
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 2000 Proceedings Americas Conference on Information Systems
(AMCIS)

2000

DARE-Web: Domain Analysis in a Web
Environment
Omar Alonso
Oracle Corp., oalonso@us.oracle.com

William Frakes
Software Engineering Guild, wbfrakes@yahoo.com

Follow this and additional works at: http://aisel.aisnet.org/amcis2000

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2000 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Alonso, Omar and Frakes, William, "DARE-Web: Domain Analysis in a Web Environment" (2000). AMCIS 2000 Proceedings. 100.
http://aisel.aisnet.org/amcis2000/100

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2000%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000?utm_source=aisel.aisnet.org%2Famcis2000%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2000%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2000%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000?utm_source=aisel.aisnet.org%2Famcis2000%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000/100?utm_source=aisel.aisnet.org%2Famcis2000%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

DARE-Web: Domain Analysis in a Web Environment

Omar Alonso, Oracle Corp., Redwood Shores, CA 94065
oalonso@us.oracle.com

William Frakes, Software Engineering Guild, Sterling, VA 20165
wbfrakes@yahoo.com

Abstract

 DARE-Web is a Web-based environment that
supports domain analysis - the activity of
identifying and documenting the commonalities
and variabilities in related software systems.
DARE-Web supports the capture of domain
information from experts, documents, and code
in a domain.

Keywords: domain analysis, domain engineering,
digital libraries, Web-based applications.

Introduction

 The process of creating an environment to
support systematic reuse is called domain
engineering. Domain engineering has two
phases: domain analysis and domain
implementation. We define domain as an
application area or business area (also called
vertical market).

Domain analysis is the activity of identifying,
storing, and documenting the commonalities and
variabilities in related software systems in a
domain. These systems share common design
decisions. Domain implementation is the use of
knowledge acquired in domain analysis to
develop reusable assets for the domain and the
creation of a production process for
systematically reusing assets to generate new
products (Frakes et al., 1998).

DARE

 DARE (Domain Analysis and Reuse
Environment) is a CASE tool that supports
domain analysis—the activity of identifying and
documenting the commonalities and variabilities
in related software systems (Frakes et al., 1997).

DARE supports the capture of domain
information from experts, documents, and code
in a domain. Captured domain information is
stored in a domain book (Arango et al., 1993)
that will typically contain a generic architecture
for the domain and domain-specific reusable
components.

The outputs of DARE include:

1. a domain specific vocabulary.
2. a faceted classification of systems in the

domain.
3. domain templates which link facets with

explanatory text.
4. a domain feature table.
5. a generic architecture.
6. reusable components.

DARE has been developed in a series of four
research prototypes, the latest of which is DARE-
Web. In this section we review these prototypes
and use them to illustrate the major features and
functions of DARE.

The First Prototype

 The first DARE prototype was developed in C
on a UNIX workstation running X-Windows and
Motif during 1994. This version of DARE was
used to explore the domain book metaphor, and
to investigate automatic and semi-automatic
word and phrase extraction and clustering. The
concept of a domain book for structuring and
representing the outputs of the domain analysis
process is important because it solves two hard
problems in domain analysis:

• What should the output of domain
analysis be?

• What are the criteria for
completion, that is, how does the
domain analyst know when a
domain analysis is done?

494

The book metaphor helps answer both of these
questions: the output of domain analysis is a
domain book, and the process is complete when
all sections of the domain book are complete.

The book metaphor also brings structure to the
whole domain analysis process. Users write a
domain book from front to back and the sections
of the book are ordered according to the DARE
domain analysis method. Thus each part of the
domain book becomes a milestone and review
point in the domain analysis process. Part 1 of a
domain book, Domain Sources, is the input part
of DARE where the material used in domain
analysis is entered. Parts 2 and 3, Vocabulary
Analysis and Architecture Analysis, structure the
outputs of the domain analysis process. These
parts also correspond to the two main steps of the
DARE domain analysis method:

• bottom-up analysis—validate the generic
architecture and generic features through
analysis of domain documents (text) and
source code;

• top-down analysis—postulate a generic
architecture and generic features based
on expert knowledge and experience.

The domain book structure neatly organizes the
outputs of these two activities. The remainder of
the domain book, the Glossary, Bibliography,
Index, and Appendix, is end-matter that provides
reference material and a search mechanism for
locating items in the domain book.

The Second Prototype

 We found that the C, UNIX, and X-Windows
environment did not allow rapid enough
development of DARE. We chose Visual Basic
as a faster development environment, and the
second DARE prototype was developed in
Visual Basic 3 on a PC running Windows 3.1
during 1995. We found that this environment cut
development time about tenfold. Especially
useful was a commercial graphical editor VBX
that we were able to tailor to our needs. The
book mechanism and the cluster editor from the
first prototype were re-created, and several major
subsystems were implemented, including:

• the domain expert information entry
forms and system feature table;

• the system architecture editor;

• the facet table;

• the generic architecture editor and the

generic feature table.

DARE COTS

 Even Visual Basic proved too slow a
development environment as time and project
resources became short. We therefore created
another prototype using commercial-off-the-shelf
tools (COTS) and freeware. We found that this
prototype allowed us to create a version of
DARE with much of the planned functionality in
a fraction of the time required for either C or
Visual Basic.

The DARE COTS implementation using
commercial-off-the-shelf tools (COTS) and
freeware is made possible through the
identification of a backplane that contains the
tool slots needed by DARE. These are listed in
the table below. Two implementations of
DARE-COTs have been done using this
backplane model. The first version was done on
the Macintosh, and a later one was done in
Windows at the request of a client. Table 1
summaries the tools.

Table 1. DARE-COTS Backplane
Backplane:
Needed Tools

Macintosh Windows

Domain Book In Control MS-Word in
outline mode

Source Documents MS Word MS Word
Text Analysis Concordance lexer
Expert forms MS Word MS Word
Graphical
Architecture Editor

Inspiration Inspiration

Feature Table MS Word MS Word
Glossary and
Bibliography

MS Word MS Word

Stemming Porter
stemmer

Porter
stemmer

Code Analysis Unix Tools,
cflow, prof,
cia.

Unix Tools,
cflow, prof,
cia.

.

495

The main DARE-COTS tools include:

• forms for acquiring general domain
information from experts,

• a graphical architecture editor for
recording system architectures,

• a feature table for summarizing system
commonalities and variabilities,

• a suite of text processing tools for
extracting a domain vocabulary from text
sources,

• a clustering tool for deriving faceted
classification schemes from the domain
vocabulary and for identifying
commonalities and variabilities,

• an architecture editor for creating and
recording generic architectures,

• a system feature table for recording
decisions about commonalities and
variabilities in systems based on the
generic architecture, and

• a glossary, bibliography, index, and
appendices for collecting and organizing
reference information.

In the next section, we discuss a version of
DARE for the WWW.

DARE-Web

 In the last couple of years, Web technologies
have emerged as an alternative to client-server
computing. Given this trend we decided to
explore a Web-based version of DARE using a
Web-based computing paradigm. This will allow
development of and access to DARE domain
books via WWW or Intranets. This is important
because when developed, domain books will
serve as the central resource for developing and
maintaining systems in a domain, and all
personnel that work in that domain will need easy
access. In this particular case we can say that
DARE-Web is a domain specific digital library.

Web-based computing allows the integration of
disparate systems into a single and coherent
environment (Vetter 1999). Web-based
infrastructure is a reality in many areas like
eCommerce and it is starting to gain momentum

for software engineering projects (Gao et al.,
1999).

Architecture

 Our proposed architecture uses a commercial
Internet platform to handle pretty much all the
computation (Oracle 1999). The idea behind
using this type of technology is to manage all the
information in one place while providing its
access from everywhere.

Figure 1 shows DARE-Web high level
infrastructure. DARE-Web is an application that
sits on top of the HTTP-enabled database
(Oracle in our case). The application issues SQL
statements to query and retrieve all the assets that
are stored in the database. When the database
sends back the result of a query, DARE-Web
constructs the asset content in HTML and display
it in the Web browser.

Figure 1. DARE-Web high level infrastructure.

There are three main components of DARE-
Web: the asset manager, the book view, and the
service manager. The asset manager provide all
the features and services for storing assets in the
database. The book view component manages
the domain book internal structure as well as its
visualization. The service manager provides
mechanisms for adding new services to the
system (in the current implementation there is
only one service: search). The storage
representation contains all the assets and its
metadata with XML tags. Figure 2 describes at
high level the software architecture.

DARE
Web

browser

HTTP

HTML

SQL

Result

HTTP-enabled
database

496

Figure 2. DARE-Web architecture.

We are experimenting with two alternatives ways
of implementing DARE-Web with Oracle tools.
The first one is to write the application in
PL/SQL using an HTTP package and a Web
server that supports PL/SQL cartridges. The
second alternative is to use Java servlets for the
application and JDBC for connecting to the
database. A comparison of the two approaches is
beyond the scope of this paper.

Relevant Features

 There are several advantages of using a
database for the Web implementation. A
database backend implementation provides data
security, data integrity, scalability, and
flexibility. All those things are very important
when building Web-based infrastructure.

Apart from all the DARE features we added a
search mechanism and the ability to define users
(and therefore) roles.

While searching and retrieval is not the main
purpose of DARE, the search mechanism allows
a user to search for any asset within the domain
book. For some assets like documents the user
can perform full-text searching. For other assets
like diagrams and source code, metadata
searching is available.

With the definition of users and roles in the
database there is a level of security that was not
presented in earlier versions of DARE. It is also
possible to add extra security in the Web server.

Example

 Figure 2 shows a snapshot of the DARE-Web
implementation of stemming algorithms. The left
frame shows the domain book (in this case
implemented as a Java applet) and the search
service.

When the user clicks on any item of the outline
structure, DARE-Web displays the content in the
right frame. In the example, the user clicked on
the Code Analysis section of the outline and then
on the Porter asset. In this particular case the
asset is document that describes the Porter
algorithm with additional links to view the
cflow output for a C implementation.

Oracle 8i Infrastructure

Storage Representation
(assets, metadata and XML)

Asset
Manager

Domain
View

Service
Manager

497

Figure 2. A domain book for stemming algorithms using DARE-Web

Comparison

 Table 2 summarizes all the main features of
DARE, DARE-COTS, and DARE-Web.

Table 2. DARE, DARE-COTS and DARE-Web
main features.
Feature DARE DARE-

COTS
DARE-
Web

Model Client-
Server

COTS Web

Storage Flat files Flat files Database
Cluster
editor

Yes Yes No (*)

Architecture
editor

Yes Yes No (*)

Search No No Yes
Security
features

No No Yes

Platform
independent

No No Yes

(*) DARE-Web does not currently provides this
component. However DARE-Web allows a user
to upload the file to the system for check in/out
purposes.

Conclusions

 This paper reviewed the development of
domain books using DARE, discussed several
implementations of DARE, and presented a Web
version of DARE that provides support for
domain analysis. The advantage of using the
Web version is that users can access the assets
from different places with a Web browser.
Difficulties include lack of a reusable
configurable graphical editor component for
Java.

We plan to continue to work on the Web version
and to explore different visual representations of
the domain book’s assets.

498

Acknowledgments

The authors would like to thank the anonymous
reviewers for their comments and suggestions.

References

Guillermo Arango, Eric Schoen, and Robert
Pettengill. “Design as Evolution and Reuse”,
Proceedings of the Second International
Workshop on Software Reusability, IEEE
Computer Society Press, Los Alamitos, CA
(1993), pp. 9-18.

William Frakes, Rubén Prieto-Díaz, and Chris
Fox. “DARE: Domain Analysis and Reuse
Environment”, Annals of Software Engineering,
Vol. 5 (1998), pp. 125-141.

William Frakes, Rubén Prieto-Díaz, and Chris
Fox. “DARE-COTS: A Domain Analsys Support
Tool”, Proceedings of SCCC ’97, IEEE
Computer Society Press, Los Alamitos, CA
(1997), pp. 73-77.

Jerry Gao, Chris Chen, Yasufumi Toyoshima,
and David Leung. “Engineering on the Internet
for Global Software Production”, IEEE
Computer, May (1999), pp. 38-47.

Ron Vetter. “Web-Based Enterprise Computing”,
IEEE Computer, May (1999), pp. 113-116.

Oracle 8i Reference Manual, Redwood Shores,
CA (1999).

499

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2000

	DARE-Web: Domain Analysis in a Web Environment
	Omar Alonso
	William Frakes
	Recommended Citation

