
MIS Quarterly Executive MIS Quarterly Executive 

Volume 23 Issue 3 Article 5 

September 2024 

Combining Low-Code/No-Code with Noncompliant Workarounds Combining Low-Code/No-Code with Noncompliant Workarounds 

to Overcome a Corporate System’s Limitations to Overcome a Corporate System’s Limitations 

Robert M. Davison 

Louie H. M. Wong 

Steven Alter 

Follow this and additional works at: https://aisel.aisnet.org/misqe 

Recommended Citation Recommended Citation 
Davison, Robert M.; Wong, Louie H. M.; and Alter, Steven (2024) "Combining Low-Code/No-Code with 
Noncompliant Workarounds to Overcome a Corporate System’s Limitations," MIS Quarterly Executive: Vol. 
23: Iss. 3, Article 5. 
Available at: https://aisel.aisnet.org/misqe/vol23/iss3/5 

This material is brought to you by the AIS Journals at AIS Electronic Library (AISeL). It has been accepted for 
inclusion in MIS Quarterly Executive by an authorized administrator of AIS Electronic Library (AISeL). For more 
information, please contact elibrary@aisnet.org. 

https://aisel.aisnet.org/misqe
https://aisel.aisnet.org/misqe/vol23
https://aisel.aisnet.org/misqe/vol23/iss3
https://aisel.aisnet.org/misqe/vol23/iss3/5
https://aisel.aisnet.org/misqe?utm_source=aisel.aisnet.org%2Fmisqe%2Fvol23%2Fiss3%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/misqe/vol23/iss3/5?utm_source=aisel.aisnet.org%2Fmisqe%2Fvol23%2Fiss3%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E


September 2024 (23:3) | MIS Quarterly Executive   291

Non-Platform IT Workarounds Are a Seldom-Reported Mode 
of Low-Code/No-Code Development1,

Charles Lamanna,2 corporate vice president of Microsoft’s low-code application platform, 
emphasizes that low-code development tools can play a transformative role in a variety of 
organizational tasks, ranging from simple forms and websites to application integration and 
business process management. A common starting point for organizations keen to adopt low-
code approaches is to move away from spreadsheets, not least because they may constitute 
a security risk. Instead of using spreadsheets, organizations typically migrate data to a 
professional database, often hosted in the cloud. A cloud-hosted database eliminates the need 
for multiple account managers to manually update shared drives and simultaneously enables 
various self-service capabilities. For example, business users can access and update data 
independently, leveraging the integration capabilities of products such as Microsoft Excel and 
Access with Office 365 and Microsoft Dynamics.

However, the effectiveness of low-code platforms, such as Microsoft Power Automate, often 
depends on the underlying application. While Excel remains a powerful calculation tool for 

1 Jonny Holmström is the senior accepting editor for this article. We are also grateful to Dr Carroll Noel for his many constructive 
comments that helped us improve this article immeasurably.
2 Lamanna, C. New Ways of Development with Copilots and Microsoft Power Platform, Microsoft blog post, May 21, 2024, avail-
able at https://www.microsoft.com/en-us/power-platform/blog/author/charles-lamanna/.

Combining Low-Code/No-Code with 
Noncompliant Workarounds to Overcome a 
Corporate System’s Limitations
We explore a novel context where employees engage in low-code no-code work, en-
abled by software-based workarounds that don’t comply with organizational norms 
and aren’t endorsed by corporate management, yet are essential to organizational 
success. We describe how employees at a warehouse that supports a major retailer in 
Hong Kong engage in work practices combining low-code/no-code approaches with 
noncompliant workaround behaviors. We consider the practical implications and 
potential contributions of such noncompliant work and provide recommendations for 
business managers overseeing low-code/no-code efforts.1

DOI: 10.17705/2msqe.00099

Robert M. Davison
City University of Hong Kong (Hong Kong)

Louie H. M. Wong
Nagoya University of Commerce and 

Business (Japan)

Steven Alter
University of San Francisco (U.S.)



292    MIS Quarterly Executive |  September 2024 (23:3) misqe.org | © 2024 University of Minnesota

Combining Low-Code/No-Code with Noncompliant Workarounds to Overcome a Corporate System’s Limitations

data analysis, Microsoft Power Automate offers 
low- and no-code solutions for business process 
automation. Low-code application platforms 
enable basic user interactions with data, helping 
to streamline workflows and improve efficiency. 
Because they leverage digital capabilities to drive 
automation, these platforms can also be used 
to automate business processes that previously 
relied on manual methods, such as email or 
spreadsheets. Though Excel macros and Visual 
Basic for Applications3 have historically facilitated 
process automation, low-code application 
platforms now offer enhanced capabilities that 
reduce reliance on professional developers and 
meet the evolving needs of businesses in today’s 
digital landscape. 

The past decade has seen a surge in 
groundbreaking big data software aimed at 
analyzing, manipulating and visualizing data. 
However, even after 30 years, Microsoft Excel 
remains the tool of choice for the average 
knowledge worker trying to make sense of 
data. It is remarkable that Satya Nadella, CEO of 
Microsoft, asserts that Excel remains unparalleled 
among the company’s products, with millions 
of knowledge workers worldwide relying on it 
every day. He says: “Think about a world without 
Excel. That’s just impossible for me”4 Excel has 
served knowledge workers faithfully for decades 
and plays a pivotal role in business. In fact, this 
spreadsheet application can be seen as an early 
example of low-code development. Its user-
friendly interface and formidable data analysis, 
modeling and reporting capabilities have made it 
an irreplaceable resource.

Historically, non-IT personnel have long played 
a role in software application development, 
whether using computer-aided software 
engineering (CASE) tools or within the wider 
context of end-user computing.5 There are many 
advantages of involving employees in application 
development, not least their familiarity with 
the organizational processes that need software 

3 Visual Basic for Applications is an implementation of Microsoft’s 
event-driven programming language Visual Basic 6.0 built into most 
Microsoft Office desktop applications.
4 Weinberger, M. Satya Nadella Cannot Imagine the World without 
This One Microsoft Product, Business Insider, June 30, 2016, avail-
able at https://www.businessinsider.com/satya-nadella-excel-is-
microsofts-best-consumer-product-2016-6?r=UK.
5 Cavaye, A. L. M. “User Participation in System Development 
Revisited,” Information and Management (28:5), May 1995, pp. 
311-323.

support and the shortage of professional 
application developers. Involving users in 
application development frees up IT personnel to 
focus on specialist activities. 

Today, low-code/no-code application 
development involves employees (sometimes 
referred to as citizen developers) using platforms 
(variously referred to as low-code development 
platforms or low-code application platforms) that 
provide the necessary tools, usually visual, that 
enable them to develop software applications. 
Organizations deploy these platforms so that 
employees can develop applications with the 
oversight of corporate managers who establish 
and control the low-code/no-code governance 
policy. This arrangement allows employees to 
work on specific tasks under the supervision of 
responsible managers and have access to regular 
IT personnel if they encounter problems. 

In the era of digital transformation, employee 
involvement in application development provides 
business value because it enables employees 
to contribute directly to that transformation 
process, thereby mitigating any shortage of 
professional application developers.6,7 It is 
also consistent with the broader dictum of 
“doing more with less” because, in addition 
to performing application development work, 
employees are still carrying out their regular 
jobs. The organization therefore does not have to 
employ additional people to develop applications. 
The low-code/no-code approach thus constitutes 
a form of “organizational citizenship behavior,” 
where the organization’s (non-IT) citizens are 
active participants. 

Prior research has shown that organizational 
citizenship behavior makes a valuable 
contribution to organizational productivity.8 For 
instance, Nadella and Iansiti suggested that low-
code technology “can empower a broad range of 
‘professional’ [software developers] and citizen 
developers to break down isolated silos and 

6 Carroll, N., Móráin, L. Ó., Garrett, D. and Jamnadass, A. “The 
Importance of Citizen Development for Digital Transformation,” Cut-
ter IT Journal (34:3), April 2021, pp. 5-9.
7 Novales, A. and Mancha, R. “Fueling Digital Transformation with 
Citizen Developers and Low-Code Development,” MIS Quarterly 
Executive (22:3), September 2023, pp. 221-234.
8 Davison, R. M., Ou, C. X. J. and Ng, E. “Inadequate Information 
Systems and Organizational Citizenship Behavior,” Information & 
Management (57:6), September 2020, pp. 1-10.



 September 2024 (23:3) | MIS Quarterly Executive    293

Combining Low-Code/No-Code with Noncompliant Workarounds to Overcome a Corporate System’s Limitations

drive innovation across traditional boundaries.”9 
Gartner forecasted (perhaps optimistically) 
that by the end of 2024, 65% of all application 
development will take place on low-code 
development platforms.10

Though the conventional low-code 
development platform approach to low-code/no-
code work dominates accounts in the literature, 
this dominance obscures other forms of low-
code/no-code work that are not platform-based, 
and application development work carried out by 
other types of employees. Examples include those 
who may not see themselves as citizen developers 
and those who engage in low-code/no-code 
work that is not under the control of corporate 
management. Thus, we contend that there are 
suitably motivated and qualified employees who 
choose to engage in low-code/no-code work that 
provides business benefits but does rely on a low-
code development platform. Such work does not 
adhere to IT governance requirements and is out 
of sight of (and hence not subject to regulation 
by) senior management. 

This alternative mode of low-code/no-code 
application development is likely to be more 
prevalent in organizations than is commonly 
recognized, particularly in situations where 
employees create their own workarounds for 
IT-based solutions, with much of this activity 
taking place in the shadows.11 Though this kind 
of IT work may be viewed by some managers as 
dangerously subversive12 its likely prevalence 
indicates its significance. Specifically, the 
prominence of this kind of activity reflects 
the degree to which employees have “agency” 
(i.e., control and decision-making power over 
how they work). Instead of having their work 
constrained by a low-code development platform, 
9 Nadella, S. and Iansiti, M. Want a More Equitable Future? 
Empower Citizen Developers, Wired, December 9, 2020, available at 
https://www.wired.com/story/want-a-more-equitable-future-empow-
er-citizen-developers/.
10 Vincent, P., Iijima, K., Driver, M., Wong, J. and Natis, Y. Gart-
ner Magic Quadrant for Enterprise Low-Code Application Platforms, 
Gartner, Inc., August 8, 2019, available at https://www.gartner.com/
en/documents/3956079.
11 Begonha, D., Kopper, A. and Thirakul, T. Low-Code/No-Code: 
A Way to Transform Shadow IT into a Next-Gen Technology Asset, 
McKinsey Digital, August 19, 2022, available at https://www.mck-
insey.com/capabilities/mckinsey-digital/our-insights/tech-forward/
low-code-no-code-a-way-to-transform-shadow-it-into-a-next-gen-
technology-asset.
12 Davison, R. M. and Ou, C. X.J. “Subverting Organisational IS 
Policy with Feral Systems: A Case in China,” Industrial Management 
and Data Systems (118:3), February 2018, pp. 570-588.

they adopt the principles of “bricolage” (i.e., 
making do with what is at hand) as they create 
novel solutions to their own problems with 
whatever tools they are familiar with and can 
access.

As employees are increasingly becoming 
technically competent, the opportunities for 
them to undertake work that used to be the 
preserve of IT employees also become more 
frequent. This is not a new phenomenon, but 
the advent of low-code/no-code platforms has 
accelerated the trend. Nevertheless, though 
these platforms can enable significant business 
benefits, it is misleading to consider them as the 
only way in which non-IT employees can engage 
in IT work. For many years, some employees 
have created their own IT-related workarounds. 
Such workarounds have many causes and can 
take many different forms. Technically competent 
employees are singularly well-positioned to 
engage in creating workarounds and may neither 
require nor be able to access a formal low-code 
development platform to do so. 

However, non-platform low-code/no-code 
work seems to have slipped “beneath the 
radar” of the literature, and perhaps also that of 
corporate managers eager to reap the benefits 
that low-code/no-code offers. Thus, we believe 
that more attention should be given to non-
platform low-code/no-code work, particularly 
IT-related workarounds. It is not our intention 
to constrain or dictate how employees work, but 
rather to alert both managers and employees 
to the possibilities of this work. To achieve this, 
this article sets out our findings for the research 
question we address: How do employees engage 
in low-code/no-code work outside formal low-code 
development platforms to create solutions to the 
problems they face? 

We explored this phenomenon via a case 
study of employee workaround behavior in 
the warehouse operations of a global fast-
moving consumer goods firm in Hong Kong, 
which we refer to anonymously as “CoreRidge.” 
(Our research methodology is described in 
the Appendix.) Before describing the case, we 
first provide a primer on low-code/no-code 
approaches and describe how IT workarounds 
relate to low-code/no-code development.



294    MIS Quarterly Executive |  September 2024 (23:3) misqe.org | © 2024 University of Minnesota

Combining Low-Code/No-Code with Noncompliant Workarounds to Overcome a Corporate System’s Limitations

A Primer on Low-Code/
No-Code Approaches to 

Application Development
The roots of low-code/no-code development 

approaches can be traced back to tools developed 
in the 1980s and 1990s for computer-aided 
software engineering and rapid application 
development.13 Low-code/no-code development 
can also be seen as an evolution of the 
customization of commercial application software 
that end users have long been able to perform, 
often referred to as end-user computing. In 
general, low-code/no-code development now 
refers to situations where non-IT employees 
are formally empowered to create software 
applications without the direct involvement of IT 
professionals, often using low-code development 
platforms with easy-to-use graphical interfaces. 

Developing reliable and high-quality software 
using the low-code/no-code approach provides 
significant benefits both to the organization 
(for instance, in terms of resource use) and 
to employees. It is much more efficient for 
employees to develop their own applications 
immediately rather than wait for the local IT 
department to have the time and resources to 
do so. As business professionals, employees 
have a detailed understanding of their business 
processes; hence their bottom-up innovation 
can significantly contribute to the organization.14 
However, many IT staff may doubt the ability of 
nontechnical employees to develop high-quality, 
fully functional software applications that also 
comply with organizational and professional 
design principles and standards, especially 
cybersecurity standards. 

Most prior research on the low-code/no-code 
approach has focused on low-code development 
platforms (also known as low-code application 
platforms). Such platforms provide an application 
development environment with all the necessary 
tools,15 which are often visual, with point-and-

13 Novales, A. and Mancha, R., op. cit., September 2023.
14 Elshan, E., Germann, D., Dickhaut, E. and Li, M. “Faster, 
Cheaper, Better? Analyzing How Low Code Development Platforms 
Drive Bottom-Up Innovation,” Proceedings of the 31st European 
Conference on Information Systems (ECIS 2023), Kristiansand, Nor-
way, 2023, available at https://aisel.aisnet.org/ecis2023_rip/82/
15 Bock, A. C. and Frank, U. “Low-Code Platform,” Business 
& Information Systems Engineering (63:3-4), December 2021, pp. 
733-740.

click or drag-and-drop functionality. Through 
these platforms, employees can rapidly develop 
and deploy custom applications. Crucially, the 
platforms reduce or eliminate reliance on formal 
programming languages. 

An increasing number of low-code 
development platforms are now available. 
Gartner’s 2023 Magic Quadrant for enterprise 
low-code application platforms16 assessed 17 
market-leading platforms, including Mendix, 
Microsoft, OutSystems, ServiceNow, Salesforce, 
and Applan. Many of these provide visual tools 
so that citizen developers do not need to engage 
with the more arcane aspects of software coding. 
A visual interface enables a variety of non-IT 
employees to engage in application development, 
which reduces costs associated with digital 
transformation, and application development 
more generally.17

More broadly, in response to the shortage 
of digital talent,18 an increasing number of 
organizations are embracing the concept of 
citizen development. This approach empowers 
non-IT professionals to design, develop and 
deploy lightweight digital solutions to solve 
specific work-related problems using the IT tools 
provided or recommended (or at least tolerated 
by) core IT units.19 Because many more people 
are involved, citizen development has a significant 
impact on democratizing software development.20

Understanding IT Workarounds in 
the Context of Low-Code/No-Code 
Development

Workarounds are sequences of actions 
designed by employees to accomplish task-
related goals that do not conform with standard 
organizational practice.21 Workarounds may 
be created by individual employees or groups 
of employees and may address a temporary 

16 Matvitskyy, O., Iijima, K., West, M., Davis, K., Jain, A. and 
Vincent, P. Magic Quadrant for Enterprise Low-Code Application 
Platforms, October 17, 2023, Gartner, Inc., available at https://www.
gartner.com/en/documents/4843031?ref=null.
17 Novales, A. and Mancha, R., op. cit., September 2023.
18 Carroll, N. and Maher, M., op. cit., June 2023.
19 Binzer, B. and Winkler, T. J. “Low-Coders, No-Coders, and Citi-
zen Developers in Demand: Examining Knowledge, Skills, and Abili-
ties Through a Job Market Analysis,” Wirtschaftsinformatik 2023 
Proceedings 17, 2023, available at https://aisel.aisnet.org/wi2023/17.
20 Carroll, N. and Maher, M., op. cit., June 2023.
21 Alter, S. “Theory of Workarounds,” Communications of the 
Association for Information Systems (34:1), January 2014, pp. 1041-
1066.



 September 2024 (23:3) | MIS Quarterly Executive    295

Combining Low-Code/No-Code with Noncompliant Workarounds to Overcome a Corporate System’s Limitations

situation, becoming redundant when the situation 
changes, or they may persist indefinitely.22 If they 
persist, they may then be integrated into regular 
organizational routines.23

The focus of much of the extensive prior 
research on IT workarounds24 has been on 
exploring “shadow IT”—i.e., work that is 
undertaken by individual employees out of 
sight (and often without the approval) of their 
superiors. Such shadow work may be done to 
avoid overly complex organizational procedures,25 
as a form of resistance or protest against the 
dictates of corporate management26 or to 
overcome the inadequacies of formally provided 
information systems for the work tasks that 
employees need to undertake.27

However, some researchers have reported 
on how employees create workarounds in the 
open—i.e., without any attempt to shield them 
from or with the tacit approval of their immediate 
superiors and even corporate management. In 
these cases, employees may work individually 
or collectively. For instance, in an early account 
of workarounds in the print industry, employees 
adjusted their use of a mandatory print 
management system to ensure work could be 
completed within resource constraints.28

Workarounds are often associated with 
corporate systems that are poorly aligned 
with work processes. In these circumstances, 
employees may have no choice but to create 
workarounds that do not comply with corporate 

22 Davison, R. M., Wong, L. H. M., Ou, C. X. J. and Alter, S. “The 
Coordination of Workarounds: Insights from Responses to Misfits 
between Local Realities and a Mandated Enterprise System,” Infor-
mation & Management (58:8), December 2021, pp. 1-12.
23 Pentland, B. T., and Feldman, M. S. “Designing Routines: 
On the Folly of Designing Artifacts, While Hoping for Patterns of 
Action,” Information and Organization (18:4), October 2008, pp. 
235-250.
24 Ejnefjäll, T. and Ågerfalk, P. J. Conceptualizing Workarounds: 
Meanings and Manifestations in Information Systems Research, 
Communications of the Association for Information Systems (45:20), 
2019, pp. 340-363.
25 Beerepoort, I., van de Weerd, I. and Reijers, H. A. “The Poten-
tial of Workarounds for Improving Processes,” Proceedings of the In-
ternational Conference on Business Process Improvement, September 
1-6, 2019, Vienna, pp. 338-350.
26 Davison, R. M. and Ou, C. X. J. “Digital Work in a Digitally 
Challenged Organization,” Information & Management. (54:1), Janu-
ary 2017, pp. 129-137.
27 Davison, R. M., and Ou, C. X. J., op. cit., February 2018.
28 Bowers, J., Button, G. and Sharrock, W. “Workflow from Within 
and Without: Technology and Cooperative Work on the Print Industry 
Shop Floor,” Proceedings of the 4th European Conference on Coop-
erative Work, 10-14 September, 1995, Stockholm, Sweden, pp. 51-66.

standards29 but provide organizational benefits. 
Workarounds are often subject to regular 
enhancement following feedback.30 The creation 
of workarounds regularly involves bricolage, 
where employees “make do with what is at 
hand” by leveraging a variety of resources in 
a problem-driven fashion to accomplish their 
goals. Workarounds that address limitations 
in corporate systems are likely to become 
permanent and to be formalized as regular 
routines.31 According to Malaurent and 
Karanasios, workarounds both allow employees 
to “maintain congruence with their work 
objectives” and function as “an integral part of the 
institutionalization” of an enterprise system.32

Given the infinite variety of circumstances 
in which workarounds are created, they can 
be implemented in a wide variety of ways. 
However, they commonly involve the use of 
Microsoft Excel to work around the limitations 
of corporate software that does not adequately 
support local needs.33 Though some pundits view 
software applications like Microsoft Excel as a 
form of platform software,34 we argue that these 
applications do not really qualify as low-code 
development platforms because they are neither 
designed, acquired, nor managed with this 
purpose in mind.

29 Alter, S. “Beneficial Noncompliance and Detrimental Compli-
ance: Expected Paths to Unintended Consequences,” Proceedings 
of the 21st Americas Conference on Information Systems, Fajardo, 
Puerto Rico, August 13-15, 2015.
30 Safadi, H. and Faraj, S. “The Role of Workarounds During an 
Open Source Electronic Medical Record System Implementation,” 
Proceedings of the 31st International Conference on Information 
Systems, December 12-15, 2010.
31 Malaurent, J. and Avison, D. “Reconciling Global and Local 
Needs: A Canonical Action Research Project to Deal with Work-
arounds,” Information Systems Journal (26:3), May 2015, pp. 
227-257.
32 Malaurent, J. and Karanasios, S. “Learning from Workaround 
Practices: The Challenge of Enterprise System Implementations in 
Multinational Corporations,” Information Systems Journal (30:3), 
November 2019, pp. 639-663.
33 Spierings, A., Kerr, D. and Houghton, L. “Issues That Support 
the Creation of ICT Workarounds: Towards a Theoretical Under-
standing of Feral Information Systems,” Information Systems Journal 
(27:6), September 2016, pp. 775-794.
34 Begonha, D., Kopper, A. and Thirakul, T. Low-Code/No-Code: 
A Way to Transform Shadow IT into a Next-Gen Technology Asset, 
McKinsey Digital, August 19, 2022, available at https://www.mck-
insey.com/capabilities/mckinsey-digital/our-insights/tech-forward/
low-code-no-code-a-way-to-transform-shadow-it-into-a-next-gen-
technology-asset.



296    MIS Quarterly Executive |  September 2024 (23:3) misqe.org | © 2024 University of Minnesota

Combining Low-Code/No-Code with Noncompliant Workarounds to Overcome a Corporate System’s Limitations

The CoreRidge Low-Code/No-
Code Case 

Background to CoreRidge and Our 
Research

With operations in over 50 countries, 
CoreRidge focuses on household retail goods and 
is a global player in the fast-moving consumer 
goods industry. Prior to 2010, each of CoreRidge’s 
400+ locations was free to operate an enterprise 
system of its own choice or design, but in the 
following decade, the company introduced a 
standardized ERP solution that relied heavily on 
a product now known as Microsoft Dynamics 365 
Business Central. CoreRidge opted to implement 
a “plain vanilla” version of the software that did 
not allow any customization or modification. As 
a result, major discrepancies emerged in some 
of CoreRidge’s operating locations between 
employees’ prior work conventions (i.e., approved 
business processes) and the way that work could 
be done following the implementation of the new 
software procedures.

We explored this situation in one of 
CoreRidge’s five operating locations in Hong Kong 
(a warehouse and four retail stores), where it 
is the market leader in terms of sales volume of 
household goods. We focused our attention on 
the warehouse that services the retail stores. The 
warehouse is responsible for arranging for the 
procurement of new stock and the distribution 
of stock to both the retail stores and to individual 
customers who have requested home delivery. 
In the course of our analysis, we uncovered 
that many employees were actively engaged in 
low-code/no-code application development, as 
described below. 

Limitations of Microsoft Dynamics for 
CoreRidge’s Hong Kong Operations

CoreRidge implemented the Microsoft 
Dynamics software globally between 2010 and 
2016 and found the software was a good fit for 
many of the company’s operating locations. 
However, due to some unique features of the 
Hong Kong environment, it did not fit many 
of the local business processes in Hong Kong, 
which were designed to cater to local customer 
requirements and constraints and, as such, 
cannot easily be modified. For example, in most 

countries, CoreRidge’s retail sites are physically 
co-located with a warehouse, so that customers 
can take their purchases home directly from 
the warehouse or contract with a local delivery 
operator. In Hong Kong, however, a single 
warehouse served four geographically dispersed 
retail sites (during our study period). The reason 
for this different arrangement is due to the high 
cost of land in Hong Kong. Retail sites occupy 
cramped, downtown locations where there is no 
physical space available for a warehouse. All large 
items are therefore kept at a central warehouse 
and dispatched from the warehouse to customers. 
This is a nonstandard mode of operation for 
CoreRidge, but it is unavoidable in Hong Kong. 

Though Microsoft Dynamics does include a 
delivery module, it was not enabled by CoreRidge 
because it could not be modified to handle 
CoreRidge’s situation in Hong Kong. As a result, 
all deliveries are made through third-party 
contractors and have to be managed outside the 
formal system. Further complications arise when 
customers request a change in the delivery date 
or when inclement weather (e.g., typhoons or 
rainstorms) forces all deliveries to be postponed. 
These situations cannot be handled by Microsoft 
Dynamics, so employees in Hong Kong have 
to create other ways to get their work done. 
Because CoreRidge does not provide a low-code 
development platform for employees to use, 
they have to explore other options to ensure that 
goods can still be delivered to customers. 

Creating Excel-Based Workarounds
To solve these local problems, employees 

create and maintain workarounds with Microsoft 
Excel that ensure that work can be completed as 
scheduled (see Figure 1). These workarounds 
apply mainly to functions that are central to 
warehouse operations, mostly relating to delivery 
scheduling and rescheduling. The workarounds 
that employees create are important because they 
relate to customer satisfaction: Customers expect 
to receive the items they pay for.

The Excel-based workarounds are consistent 
with low-code/no-code principles: They are 
created by employees and focus on specific 
tasks that require additional information 
systems support. Moreover, the workarounds 
are implemented through simple formulas and 
functions or drag-and-drop actions such as in 



 September 2024 (23:3) | MIS Quarterly Executive    297

Combining Low-Code/No-Code with Noncompliant Workarounds to Overcome a Corporate System’s Limitations

Excel’s PivotTable, and do not involve any Visual 
Basic for Applications, macros or other advanced 
Excel programming techniques. 

However, the Excel workarounds do not 
comply with corporate policy: The global CIO 
expects that Microsoft Dynamics will be used 
for all activities. Many employees told us they 
understood that their use of Excel does not 
comply with the corporate IT policy but said they 
had to create Excel workarounds because they 
could not complete their work with Microsoft 
Dynamics. As one business navigator noted: “We 
insist on using workarounds because we just 
want to get the job done.” 

Commenting on how workarounds are 
developed, a goods flow manager explained 
“When there is a problem, we will have a meeting 
to discuss how to tackle it. We decide on the 
workaround with our team. If the impact [of 
the workaround] is good, we will keep going; if 
not, we will see how to improve it.” Similarly, a 
business manager noted: “I need to do manual 
monitoring work on orders to ensure there are 
no missing or wrong orders. We communicate 
in the same team, ask other colleagues for their 
opinions and create some workarounds to make 
improvements. We use workarounds because 
the [Microsoft Dynamics] system can’t fit our 
operation.” 

The workarounds described to us are first 
discussed by all relevant team members and then 
implemented with Excel. Several of the employees 
have extensive experience using Excel, including 
knowledge they acquired in their university 

studies. The workarounds involve downloading 
data from Microsoft Dynamics to Excel and 
manipulating it in Excel to meet local needs. For 
instance, Excel is used to create delivery lists 
of furniture items to customers. It is also used if 
customers want to reschedule deliveries. Excel 
is the preferred tool for creating workarounds 
because it is readily available (CoreRidge has 
a site license for the software) and easy for the 
employees to use. 

The need to create workarounds to undertake 
work that Microsoft Dynamics cannot perform 
is widespread across different functional areas 
within CoreRidge’s warehouse. Workarounds 
are created for inbound and outbound logistics, 
forecasting, planning, quality control inventory 
management and other activities. A customer 
delivery supervisor reported how he “draws 
some raw data from Microsoft Dynamics and does 
forecasting in Excel.” He also noted that 100% of 
his work requires workarounds of some form, the 
vast majority using Excel. 

The nature of the Excel-based workarounds 
was illustrated by a product quality specialist, 
who reported: “After information gathering 
and sorting in Excel, we can accomplish the 
arrangement for delivery, the forecasting and the 
number of trucks needed. … The design formulas 
are based on the contract, like the requirement 
of delivery service, the number of goods to be 
delivered, the places to go, the money to be paid 
to the drivers. The formulae are based on my 
understanding of the work that needs to be done 
so that we can input the correct data into Excel. 

Figure 1: Process Model for Creating, Enhancing and Institutionalizing Workarounds at 
CoreRidge



298    MIS Quarterly Executive |  September 2024 (23:3) misqe.org | © 2024 University of Minnesota

Combining Low-Code/No-Code with Noncompliant Workarounds to Overcome a Corporate System’s Limitations

… Without Excel, there is no way to carry out the 
delivery of goods.” 
In a similar vein, the customer delivery 
coordinator reported that “most routine jobs are 
done with workarounds using Excel. We use Excel 
to bring together all the data that we extract from 
Microsoft Dynamics, and then analyze it.” 

The central role of Excel in CoreRidge’s 
delivery process was further illustrated by the 
fact that the employees have developed their 
own standard operating procedures and even a 
training manual for Excel-based workarounds. 
These procedures ensure there are appropriate 
handover mechanisms when new employees 
are brought on board and that relevant Excel 
knowledge is not lost when employees leave 
CoreRidge. 

Using Excel workarounds allows employees to 
have considerable freedom in how they operate, 
far beyond what they might achieve if they 
were using the official low-code development 
platform. Collectively, employees determine how 
to craft workarounds, use a low-code/no-code 
type of approach for the associated technical 
development in Excel and provide training to 
their fellow employees. Finally, they document the 
workarounds and the Excel techniques involved 
in creating them in an operating manual, thus 
enshrining their future agency to continue this 
essential work. 

Analysis of the CoreRidge 
Case

None of our interviewees mentioned the term 
low-code/no-code development spontaneously, 
yet their practice of crafting workarounds with 
Microsoft Excel to solve work-related problems 
clearly corresponds to the contemporary 
understanding of the approach. However, unlike 
many prior investigations of the low-code/
no-code approach, these employees do not use 
a low-code development platform to support 
their efforts, nor indeed is their work endorsed 
or facilitated by CoreRidge’s management. But 
the lack of such a platform is by no means a 
constraint. Instead, employees have the agency 
and freedom to create Excel-based workaround 
solutions that neatly solve their problems 
with minimal fuss or overhead. They work 
collaboratively on situation assessments, decide 

how to employ Excel and then put their plans into 
action. We see the process of employees creating 
Excel-based workarounds following a low-code/
no-code approach as a natural reaction to a 
corporate ERP system that inadequately fits their 
work requirements. 

CoreRidge’s employees do not seem to be 
concerned about the fact that their Excel-based 
workaround solutions do not comply with the 
corporate IT policy because the workarounds 
are the only way they can complete their work 
effectively. Indeed, with the passing of time, the 
workarounds have become institutionalized as 
standard operating procedures in their own right. 
However, we recognize that these workarounds 
may potentially be harmful to CoreRidge because, 
even though they are approved by the warehouse 
manager, they are created without any scrutiny by 
IT personnel and without the use of a corporate-
endorsed low-code development platform. 

We are not suggesting that the employees 
would deliberately introduce errors or security 
flaws, but the risk that they might do so 
inadvertently is likely to be of concern to the CIO 
and chief security officer, who are always on the 
lookout for opportunities to enhance corporate 
cybersecurity and to penalize noncompliant 
behavior. For instance, if employees introduce 
data errors when downloading data from 
Microsoft Dynamics to Excel, these errors could 
result in incorrect deliveries to customers. 
Likewise, customer data (e.g., name and address) 
could be entered incorrectly. Because there is 
no Microsoft Dynamics-to-Excel interface, the 
downloading and editing procedure is necessarily 
messy and the possibility of errors cannot be 
ruled out. 

In Hong Kong, the use of Excel-based 
workarounds is restricted to CoreRidge’s 
warehouse, and many employees confirmed that 
they create or use the workarounds. However, 
we were informally told about employee-driven 
workarounds in other CoreRidge operating 
locations. There are similar practices in Taipei 
and New York, which are characterized by similar 
geographical constraints. 

Indeed, the literature on workarounds 
suggests that the practice is widespread. As a 
result, even though we were unable to find any 
other published studies documenting situations 
where employees created low-code/no-code 



 September 2024 (23:3) | MIS Quarterly Executive    299

Combining Low-Code/No-Code with Noncompliant Workarounds to Overcome a Corporate System’s Limitations

workarounds without the use of a low-code 
development platform, we must assume that 
similar practices are common. We believe that 
there are many other examples of employees 
using a bricolage approach to leverage whatever 
software tools they can access to solve problems. 
In particular, the use of Excel to replace 
enterprise system functions is almost ubiquitous. 
Excel is very much the tool of choice, with its 
readily available online help system, proliferation 
of online resources to help users and its long 
history of use in organizations.

The literature on low-code/no-code 
development almost universally asserts the 
positives of the practice. Indeed, the call for 
papers for this special issue of MIS Quarterly 
Executive35 highlights the value that citizen 
developers can bring to their organizations. 
However, the CoreRidge case shows that 
platform-based low-code/no-code development 
is not the only form of the practice; non-platform 
low-code/no-code development practices 
also exist and create value but operate in a 
less transparent space where the integrity of 
employees is critical. Such unregulated low-code/
no-code development—i.e., taking place outside 
the oversight of management—has the potential 
to cause significant harm to the organization. 

Undoubtedly, low-code development 
platforms have many strengths, but they may 
not be appropriate for organizations that do 
not recognize the need (or even the possibility) 
to democratize systems development (or do 
not want to spend money on it). Typically, the 
objective of deploying a low-code development 
platform is to provide limited flexibility within 
a tightly controlled environment, using the 
platform to enhance organizational mission-
critical applications. The scope of these 
applications is restricted to the work system as 
determined by the company’s headquarters. 

Our interviews uncovered no evidence that 
CoreRidge has any interest in democratizing 
software development, even though it could 
be argued that such democratizing is taking 
place. Indeed, it is doubtful whether CoreRidge’s 
employees really want to be citizen developers—
most of them only care about why the 
organizational mission-critical applications do 

35 Carroll, N., Holmström, J. and Matook, S. “Call for Papers: The 
Rise of Low-Code/No-Code: Accelerating Digital Transformation,” 
MIS Quarterly Executive, June 2023.

not support the local processes in their day-to-
day operations and what they can do about this. 
The need for low-code/no-code development is 
recognized neither by CoreRidge’s global CIO nor 
by company headquarters. 

The CoreRidge case shows that in contrast 
to deploying a corporately mandated low-
code development platform, Excel is both 
more practical and more cost-effective. Excel is 
ubiquitous and does not require extra investment. 
Most employees are already familiar with Excel 
and the required training can be undertaken 
by the more competent employees. In this way, 
employees can collectively retain and enhance 
their own agency, retaining control over all 
aspects of the low-code/no-code process as they 
create workarounds.

The creation and use of Excel-based 
workarounds at CoreRidge involve many low-
code/no-code practices but without using a 
vendor’s low-code development platform. The 
Excel applications created by employees are 
supported by the corporate ERP software and are 
used to make business operations more efficient 
and effective. Tables 1 and 2 explore the concept 
of platform-less development of workarounds 
in more depth by using the nine elements of the 
work system framework36 to compare typical 
low-code/no-code assumptions with actual 
practices in the CoreRidge case. Table 1 compares 
application development practices in CoreRidge 
with typical low-code/no-code assumptions 
related to application development. Table 2 
compares CoreRidge’s operational work system 
with typical assumptions about work systems 
that might use low-code/no-code-based software. 
Comparing Tables 1 and 2 reveals the difference 
between using low-code/no-code to perform 
programming tasks and using the resulting 
software in operational systems.

A comparison of Tables 1 and 2 highlights 
an important issue identified in our analysis of 
the CoreRidge case. Merely using a low-code 
development platform does not guarantee 
that operational tasks will be done well. There 
is no reason to believe that such a platform 
would provide CoreRidge employees with the 
opportunity to develop superior workarounds to 
meet their needs and satisfy both customer needs 

36 Alter, S. “Work System Theory: Overview of Core Concepts, 
Extensions, and Challenges for the Future,” Journal of the Associa-
tion for Information Systems (14:2), February 2013, pp. 72-121.



300    MIS Quarterly Executive |  September 2024 (23:3) misqe.org | © 2024 University of Minnesota

Combining Low-Code/No-Code with Noncompliant Workarounds to Overcome a Corporate System’s Limitations

and corporate information needs. On the contrary, 
the limitations of specific low-code development 
platforms might make their use by CoreRidge 
impossible or futile. These limitations might even 
create difficulties for CoreRidge—for example, in 
their treatment of processes, data definitions and 
user interfaces. 

Recommendations for 
Managing Low-Code/No-Code 

Efforts
Based on our analysis of the CoreRidge case, 

we provide five recommendations for business 

Table 1: Typical Assumptions Related to Using Low-Code/No-Code Vs. Actual 
Development Practices in the CoreRidge Case
Work System 

Element 
Typical Assumption Related to Low-Code/

No-Code Development Development Practices in the CoreRidge Case

Technology A low-code development platform is used. Excel suffices. No low-code development 
platform is available or needed. 

Information Relevant information will be defined using 
low-code/no-code capabilities, including a 
small-scale data management system.

Relevant information is defined in column 
headings of Excel spreadsheets.

Participants Low-code/no-code capabilities are used by 
business professionals or IT professionals. 
Business professionals do not need extensive 
training before using the capabilities to tailor 
software to their needs.

Business professionals collaborate in using Excel 
to produce and maintain spreadsheet-based 
software that fits their business needs. 

Activities Analysis prior to using low-code/no-code 
capabilities is assumed to be simple.
Use of the capabilities makes the 
programming effort simple.
Business professionals are able to use the 
capabilities for simple programming tasks 
and also are able to use them to test their 
programming. 

Most of the spreadsheet development was 
done collaboratively and incrementally because 
the Excel workarounds touched so many parts 
of the warehouse operations. 
Problems revealed in the use of Excel-
based workarounds are discussed and fixed 
collaboratively.

Product/
Services

A software system is built using low-code/no-
code capabilities and tailored to the situation.

Excel-based applications are used by warehouse 
employees. 
Creation of standard operating procedures and 
a training manual for Excel-based workarounds. 

Customer Work system participants benefit from using 
the software, as does anyone else in the 
organization who uses the software.

Warehouse employees can do their work 
efficiently and effectively by using the Excel 
workarounds.

Environment Corporate approval for using low-code/
no-code capabilities to create software 
applications.

Corporate (global) expectation that vanilla ERP 
capabilities would be used.
Local recognition that the ERP capabilities did 
not fit. 
Local collaboration in developing and using 
Excel-based workarounds.

Infrastructure Low-code/no-code tools are part of the 
corporate infrastructure.

Microsoft Office and the ERP system are part of 
the corporate infrastructure.
Insufficient number of IT professionals for IT-
infrastructure roles.

Strategy Use low-code/no-code to program simple 
systems without professional IT help.

Use Excel to develop workarounds without 
professional IT help.



 September 2024 (23:3) | MIS Quarterly Executive    301

Combining Low-Code/No-Code with Noncompliant Workarounds to Overcome a Corporate System’s Limitations

Table 2: Typical Assumptions Related to Operational Work Systems That Use Low-Code/
No-Code-Based Software vs. Operational Work Systems in the CoreRidge Case

Work system 
Element 

Typical Assumptions Related to Operational 
Work Systems That Use Low-Code/No-Code-

Based Software

Operational Work Systems in the CoreRidge 
Case

Technology A low-code development platform is used. Excel workarounds are used for some tasks and 
corporate ERP is used for other tasks.

Information Information defined in the low-code 
development platform software is stored in a 
small-scale data management system.

Relevant information is stored and updated on 
spreadsheets that are not attached to a data 
management system.
Other information transmitted to corporate 
headquarters is stored and updated in the 
corporate ERP system.

Participants Participants in the target work system use low-
code/no-code-based software. 

Warehouse employees use Excel-based 
spreadsheets while performing some of their 
tasks involving logistics, forecasting, planning, 
quality control, inventory management and 
other functions.
Some employees use ERP capabilities to 
communicate information to and from 
headquarters.

Activities Participants in the target work system perform 
tasks using low-code/no-code-based software.

Warehouse employees use Excel-based 
spreadsheets while performing some of their 
tasks involving logistics, forecasting, planning, 
quality control, inventory management, and so 
on.
Some employees use ERP capabilities to 
communicate information to and from 
headquarters.
Data maintained on spreadsheets is checked 
extensively.

Product/
Services

Completion of tasks that use low-code/no-
code-based software.

Excel workarounds previously produced all 
information needed to operate the warehouse, 
coordinate with local shippers, coordinate with 
headquarters for inventory replenishment 
and provide financial information required by 
headquarters.

Customer Internal and external customers use the 
information and other outputs produced by the 
target work system.

Internal and external customers use the 
information and other outputs produced by the 
warehouse.

Environment Relatively stable systems that encounter few 
exceptions or interruptions.

Extensive cooperation to continue meeting 
customer and corporate needs despite 
inadequacies of the corporate ERP system.

Infrastructure A low-code development platform is part of the 
corporate infrastructure. 

Microsoft Office and the ERP system are part of 
the corporate infrastructure.

Strategy Perform business tasks efficiently and 
effectively with the support of a low-code 
development platform.

Perform business tasks efficiently and 
effectively by using carefully developed Excel-
based workarounds.



302    MIS Quarterly Executive |  September 2024 (23:3) misqe.org | © 2024 University of Minnesota

Combining Low-Code/No-Code with Noncompliant Workarounds to Overcome a Corporate System’s Limitations

managers who are charged with overseeing low-
code/no-code efforts.

1. Exercise Caution When Creating Low-
Code/No-Code-Based Workarounds, 
with or without the Use of a Low-Code 
Development Platform

 The extensive history of system development 
shows that many projects encounter 
unanticipated difficulties regardless of the 
technology that is used and despite the 
developers’ best intentions. Thus, business 
managers should not view low-code development 
platforms as a panacea: Though they can help 
employees create solutions that meet their needs, 
success is not guaranteed. To achieve their goals, 
business managers need to engage with frontline 
employees who will be using the newly deployed 
(or soon-to-be-deployed) applications, so they 
can understand the challenges that employees 
will face and thus identify whether low-code 
software workarounds can ensure that work can 
be accomplished successfully. Business managers 
must approach these engagements with an open 
mind: They may well learn that a newly (or soon 
to be) deployed application is not fit for purpose 
and will likely result in unexpected disasters. 

Based on their interactions with frontline 
employees, business managers should “take 
stock” of all the issues and problems associated 
with the new system (and indeed other 
longstanding issues). Even when a corporate 
decision has been taken to deploy the new 
system, it is not too late to take remedial 
action—for example, by creating low-code/no-
code-based workarounds to ensure continued 
corporate success and customer satisfaction. 
Business managers should encourage employees 
to participate in the creation of workarounds 
by leveraging low-code/no-code techniques. To 
minimize risk to the organization, employees 
should carefully assess the operational and 
security aspects of proposed workarounds. 

2. Recognize That a Low-Code 
Development Platform Is Not Essential 
for Creating Workarounds 

Many of the advantages of workarounds can 
be attained by using non-platform-based tools, 
especially Excel. In fact, employees acting as 
citizen developers may create better solutions 

if they are not restricted by the rules and other 
limitations embedded in low-code development 
platforms. Business managers should therefore 
not assume that such platforms are necessary to 
create workarounds. Instead, they should allow 
suitably qualified employees to consider a variety 
of different approaches, including formal low-
code/no-code tools. These employees should 
be free to apply a bricolage approach and adopt 
the tools they deem most appropriate for their 
context. However, if needed, business managers 
should ensure that professional IT personnel can 
act as mentors or quality controllers. 

3. Ensure That Workarounds Support 
Both Local and Corporate-Level 
Efficiency and Effectiveness 

Many of the business rules in the CoreRidge 
case are built into the warehouse processes and 
interactions between different groups in the 
warehouse. Any exceptions, conflicts and other 
problems were addressed through interpersonal 
interactions. There is no reason to believe that 
business rules built into low-code/no-code-
based applications would be more effective. An 
overarching implication is that neither low-code 
development platforms nor Excel are magic 
bullets that automatically solve problems in real-
world settings. 

Solving operational problems in a 
reasonably sustainable way (i.e., not via one-
time workarounds for one-time problems) 
requires analysis, cooperation and a good fit 
between the business requirements and the 
technical solution. Solving operational problems 
also requires careful oversight. Whether the 
organization decides to permit low-code/no-
code-based solutions or chooses not to deploy a 
low-code development platform, it is important 
that the CIO and other C-suite executives ensure 
that, when workarounds are institutionalized, 
they provide corporate-wide business benefits 
and do not cause problems in other parts of the 
organization. 

The implication is that application 
development efforts should consider whether 
workarounds will be needed because a proposed 
application imposes unnecessary constraints, 
is difficult to use, and/or does not reflect the 
concerns and interests of the people who actually 
perform work on a day-to-day basis. There is no 



 September 2024 (23:3) | MIS Quarterly Executive    303

Combining Low-Code/No-Code with Noncompliant Workarounds to Overcome a Corporate System’s Limitations

general rule for assigning that responsibility 
to any C-suite officer in particular because 
enterprises operate differently. The key issue 
is that institutionalized workarounds should 
be monitored to make sure that they support 
both local and corporate-level efficiency and 
effectiveness. 

4. Use a Portfolio Approach to Low-
Code/No-Code Development

The portfolio of possible tools or approaches 
that can be used for low-code development 
might include not just a low-code development 
platform, but also business software tools like 
Microsoft Excel or even social media applications. 
Business managers should ensure that the 
meta-knowledge of how these tools have been 
applied historically, with success and failure 
indicators, examples and lessons learned, are 
shared throughout the organization. Nontechnical 
aspects, such as the role of brainstorming, focus 
groups and manager-employee exchanges, should 
also be included in the portfolio to ensure that 
low-code development is directed toward solving 
problems or leveraging opportunities. The 
portfolio should also include documentation of 
how combinations of tools and approaches create 
value.

It is important to note that an overly technical 
solution is likely to create more problems 
than it solves. As indicated in Figure 1, though 
technology lies at the heart of low-code/no-
code development and workarounds, it must 
be supported by interpersonal communication 
in which problems are identified and discussed 
before workarounds are conceptualized and 
crafted. As workarounds are put in place and 
institutionalized, business managers should 
ensure they are subjected to continuous 
evaluation and feedback, improved where 
necessary, and documented in standard operating 
procedures and training manuals. Eventually, 
workarounds may be retired—for example, 
when new core systems are deployed or business 
processes are changed. 

5. Recognize That a Low-Code 
Development Platform May Be a Better 

Option Where Tight Regulatory Control 
Is Essential 

Extensive communication is always required 
between employees who need a technology 
solution and those who design and develop the 
solution. In organizations where a looser security 
regime is possible, there may be considerable 
value in permitting employees to create their 
own solutions or workarounds by leveraging 
tools such as Excel. But organizations that must 
adhere to tight regulatory controls will likely 
need to deploy a low-code development platform 
to ensure that appropriate operating protocols, 
governance standards and cybersecurity 
measures are adhered to, with oversight by the 
CIO and chief technology and security officers. 
Ideally, business managers should ensure 
that such corporate oversight of workaround 
development and the resulting solutions is in 
place irrespective of whether the solutions are 
crafted via a corporately mandated low-code 
development platform or a less formal Excel-
based arrangement.

Concluding Comments
Low-code/no-code development has shown 

a great deal of promise in many areas. The 
CoreRidge case vividly illustrates that employees 
responsible for overseeing processes that might 
use low-code/no-code capabilities should 
consider the advantages of both low-code/no-
code platforms and non-platform arrangements. 
Our research implies that corporate systems may 
be inadequate for work processes, no matter how 
well-intentioned or carefully designed. Global 
organizations, in particular, with their multitude 
of operating locations, local cultural variations, 
environments and contexts, may never be able to 
create entirely homogeneous applications that fit 
all their varied needs. As a consequence, they will 
likely need to permit some degree of variation, 
whether through customization or low-code/
no-code-based workarounds. Business managers 
should respond sensitively to the need for these 
variations and recognize the value of low-code/
no-code development, whether supported 
formally via a low-code development platform or 
by other less formal workaround arrangements. 

In conclusion, we believe that researchers 
should explore the different dimensions of 



304    MIS Quarterly Executive |  September 2024 (23:3) misqe.org | © 2024 University of Minnesota

Combining Low-Code/No-Code with Noncompliant Workarounds to Overcome a Corporate System’s Limitations

low-code/no-code development, including the 
institutionalization of low-code/no-code-based 
workarounds. They should neither assume that 
low-code/no-code work is always platform-based 
nor assume that a platform is always the best 
option. A more critical view of the advantages and 
disadvantages of different forms of low-code/no-
code work is needed.

Appendix: Research 
Methodology and Interview 

Protocol
We interviewed 31 employees in CoreRidge’s 

Hong Kong warehouse, asking about their 
use of the company’s ERP system. These 
employees worked in multiple positions and 
at different levels, ranging from trainee to 
senior management, in the administration, 
customer delivery, shipping, logistics, warehouse 
management, quality control and inventory 
control functions. Each interview lasted on 
average 45 minutes, was conducted in Cantonese, 
and was recorded and later transcribed. The 
first two authors independently read all of the 
interview transcripts multiple times. 

We applied a thematic analytical technique 
to the qualitative data obtained from the 
interviews, following the principles of grounded 
theory.37,38 By engaging in a rigorous process 
of disciplined imagination, we identified major 
thematic categories in which we documented how 
workarounds were developed and maintained 
and how they persisted over time. The low-code/
no-code nature of these workarounds became 
apparent as we explored the use of Excel in 
workaround crafting and the evolution of the 
workarounds themselves.

About the Authors

Robert M. Davison
Robert Davison (isrobert@cityu.edu.

hk) is a professor of information systems at 
City University of Hong Kong. His research 
focuses on the use and misuse of information 

37 Gioia, D. A., Corley, K. G. and Hamilton, A. L. “Seeking 
Qualitative Rigor in Inductive Research,” Organizational Research 
Methods (16:1), January 2013, pp. 15-31.
38 Glaser, B. G. and Strauss, A. The Discovery of Grounded Theo-
ry: Strategies for Qualitative Research, Aldine Transaction, 1967.

systems, especially with respect to problem 
solving and knowledge management in Chinese 
organizations. He is particularly known for his 
scholarship in the domain of action research. 
Robert is the editor-in-chief of Information 
Systems Journal and Electronic Journal of 
Information Systems in Developing Countries. As a 
researcher and as an editor, he seeks to promote 
both an inclusive and an indigenous perspective 
to research. 

Louie H. M. Wong
Louie Wong (Louie_Wong@gsm.nucba.ac.jp) 

is a professor and an associate dean at NUCB 
Business School, Nagoya University of Commerce 
and Business, Japan. He specializes in information 
systems, with a particular focus on the 
intersection of technology and human behavior. 
His current research interests include action 
research, AI in business, blockchain application, 
digital leadership, digital transformation, social 
media and supply chain management. With 
decades of industry experience working for 
renowned global technology companies before 
entering the academic world, he integrates 
practical knowledge with scholarly expertise. 
Louie was awarded his Ph.D. in information 
systems by City University of Hong Kong. 

Steven Alter
Steven Alter (alter@usfca.edu) is a professor 

emeritus at the University of San Francisco. 
Previously, he was vice president of a software 
startup and has authored four editions of a 
major information systems textbook. From this 
experience, his research focuses on developing 
systems analysis and design methods that 
business professionals can use on their own and 
thus help them collaborate more effectively with 
IT professionals, consultants and vendors. Most 
of his publications concern the work system 
method (WSM), work system theory (WST), 
service systems, and extensions of WST related to 
workarounds, system interactions, facets of work, 
cyber/human systems and AI-usage contexts.


	Combining Low-Code/No-Code with Noncompliant Workarounds to Overcome a Corporate System’s Limitations
	Recommended Citation

	tmp.1725801383.pdf._CdgN

