requirements go from the elicitation phase
directly intothedevelopment phase. For softwaredevel opment, X Pfavorsobject-oriented languages because of their adaptability
to change. In XP, writing code is an additional analysis technique. Beck (2000) maintains that the simplest object-oriented
designsoccur after sometest casesand code has been written and refactored. Only after reflection upon the problem to be solved
in conjunction with the knowledge and insight gained by programming isthe final object-oriented design developed. In XPthe
phases of software engineering are: requirements, test, code then design.

Specification

The complete and accurate specification of requirements isthe ultimate goal of the requirements development process. In XP,
thereisno requirement to develop aformal SRSto record all the requirements under strict guidelines. Instead, aset of informal,
user storiesis expected to take its place. Looking at user stories collectively from a standards perspective clearly suggests that
they are not a unique set, normalized, alinked set, complete or consistent. They do, however, satisfy the properties of being
abstract, bounded, modifiable, traceabl e, testable, configurable and granular. The concept of User Storiesin X Palso satisfiesmost
of the categorization requirements (Identification, Priority, Criticality, Feasibility, Risk, and Source) of the IEEE guide.
Furthermore, user stories help avoid some of the pitfalls described in the IEEE Guide, such as the mixing of design and
implementation details during requirements elicitation, overspecification, etc. As pointed out by Scharer (1981), traditional
requirements typically suffer from overspecification problems such as “The Kitchen Sink” (including everything that might
possibly be needed) and “ The Smoke Screen” (veiling true requirements with extras that are not needed). XP' s solution to this
problem is a principle known as “You aren’'t going to need it”. Jefferies (2000) describes the principle as. “Don’t build for
tomorrow. When you hear yourself elaborating or generalizing adesign, stop. | mplement the simplest design that could possibly
work to do what you have to do right now. When you say ‘We're gonna need it’, you’' re wasting precious time, and you're
usurping the customer’ s right to set priorities.”

2001 — Seventh Americas Conference on Information Systems 1329

1S and S/W Design, Development, and Use

Verification and Validation

In projects using traditional methodologies, this phase involves the testing of the final software product based on the System
Requirement Specification (SRS), to ensure accuracy and adequacy and thusimprove quality. Wallace (2000) describesthisas
“Software verification examines the products of each development activity (or increment of the activity) to determine if the
software development outputs meet the reguirements established at the beginning of the activity”. In XPthereisno SRS. The
testing responsibility isdivided between devel opers and customers. Developerswrite test cases as part of code devel opment and
testing (both unit and integration) is completely integrated into the development process. In order to test that all requirements
areincluded inthefinal product, X P depends on the customer conducting acceptance tests. The customer conductsthe acceptance
tests by checking the software against the user stories that they have written.

Requirements Management

Changeisinevitable. System and software requirementswill evolve and change. Requirements management (RM) isprimarily
interested in helping firms manage these changes effectively. Thisincludes “monitoring the addition of new requirements, the
deletion of old requirements, and the changes made to existing requirements.” (Y ourdon 1998). Although the credo of XPis
“Embrace Change”, XP is not well suited for projects that require documented traceability of all changes. When a change to a
requirement is needed in XP anew user story iswritten. The requirement isalso encapsulated in two other entities: the unit test
and the customer scripted acceptance test. XP manages change by ensuring that all unit test and acceptance test for the entire
system pass every time anew software version is created. Changes start as a user story but are only recorded in the application
software code, the unit tests and the acceptance tests. By dealing with change in a flexible lightweight manner, Beck (2000)
maintains that the cost of change no longer rises exponentially over time.

Research Issues

Isthe promise of XPreal? Under what circumstances? Some of the fundamental “problems’ frequently attributed to project
failures and the reason a formal requirements engineering process is stressed are addressed by the key tenets of XP such as
simplicity, user involvement, continuous testing, and small and frequent releases. However, whether XP really addresses the
problems and the extent to which it does, are till not clear. The following are some key questions related to requirements
engineering that need to be addressed.

* What kind of projects can benefit from XP? What projects are “too big” and therefore outside the scope of XP?

» How do we reconcile past research, which suggests that the lack of aformal specification is arecipe for project disaster?
What is the effect of the lack of focus, in general, with aformal requirements engineering process?

« XPrequires customers that can write user stories, assist in planning releases, perform acceptance tests, and be available to
answer questions on-site with the developers. Ideally, thisis one person who can represent a group of users. What are the
“ideal” characteristics that this person must possess? How are different, and potentially conflicting, stories from multiple
“customers’ handled?

* What are theimplications of not having aformal document (such as an SRS) to serve as a binding contract?

* How is change managed after release? How is the potential impact of changes assessed? Can the “cost of change” curve
truly be flattened with XP?

» Doestheuseof XPindeed resultin project “success’? Arethe successfactorsfor XPimplementation different than for the
traditional methodol ogies?

A variety of quantitative and qualitative methods and measures will need to be used to address these questions. An appropriate
framework with multiple dimensions of |S project success should be used to measure the “ effectiveness’ and “success’ of XP
projectsintherea world. For example, Saarinen (2000) proposed amodel for project success that included measures assessing
satisfaction along four dimensions. 1 — success of development process; 2 — success of use; 3 — quality of application; and 4 —
impact of IS on organization. Datafor these measures should be collected from various stakeholders through interviews and
surveys. In addition, data such as time to complete project, number of errorg/lines of code, etc. should be collected to
quantitatively assessperformance. Some of the other questions- for example the ones about customer characteristics- will need
tobeanswered using qualitative methods such asobservation and protocol analysis. Controlled experimentswith groupsworking
on the same project — some using XP and others a traditional methodology — would provide opportunities for comparison of
process and results.

1330 2001 — Seventh Americas Conference on Information Systems

Cohn & Paul/Requirements Engineering in Extreme Programming (XP)

Conclusions

Intoday’ sfast economy, getting your product to market in the least amount of timeiscritical to the successof abusinessventure.
Additionally, the time and expense for developing formal software specifications may not be justified for smaller projects. XP
would seem to be the solution in these cases. XP aso seemsto be particularly well suited to projects where the requirements are
in a constant state of change. On the other hand, since every requirement is not scrutinized to the lowest level of detail before
design and development, certain constraints may be overlooked. Asaresult, XP may not be well suited to projectsthat produce
high-reliability software, or projectsthat are primarily governed by constraints such asamissile guidance systemsor projectsthat
have strong security requirements.

Extreme Programming savestimein the requirements phase by setting up astructure that minimizesthe amount of timethe same
problem must be explored by different individuals. Unfortunately, the saving in time comesat the expense of increased risk. On
the other hand XP strives to take a user-centric approach. It isdesigned to prevent lack of user involvement as being arisk that
can lead to project failure. Continual feedback and dial og take the place of documentation. While Extreme Programming, asa
methodol ogy, seemstohave alot of promise, itisalso clear that it requires much further study. The successesof X Pthusfar have
been largely anecdotal. In order to fully take advantage of the potential possibilities of XP, there are several issuesthat must be
addressed. Some of the potential research topics related to requirements devel opment and management were presented in this

paper.

References

Beck, K., Extreme Programming Explained: Embrace Change, Addison Wesley, 2000.

Dorfman, M., “Requirements Engineering”, Sofiware Requirements Engineering, |EEE, 1997, pp. 7-22.

Faulk, S., “ Software Requirements: A Tutorid”, Software Requirements Engineering, |EEE, 1997, pp. 158-179.

Gause, D., Exploring Requirements, Dorset House, 1989, pp. 249.

Goguen, J. A. & Linde, C., "Techniques for Requirements Elicitation”, Proceedings of the International Symposium on
Requirements Engineering, 1993.

|EEE Std 1233, “IEEE Guide for Developing System Requirement Specifications’, Software Requirements Engineering, |EEE,
New Y ork, 1998.

Jefferies, R., Extreme Programming Installed, Addison Wesley, 2000, p. 125.

McGregor, J., “Quality Assurance Taking Testing to the Extreme”, Journal of Object Oriented Programming, February 2001.

Paulk, M., The Capability Maturity Model: Guidelines for Improving the Software Process, Addison-Wesley, 1995.

Rumbaugh, J., "Getting Started: Using Use Cases to Capture Requirements’, Journal of Object Oriented Programming,
September 1994.

Saarinen, T., “ An expanded instrument for eval uating information systemssuccess,” Information & Management, 1996, pp. 103-
118.

Scharer, L., “Pinpointing Requirements’, Datamation, April 1981.

Wallace, D. & Ippolito, L., “Verifying and Validating Software Requirement Specifications’, Software Requirements
Engineering, |EEE, 2000, p. 437.

Y ourdon, E., “Requirements Management: A New Look”, Cutter IT Journal, 1998

2001 — Seventh Americas Conference on Information Systems 1331

	Association for Information Systems
	AIS Electronic Library (AISeL)
	December 2001

	A Comparison of Requirements Engineering in Extreme Programming (XP) and Conventional Software Development Methodologies
	Thomas Cohn
	Ravi Paul
	Recommended Citation

	tmp.1219181181.pdf.Fxv9U

