
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 1999 Proceedings Americas Conference on Information Systems
(AMCIS)

December 1999

Toward a Detailed Classification Scheme for
Software Maintenance Activities,
Evelyn Barry
Carnegie Mellon University

Chris Kemerer
Univeristy of Pittsburgh

Sandra Slaughter
Carnegie Mellon University

Follow this and additional works at: http://aisel.aisnet.org/amcis1999

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 1999 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Barry, Evelyn; Kemerer, Chris; and Slaughter, Sandra, "Toward a Detailed Classification Scheme for Software Maintenance Activities,"
(1999). AMCIS 1999 Proceedings. 251.
http://aisel.aisnet.org/amcis1999/251

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis1999%2F251&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis1999?utm_source=aisel.aisnet.org%2Famcis1999%2F251&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis1999%2F251&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis1999%2F251&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis1999?utm_source=aisel.aisnet.org%2Famcis1999%2F251&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis1999/251?utm_source=aisel.aisnet.org%2Famcis1999%2F251&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

726

Toward a Detailed Classification Scheme for Software Maintenance Activities

Evelyn J. Barry
Graduate School of Industrial Administration, Carnegie Mellon University

email: eb48@andrew.cmu.edu. phone: (412) 268-3681, fax: (412) 268-7064
Chris F. Kemerer

Katz Graduate School of Business, University of Pittsburgh
Sandra A. Slaughter

Graduate School of Industrial Administration, Carnegie Mellon University

ABSTRACT
 Concern for Y2K compliance emphasizes the need for
understanding and improved management of software
maintenance activities. Relatively little empirical
research has examined the type and extent of activities
taking place during software maintenance. Our research
represents a first attempt in developing a detailed
taxonomy that describes the type and distribution of
activities within software maintenance. We illustrate our
taxonomy using maintenance data from an actual
application system.

INTRODUCTION
 Software maintenance activities span a system's
productive life and consume a major portion of the total
life cycle costs of a system. However, what is actually
done to systems in maintenance is sometimes a mystery to
many organizations. Thus, software maintenance remains
an opaque activity that is expensive and difficult to
manage. With this study, we intend to open the “black
box” of software maintenance by developing a detailed
classification scheme for software maintenance activities.

BACKGROUND
 A few researchers have attempted to identify the
major types of maintenance work. One of the first
typologies for maintenance activities was proposed by
Swanson (1976). Swanson’s classification of
maintenance types into adaptive, perfective and corrective
later evolved into the IEEE standard for software
maintenance. Pressman (1992, pp. 664-665) describes
four different types of maintenance: corrective, adaptive,
preventive and perfective. The empirical work that has
been done tends to report most (at least 50%) of the
maintenance effort as perfective (Lientz and Swanson,
1980, p. 68). However, neither classification scheme
describes in detail the kinds of work done within
perfective maintenance.

PROPOSED TAXONOMY
 To develop a more detailed taxonomy, we begin by
examining the reasons for software maintenance. The
traditional view of software maintenance was to 'fix'
program source code. As Lehman and Belady (1985, p.
12) pointed out, fixing software differs from repairing

manufactured products. Software does not wear out or
deteriorate with age. Repairing manufactured goods
restores products to their original state. Problems with
software actually reveal flaws in the original source code
or specifications. Like Swanson (1976), we classify this
type of maintenance as corrective. We formally define
corrective maintenance as software maintenance activity
intended to adjust software to correct some type of
erroneous output. Output may include user interfaces, or
output internal to the system.
 A second reason for software maintenance is to adapt
software so that it will comply with a changing
technological environment. The technological
environment may include hardware and software such as
operating systems and compilers. Quite often some
adjustments must be made to software so that systems
will continue to function after these changes occur. This
maintenance effort adds no new functionality.
Maintenance work done for the purpose of adapting to a
changing technological environment is classified as
adaptive. We formally define adaptive maintenance as
software maintenance activity intended to adjust software
to comply with changes in the technological environment.
Such adjustments are required in order for continued
operation. Adaptive maintenance includes version
upgrades, conversions, recompiles, and the re-assembly,
and restructuring of code.

 A third reason for software maintenance activity is to
expand software capabilities and features. Practitioners
and researchers often refer to this as perfective
maintenance or enhancement. Software enhancement
increases application functionality by adding new source
code or through extensive modification to current source
code. Software features added during the enhancement
process go beyond the work needed for adaptive
maintenance. Enhancements give the system users
additional capabilities not previously available. We
classify maintenance work done for the purpose of
expanding and improving the functionality of an existing
software system as enhancement. We formally define
enhancement as software maintenance activity done to
increase the functionality of a software system.

727

 Our objective in this study is to focus on enhancement
activities because the proportion of effort devoted to
enhancement has frequently been assessed as the largest
in the software life cycle. Enhancements to source code
are done for a number of different reasons. Building upon
the classification scheme for maintenance proposed by the
SEL at the University of Maryland (Rombach, Ulery, and
Valett, 1992), we have elaborated six sub-types of
enhancement activities (Table 1). These sub-types
correspond to the major kinds of software functions (data
handling, control flow, initialization, user interface,
computation, module interface and initialization). Within
each of these sub-classifications, we have further
characterized the enhancements in terms of additions,
changes or deletions. Our next step is to demonstrate this
classification scheme empirically.

EMPIRICAL EVALUATION
 Our research site is a large mid-Western retailer that
has many legacy systems under maintenance. We
examined maintenance activities for one of the retailer’s
oldest systems: the financial sales reporting system (FSR).
Over the course of this system’s 20-year history, the
maintainers kept a detailed log of every modification
made by recording date, purpose and type of change. We
coded each event in the system’s change history
according to our proposed classification scheme (Kemerer
and Slaughter, 1999).

 Counts of each enhancement by sub-type were
accumulated by month for the 20 years of change history
spanned by our study. In addition, the growth pattern for
the number of enhancement tasks was plotted for each of
the six main sub-types. We observe that 78% of all
modifications were enhancements, and that most
enhancements in this system involve changes or additions
to data handling and control flow logic (Table 2). The
cumulative plot (Figure 1) shows that enhancements did
not accumulate at a steady rate over the life of this
application. Rather, modifications grew dramatically in
the later years, spurred by the significant addition of new
modules and changes to the system beginning in 1986.

Interestingly, in this system, most enhancements involved
changes or additions of source code. Relatively few
enhancements actually deleted code. Practitioners often
believe that old systems accumulate large amounts of
"spaghetti code", much of which is not executed.
Longitudinal analyses of change event histories and
module complexity would help to substantiate this belief.
Our next step in this study is to develop methodologies
for analyzing and comparing patterns of maintenance
activity across applications. A deeper understanding of
the types, distribution and patterns of maintenance
activities can open up the "black box" of software
maintenance and help improve software change
management.

SELECTED REFERENCES
Kemerer, C.F. and Slaughter, S.A., "An Empirical
Approach to Studying Software Evolution", IEEE
Transactions on Software Engineering, 1999,
forthcoming.

Lehman, M.M. and Belady, L.A., Program Evolution:
Processes of Software Change, Academic Press, London,
1985.

Lientz, B.P. and Swanson, E.B., Software Maintenance
Management, Addison-Wesley Publishing Co., Reading,
MA, 1980.

Pressman, R.S., Software Engineering: A Practitioner's
Approach, 3rd ed., McGraw-Hill, New York, NY, 1992.

Rombach, H.D., Ulery, B., and Valett, J., “Toward Full
Life Cycle Control: Adding Maintenance Measurement to
the SEL,” Journal of Systems Software, vol. 18, 1992, pp.
125-138.

Swanson, E.B., “The Dimensions of Software
Maintenance,” Proceedings of the 2nd IEEE International
Conference on Software Engineering, 1976, pp. 492-497.

728

IMPLICATIONS AND CONCLUSIONS

Sub-Category Description
Data Handling Modifications to definition or formats of data structures, segments, parameters, databases or files
Control flow Modification to the control flow logic of the program
User Interface Modifications to screens, messages, reports or any other type of output sent to the users
Computation Modification to formulas and algorithms
Module Interface Modifications to the code creating information for another module or another system to access
Initialization Modification in the code setting constants or initial values for variables
Table 1: Descriptions of Sub-Categories for Enhancement Activities

Add
Count Percent

Change
Count Percent

Delete
Count Percent

Total
Count Percent

Data handling 82 14 157 27 29 5 268 47
Control flow 43 7 163 28 21 4 227 40
User Interface 19 3 24 4 0 0 43 7
Computation 8 1 14 2 5 1 27 6
Module Interface 2 0 4 1 0 0 6 1
Initialization 2 0 1 0 0 0 3 1
All Enhancements 156 27 363 63 55 10 574 100
Table 2: Counts of Enhancements to FSR Note: percentages may not sum to 100% due to rounding

Figure 1: Cumulative Enhancements for Financial Sales Reporting System (FSR)

	Association for Information Systems
	AIS Electronic Library (AISeL)
	December 1999

	Toward a Detailed Classification Scheme for Software Maintenance Activities,
	Evelyn Barry
	Chris Kemerer
	Sandra Slaughter
	Recommended Citation

