
Journal of the Association for Information Systems Journal of the Association for Information Systems

Volume 11
Issue 12 Special Issue on Empirical Research
on Free/Libre Open Source Software

Article 2

12-28-2010

Code Reuse in Open Source Software Development: Quantitative Code Reuse in Open Source Software Development: Quantitative

Evidence, Drivers, and Impediments Evidence, Drivers, and Impediments

Manuel Sojer
Technische Universität München, Germany, sojer@wi.tum.de

Joachim Henkel
Technische Universität München, Germany, henkel@wi.tum.de

Follow this and additional works at: https://aisel.aisnet.org/jais

Recommended Citation Recommended Citation
Sojer, Manuel and Henkel, Joachim (2010) "Code Reuse in Open Source Software Development:
Quantitative Evidence, Drivers, and Impediments," Journal of the Association for Information Systems,
11(12), .
DOI: 10.17705/1jais.00248
Available at: https://aisel.aisnet.org/jais/vol11/iss12/2

This material is brought to you by the AIS Journals at AIS Electronic Library (AISeL). It has been accepted for
inclusion in Journal of the Association for Information Systems by an authorized administrator of AIS Electronic
Library (AISeL). For more information, please contact elibrary@aisnet.org.

https://aisel.aisnet.org/jais
https://aisel.aisnet.org/jais/vol11
https://aisel.aisnet.org/jais/vol11/iss12
https://aisel.aisnet.org/jais/vol11/iss12
https://aisel.aisnet.org/jais/vol11/iss12/2
https://aisel.aisnet.org/jais?utm_source=aisel.aisnet.org%2Fjais%2Fvol11%2Fiss12%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/jais/vol11/iss12/2?utm_source=aisel.aisnet.org%2Fjais%2Fvol11%2Fiss12%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Volume 11  Issue 12

Jo
ur

na
l o

f t
he

 A
ss

oc
ia

tio
n

fo
r I

nf
or

m
at

io
n

Special Issue

Abstract

Manuel Sojer
Technische Universität München, Germany
sojer@wi.tum.de

Joachim Henkel
Technische Universität München, Germany
henkel@wi.tum.de

The focus of existing open source software (OSS) research has been on how and why individuals and firms add
to the commons of public OSS code—that is, on the “giving” side of this open innovation process. In contrast,
research on the corresponding “receiving” side of the innovation process is scarce. We address this gap,
studying how existing OSS code is reused and serves as an input to further OSS development. Our findings are
based on a survey with 686 responses from OSS developers. As the most interesting results, our multivariate
analyses of developers’ code reuse behavior point out that developers with larger personal networks within the
OSS community and those who have experience in a greater number of OSS projects reuse more, presumably
because both network size and a broad project experience facilitate local search for reusable artifacts.
Moreover, we find that a development paradigm that calls for releasing an initial functioning version of the
software early—as the “credible promise” in OSS—leads to increased reuse. Finally, we identify developers’
interest in tackling difficult technical challenges as detrimental to efficient reuse-based innovation. Beyond OSS,
we discuss the relevance of our findings for companies developing software and for the receiving side of open
innovation processes, in general.

Keywords: Innovation, software development, open source software, code reuse, software reuse

Volume 11, Special Issue, pp.868-901, December 2010

Code Reuse in Open Source Software
Development: Quantitative Evidence, Drivers,
and Impediments

* Michael Wade and Kevin Crowston were the accepting senior editors. This article was submitted on 15th
October 2009 and went through one revision.

Journal of the Association for Information Systems Vol. 11 Special Issue pp.868-901 December 2010 869

Code Reuse in Open Source Software Development:
Quantitative Evidence, Drivers, and Impediments

 1. Introduction

The public development of open source software (OSS)1

In contrast, research on the “receiving” side of the innovation process,

 is a specific instance of open innovation, a
term coined by Chesbrough (2003). A large body of empirical work has addressed the “giving” side of
this open innovation process, that is, why and how individuals (e.g. Ghosh et al., 2002; Hars and Ou,
2002; Hertel et al., 2003; Lakhani and Wolf, 2005; Henkel, 2009) and firms (e.g. West, 2003;
Dahlander, 2005; Gruber and Henkel, 2005; Bonaccorsi et al., 2006; Henkel, 2006; Rossi Lamastra,
2009) make their developments freely available for others to use and build upon.

2

A better understanding of code reuse in OSS is desirable, not only in itself, but also because it will
yield insights on reuse beyond OSS. Reuse has long been recognized as crucial to overcome the
“software crisis” (Naur and Randell, 1968), as it allows for more efficient and more effective
development of software of higher quality (Krueger, 1992; Kim and Stohr, 1998). More generally, the
literature on innovation management points to knowledge reuse as an important factor mitigating the
cost of innovation (e.g., Langlois, 1999; Majchrak et al., 2004). Despite significant advances in reuse
research, software reuse in commercial firms, especially, is still not without issues, and its
antecedents are not fully understood (e.g., Desouza et al., 2006; Sherif et al., 2006). Some scholars
suspect that reuse failure is often related to individual developer issues (e.g., Isoda, 1995; Morisio et
al., 2002). However, there is a paucity of research – especially quantitative research -- addressing the
view of individual developers on reuse (e.g., Sen, 1997; Ye and Fischer, 2005).

 that is, on the extent, drivers,
and impediments of reuse of existing OSS code in subsequent OSS development, is scarce and
either based on high-level code or dependency analyses (German, 2007; Mockus, 2007; Spaeth et al.,
2007; Chang and Mockus, 2008), or on case studies (von Krogh et al., 2005; Haefliger et al., 2008).
While this research suggests that code reuse is of major importance for OSS development, a large-
scale quantitative study of the phenomenon on the level of individual developers is lacking.

Our aim is to fill the above gap regarding the “receiving” side of OSS innovation and to leverage our
findings to augment general software reuse literature by adding insights regarding the perspectives of
individual developers on reuse with a survey-based empirical study of code reuse in public OSS
development. We quantitatively assess the importance of code reuse as one form of reuse in OSS
development and explore its drivers and impediments at the level of individual developers. Our
empirical approach relies on a web-based survey to which we had, via email, invited responses from
7,500 developers from SourceForge.net, the largest OSS development platform.

Our results point out that code reuse does play a major role in OSS development; developers
reported, on average, that 30 percent of the functionality they have implemented in their current main
projects has been based on reused code. Investigating the drivers of reuse in multivariate analyses,
we find that developers who believe in the effectiveness, efficiency, and quality benefits of reuse and
who see reuse as a means to work on their preferred development tasks rely more on existing code.
Further, developers with larger personal networks within the OSS community and experience in a
greater number of OSS projects reuse more, presumably because networks and experience provide
access to local reusable artifacts. Moreover, we find that a development paradigm that calls for
releasing an initial functioning version of the product early, and so delivering a “credible promise,”
leads to increased reuse. Finally, we identify developers’ interest in tackling difficult technical
challenges as detrimental to efficient reuse-based innovation, while developers’ commitment to the
OSS community leads to increased reuse behavior.

1 For better readability, we will use the term Open Source software in this article, but our work also refers to Libre and Free software,

which differs from open source ideologically but not technically. See http://www.gnu.org/philosophy/free-sw.html for further
information.

2 The users of OSS obviously also receive code, however, since they do not base their own innovations on it, we do not consider
them to be on the “receiving” side of the OSS innovation process.

Sojer & Henkel/Code Reuse in OSS Development

870 Journal of the Association for Information Systems Vol. 11 Special Issue pp.868-901 December 2010

The remainder of the paper is organized as follows. The next section reviews relevant literature on
software reuse and OSS, and the following presents our research model and hypotheses. After that,
we elaborate on our data and measures before we present our analyses and results. The last section
concludes with a summary and a discussion. A supplemental appendix contains further tables
referred to in the paper but not included in its main body for space considerations.

2. Literature Review
The theoretical foundation of this paper draws on two streams of the literature. First, we review
relevant software engineering literature on reuse and its implementation in firms. Second, scholarly
work on OSS development provides the context for our work, establishing basic concepts explaining
why developers contribute to OSS projects and how they do so. A summary of the small base of
scholarly work on code reuse in OSS development concludes the literature review.

2.1. Reuse in Software Development

Software reuse (as the software-specific form of knowledge reuse (e.g., Langlois, 1999; Majchrak et
al., 2004)) is “…the process of creating software systems from existing software rather than building
software systems from scratch” (Krueger, 1992, p. 131). The artifacts most commonly reused in
software development are components (pieces of software that encapsulate functionality and have
been developed specifically for the purpose of being reused) and snippets (multiple lines of code from
existing systems) (Krueger, 1992; Kim and Stohr, 1998). Our study focuses on these two artifacts,
and we refer to their reuse as “code reuse.” Software reuse promises not only increased development
efficiency and reduced development times, but also improved software quality and better
maintainability because developers do not have to develop everything from scratch, but rather can
rely on existing, proven, and thoroughly tested artifacts (Frakes and Kang, 2005).

Despite these compelling benefits, software reuse still fails frequently in commercial firms, sometimes
for technical, but most often for human and organizational reasons (e.g., Morisio et al., 2002). The
importance of the individual developer in successful reuse is undisputed. For instance, Isoda (1995, p.
183) concedes, “Unless they [software engineers] find their own benefits from applying software
reuse… they will not… perform reuse.” Still, there is a paucity in reuse research that focuses on the
individual developer (Sen, 1997; Ye and Fischer, 2005).

OSS seems to be a unique opportunity to enhance our knowledge about the role of individuals in
successful reuse-based innovation and software reuse, in particular, for two reasons. First, contrary
to commercial software developers, who are often restricted to the limited amount of code available in
their firms’ reuse repositories, OSS developers have broad options to reuse existing code if they wish
due to the abundance of OSS code available under licenses that generally permit reuse in other OSS
projects. Second, the broad scholarly knowledge about the motivations and beliefs of OSS
developers should be helpful in analyzing the perspectives of individual developers on software reuse.
The next section establishes community-based, public OSS development as the empirical setting of
our analysis.

2.2. Open Source Software Development

Strictly speaking, software is OSS if it comes under an open source license. Such a license grants
users of the software the right to access, inspect, and modify its source code and distribute modified
or unmodified versions of it.3

3 Whether a software license is an open source license is determined by the Open Source Initiative (http://www.opensource.org).

 Since much OSS is developed by informal collaboration in public OSS
projects (Crowston and Scozzi, 2008), the term “OSS” is often also understood to imply that the
software has been developed in the “OSS fashion” (von Krogh et al., 2008). Typically, the
development of software in OSS projects differs significantly from the development of traditional
software in most commercial setups (Crowston et al., 2009). In this context, the motivation of

871 Journal of the Association for Information Systems Vol. 11 Special Issue pp.868-901 December 2010

Sojer & Henkel/Code Reuse in OSS Development

developers to spend considerable time on their OSS projects and the process of OSS development
are of particular relevance to our study.

A large body of literature has emerged that addresses the first topic. Common to most of this work is
the finding that OSS developers work on their projects for both intrinsic and extrinsic reasons.
Scholars have identified as intrinsic motivations the following: identification with the OSS community
and the resulting wish to support it (Hertel et al., 2003), ideological support of the OSS movement
(Stewart and Gosain, 2006), the desire to help others (Hars and Ou, 2002), and, most importantly, the
fun and enjoyment that developers experience when working on their projects (Lakhani and Wolf,
2005). Based on psychology research (Amabile et al., 1994), Sen et al. (2008) further differentiate fun
into the enjoyment and “flow” feelings (Csíkszentmihályi, 1990) that developers perceive when writing
code and the satisfaction of solving challenging technical problems. Extrinsic motivations of OSS
developers may derive from the wish to enhance their reputation in the OSS community (Lakhani and
Wolf, 2005), to hone their software development skills (Hars and Ou, 2002), to develop or adapt
software functionality to their own needs (Hertel et al., 2003), and to signal their skills to potential
employers and business partners (Lerner and Tirole, 2002). Also, they may be paid directly for their
OSS work, for example, if it is part of their job (Ghosh et al., 2002).

Regarding the process of OSS development, OSS projects are often started by an individual
developer who has a need for certain software functionality that does not yet exist (Raymond, 2001).
After initialization, the developer typically wants to attract other developers to participate in the project.
An incentive for others to join the project is that it offers interesting tasks and also seems feasible
(von Krogh et al., 2003). The founder can enhance this recruitment process by delivering a “credible
promise,” which Lerner and Tirole (2002, p. 220) describe as “a critical mass of code to which the
programming community can react. Enough work must be done to show that the project is doable and
has merit.” However, not only does the founder have to prove that the project is worthy of support by
others, but developers interested in joining a project often have to show that they possess the skills
required by solving some of the technical issues the project is currently facing (von Krogh et al., 2003).

2.3. Code Reuse in Open Source Software Development

There is scant research on code reuse in OSS and so far no large-scale quantitative data on the
developer level exist. Initial academic work, however, suggests that code reuse is practiced in OSS
projects even at a high level. Analyzing the code of a large number of OSS projects, Mockus (2007)
and Chang and Mockus (2008) measure the overlap of filenames among OSS projects in their
database of more than 38,000 OSS projects and conclude that about 50 percent of the components
exist in more than one project. Mockus’s (2007) data even suggest that code reuse is more popular in
OSS development than in the traditional commercial closed source software arena. Following a
different approach, both German (2007) and Spaeth et al. (2007) rely on dependency information
available in Linux distributions to show that most packages in these distributions require other
packages as they reuse their functionality.

Using case studies on the project and individual developer level rather than large-scale code
analyses, von Krogh et al. (2005) and Haefliger et al. (2008) confirm that OSS developers reuse
existing code—in the form of components and snippets—as well as abstract knowledge—such as
algorithms and methods. Diving into the mechanics of code reuse in OSS, Haefliger et al. (2008) find
that OSS developers reuse code because they want to make their development work more efficient,
they lack the skills to implement certain functionality by themselves, they prefer some specific
development work over other tasks, or they want to deliver a “credible promise” with their project. The
authors further point out that there exist equivalents to some of the components of corporate reuse
programs, such as the OSS repositories like SourceForge.net, which can substitute for internal reuse
repositories within firms, or the reuse frequency of a component ,which can serve as a proxy for the
component’s quality and, thus, substitutes for certification.

Sojer & Henkel/Code Reuse in OSS Development

872 Journal of the Association for Information Systems Vol. 11 Special Issue pp.868-901 December 2010

3. Research Questions and Hypotheses
Building on the existing research on code reuse in OSS presented above, this paper seeks to use
large-scale quantitative data obtained through a survey of OSS developers to answer the question:
Under what conditions do developers prefer reusing existing code over developing their own code
from scratch? In this context, the following specific research questions will be addressed:

1. How important is code reuse in OSS development projects?

2. What do OSS developers perceive as the benefits of code reuse, and what do they see as the
issues and impediments?

3. How is the degree of code reuse in open source developers’ work determined by their
characteristics and those of their project?

The first question establishes if and to what extent OSS developers reuse existing code, while the
subsequent questions explore how this behavior can be understood and explained. Question three
will be addressed using regression analyses. To guide the choice of explanatory variables and
formulate hypotheses, we develop a research model in the following section. To provide a solid
theoretical base, our research model builds on the well-established Theory of Planned Behavior
(TPB) (Ajzen, 1991) and is refined and extended with both interviews and literature on code reuse
and OSS.

3.1. Theory of Planned Behavior

Initially developed in the context of social psychology, TPB as a behavioral model has been widely
adopted in various fields of information systems (IS) research. TPB is a parsimonious and rather
generic model explaining human behavior and, thus, provides an excellent starting point to
investigate code reuse as one particular form of behavior. Research related to the topic of our study
has relied on TPB or its sister model, TAM (Technology Acceptance Model) (Davis et al., 1989), to
explain, for example, software developers’ application of various development methodologies such as
CASE tools (Riemenschneider and Hardgrave, 2001), object-oriented software development
(Hardgrave and Johnson, 2003), or generally formalized software development processes
(Riemenschneider et al., 2002; Hardgrave et al., 2003). Following the encouraging results of this
stream of research, we base our research model on TPB.

TPB posits that behavior is determined by intention, which itself is predicted by three factors: (1)
attitude toward the behavior, (2) subjective norms, and (3) perceived behavioral control. Attitude is
formed by the individual’s beliefs about the consequences and outcomes (both positive and negative)
of the behavior. Subjective norms refer to pressure from the social environment as perceived by the
individual to perform or not perform the behavior. Last, perceived behavioral control is individuals’
beliefs about their ability to perform the behavior. This can be further broken down into individuals’
“capability” to perform the behavior and its “controllability,” (Ajzen, 2002) or whether the decision to
perform the behavior is theirs or not.

3.2. Research Model and Hypotheses

Using TPB as a starting point for our research model (see Figure 1), we argue that developers’ reuse
behavior is influenced by their attitude toward code reuse, their subjective norms on code reuse, and
the behavioral control they perceive regarding code reuse. Contrary to typical work relying on TPB,
we do not employ generic scales to measure these constructs in most cases, but rather
operationalize them with unique scales and single items explicitly framed in the OSS and code reuse
context. As a second deviation from typical TPB research, we test the research model with different
regressions that either use intention to reuse as the dependent variable or employ actual reuse
behavior as the dependent variable. Since we do not combine intention and behavior into one
construct, but rather employ only one of them in each of our regression models, we stay true to the

873 Journal of the Association for Information Systems Vol. 11 Special Issue pp.868-901 December 2010

Sojer & Henkel/Code Reuse in OSS Development

TPB assumption that the two concepts are related but not the same. Comparing the results of the
regressions with different dependent variables adds robustness to our findings.

Attitude toward reuse Subjective norms Perceived behavioral control

Reuse behavior

Further control variables

Project maturity

H3Project phase (-)

Size of developer’s personal
OSS network (+)

Access to local search

Total number of developer’s
OSS projects (+) H2b

H2a

H1aEffectiveness benefits (+)

H1bEfficiency benefits (+)

H1cQuality benefits (+)

H1dTask selection benefits (+)

H1eLoss of control risks (-)

Compatibility with project goals

H4aChallenge seeking (-)

H4bCoding fun and enjoyment (-)

H4cSkill improvement (+)

H4dCommunity commitment (+)

H4eOSS reputation building (+)

H4fCommercial signaling (+)

• Subjective norms • Supportive project policy
• Discouraging project policy

• Lack of reusable artifacts

• License conflicts

• Programming language conflicts

• Architectural issues

• Developer skill level

• Project size (# of developers)

• Project complexity
• Project position in software stack

• Project type (CO vs. ST)*

• Dev. OSS age

• Dev. weekly project time

• Dev. share in project development

• Dev. experience as professional
• Dev. education on reuse

• Dev. professional reuse training

• Dev. residence (continent)

Notes: The direction of the hypothesis is indicated by (+) and (-); *CO=component project,
ST=standalone executable application project.
Figure 1. Research Model

Note that our research model aims to explain developers’ reuse behavior without explicitly
differentiating between component and snippet reuse. In conventional software development,
component reuse is typically considered to be black-box reuse, implying that developers can neither
access nor modify the source code of the components they reuse. Thus, component reuse is
assumed to follow drivers different from white-box reuse (e.g., snippet reuse), where access to
source code is given (Ravichandran and Rothenberger, 2003). In the context of OSS, however, the
source code of components is also available to reusing developers, and our survey data indicate that
about 50 percent of the developers exercise the option to modify it. Because of this, we expect no
fundamental differences in the drivers of component and snippet reuse and treat both forms of code
reuse jointly in our research model.

Based on our interviews4

4 See the next section for an overview of our interviews.

 and existing research, we have identified five main drivers that influence
developers’ attitudes toward code reuse, since they determine whether developers expect positive or
negative outcomes from reuse. These drivers are developers’ perceptions of (1) the effectiveness of
reuse, (2) the efficiency of reuse, (3) the software quality attained by reuse, (4) the task selection
benefits resulting from reuse, and (5) the potential loss of control over their project that might come
with reuse. The link between reuse and effectiveness, efficiency, and software quality is
straightforward. In addition, code reuse might result in task selection benefits if developers can avoid
certain tasks by reusing existing code (Haefliger et al., 2008). As the fifth driver, reuse can lead to
control loss, as a developer reusing code from another project might become dependent on this
project to develop the code further, fix bugs, and so on. Since developers with a more positive
perception of the above drivers should hold a more positive attitude toward reuse, TPB suggests that

Sojer & Henkel/Code Reuse in OSS Development

874 Journal of the Association for Information Systems Vol. 11 Special Issue pp.868-901 December 2010

they rely more on reusing existing code in their work. Based on this logic, the following hypotheses
can be derived for the five drivers:

Developers reuse more existing code…

H1a: …the more strongly they perceive the effectiveness benefits of reuse.

H1b: …the more strongly they perceive the efficiency benefits of reuse.

H1c: …the more strongly they perceive the quality benefits of reuse.

H1d: …the more strongly they perceive the task selection benefits of reuse.

H1e: …the less strongly they perceive the loss of control risks of code reuse.

Since the primary interest of our research is to understand how individual developer characteristics
influence reuse, we treat both subjective norms and perceived behavioral control as control variables
in our model. The controllability portion of perceived behavioral control is operationalized by six
variables relating to project attributes. Two dummy variables indicate whether there exist policies in
the project supporting or discouraging code reuse. Four Likert-scale variables capture the intensity of
general impediments to code reuse: a lack of reusable code for the specific requirements of a
developer’s project; conflicts between the license of the developer’s project and the license of the
code to be reused; incompatibilities between programming languages, when the code to be reused is
written in a language different from the developer’s project (Haefliger et al., 2008), or when the
programming language of the focal project makes it difficult to include code in foreign languages; and
an architecture of the developer’s project that is not modular enough to allow for easy reuse of
existing code (Baldwin and Clark, 2006). The capability portion of perceived behavioral control is
operationalized through each developer’s self-reported skill level in software development, arguing
that without some proficiency, developers will not be able to understand and integrate foreign code.

TPB research posits that attitude toward a behavior, subjective norms, and perceived behavioral
control explain behavior comprehensively (Ajzen, 1991). We stay true to this assumption when we
add further groups of hypotheses and control variables, because all of these additional groups could
be incorporated into the three original TPB groups of attitude, subjective norms, and perceived
behavioral control. We do, however, choose to display some hypotheses as independent groups to
better illustrate the ideas behind them. Moreover, some further control variables are shown as a
group of their own because their influence on attitude, subjective norms, and perceived behavioral
control is rather indirect.

In the first additional hypotheses group, we argue that developers’ access to local search leads to
increased code reuse. Banker et al. (1993) show that developers will reuse if their costs for searching
and integrating existing code are lower than their costs for developing it from scratch. These costs for
searching and integrating are lower if OSS developers can turn to their own experience or that of
fellow OSS developers who can point them to the code they need, assure them of its quality, and
explain to them how it works and how to best integrate it (Haefliger et al., 2008). Consequently, we
posit that developers with a larger personal network of other OSS developers will reuse more code
because they can reap the benefits of local search (H2a). Similarly, developers who have been active
in more OSS projects in the past will also show increased code reuse behavior (H2b). Summarizing,
the following two hypotheses can be derived regarding developers’ access to local search.

Developers reuse more existing code…

H2a: …the larger their personal OSS network.

H2b: …the greater the number of OSS projects in which they have been involved.

Further, we also conjecture a relationship between the maturity of an OSS project and the code reuse
behavior of its developers. As pointed out in the literature review section, OSS developers launching

875 Journal of the Association for Information Systems Vol. 11 Special Issue pp.868-901 December 2010

Sojer & Henkel/Code Reuse in OSS Development

a project strive to deliver a “credible promise” as quickly as possible in order to attract other
developers’ support. Code reuse is an excellent tool to accomplish that because it allows the addition
of large blocks of functionality to a new project with limited effort (Haefliger et al., 2008). Further, code
reuse can help a new project to overcome its “liabilities of smallness” (Aldrich and Auster, 1986) and
quickly close the gap to established competing projects in its domain. Last, while code reuse is very
helpful in the early phases of the life of an OSS project, we expect its importance to decline once the
project has reached a certain level of maturity. At that point, the project has implemented all required
basic functionality and turns toward fine-tuning the aspects that make it unique, which, by definition, is
difficult with reused code. Thus, we posit that the less mature an OSS project is, the more code its
developers will reuse (H3).

H3: Developers reuse more existing code the less mature their project.

In the final group of hypotheses, we argue that the compatibility of code reuse with developers’ own
goals for their project will influence the extent of their code reuse behavior. This is important because
the “attitudes” group of our model presented above captures developers’ general attitude toward code
reuse, while the “compatibility” group presented below will help to link these general attitudes to the
developers’ work in one specific project. We follow Moore and Benbasat (1991, p. 195) and define
compatibility as the degree to which code reuse “is perceived as being consistent with the existing
values, needs, and past experiences” of an OSS developer and focus primarily on “values” and
“needs” (“experiences” is addressed by H2b). Our argumentation regarding compatibility between
developers’ project goals and their reuse behavior is based on the motivations of developers to
participate in OSS projects described earlier.

Sen et al. (2008) show empirically that developers for whom tackling difficult technical problems is a
main motivation to work on their project try to limit the number of team members involved because
they want to solve the problems themselves and without the help of others. In similar fashion,
developers who work on their projects to tackle difficult technical challenges should reuse less
existing code because reuse would solve some of the challenges for them (H4a). In order to be able
to focus on solving these difficult technical challenges by themselves, developers might very well
show increased reuse behavior for other parts of their project, but we control for this effect by
including developers’ perception of task selection benefits through reuse (see H1d above). Also
supportive of our argumentation is DiBona et al.’s (1999, p. 13) description of the “satisfaction of the
ultimate intellectual exercise,” which developers feel “after completing or debugging a hideously tricky
piece of recursive code that has been a source of trouble for days.” It seems likely that reuse would
reduce the joy described and, thus, developers for whom challenge seeking is a major motivation
should reuse less existing code.

Related to the above effect of challenge seeking, reuse should also be of lower importance to
developers who work on their projects for the pleasure they experience when writing code (H4b).
Code reuse would reduce their need to write their own code and, thus, reduce the pleasure derived
from doing so. Hars and Ou (2002, p. 28) provide a nice illustration for this argumentation when they
quote an OSS developer explaining his motivation to work on his project as an “innate desire to code,
and code, and code until the day I die.” It seems more than plausible that a developer feeling this way
about coding would, ceteris paribus, reuse less. As for challenge seeking, one might argue that
developers who code for fun might reuse more in order to focus on the most enjoyable tasks.
However, again, this is statistically controlled for by including developers’ perception of task selection
benefits through reuse (see H1d above).

The goal to improve one’s software development skills could affect reuse intensity in two directions.
One could conjecture that developers who want to hone their skills purposefully reinvent the wheel in
order to learn how it is done. Yet, we argue that countervailing effects dominate, such that developers
for whom skill improvement is more important also reuse more existing code (H4c). Our rationale is
based on DiBona’s (2005) finding that OSS developers leverage existing code as a starting point for
their learning and study and modify it to improve their own skills. We also found confirmation for this

Sojer & Henkel/Code Reuse in OSS Development

876 Journal of the Association for Information Systems Vol. 11 Special Issue pp.868-901 December 2010

stance in our interviews 5 in which developers told us they have “used code reuse as a way of
learning” or pointed out that “reusing code snippets can really help to learn a new programming
language.” Also supportive to our argumentation is the finding from our survey6

Regarding community commitment as motivation, we argue that developers who feel strongly
committed to the OSS community and want it to be successful will reuse more code (H4d). Code
reuse helps these developers to write better software faster and allows them to make the community
stronger by contributing this software.

 that about 50 percent
of the developers modify the components they reuse and, thus, do not practice black-box reuse
where the source code of the components is inaccessible.

As the last two motivations conjectured to influence developers’ reuse behavior, we turn to reputation
building, first within the OSS community and, second, for the purpose of signaling skills to potential
commercial partners such as employers. Regarding developers’ reputation within the OSS community,
we argue that developers seeking to improve their reputation will reuse more code (H4e). Code reuse
should make a project better and, thus, draw more attention to the project within the OSS community
and also to the developers associated with the project. This argument receives support from Sen et al.
(2008), who find that developers for whom OSS reputation building is important prefer to be part of a
successful project with many other developers over being one of only a few developers of a less
successful project. One could argue that an OSS developer’s reputation is grounded in her technical
skills, which she best proves with her unique—that is, not reuse-based—contributions to the OSS
community. Yet, this argument is refuted by von Krogh et al.’s (2003) finding that developers who
need to prove their worthiness to join a project by making initial contributions often include reused
code in these. Furthermore, Raymond’s (2001, p. 24) famous saying that “good programmers know
what to write. Great ones know what to rewrite (and reuse)” also leans toward our hypothesis that
developers for whom reputation building in the OSS community is important will reuse more existing
code. Finally, and basically following the same argumentation as above, we posit that developers who
want to signal their software development skills to potential employers or business partners will reuse
more code because parties outside of the OSS community are more likely to become aware of
successful OSS projects and their developers (H4f). Summarizing, we posit the following hypotheses
addressing the compatibility between developers’ motivations to work on their project and code reuse:

Developers reuse more existing code…

H4a: …the less important challenge seeking…

H4b: …the less important coding for fun and enjoyment…

H4c: …the more important skill improvement…

H4d: …the more important community commitment…

H4e: …the more important OSS reputation building…

H4f: …the more important commercial signaling…

…is for them as a motivation to work on their project.

Finally, we include multiple additional control variables in our model to account for further contextual
differences in code reuse behavior. These control variables fall into four groups. First, we account for
the project characteristics project size (number of project team members), technical complexity of the
project, the project’s position in the software stack, and whether the project aims to create a
standalone executable application or a reusable component. In addition, we further control for the
level of professionalism and seriousness with which developers work on their current main project by

5 See the next section for an overview of our interviews.
6 The survey is introduced in detail in the next section.

877 Journal of the Association for Information Systems Vol. 11 Special Issue pp.868-901 December 2010

Sojer & Henkel/Code Reuse in OSS Development

including the number of years they have been involved in OSS,7

4. Research Design, Data and Measures

 the average weekly hours they
invest in their current main project, the share of functionality they personally developed in their current
main project as compared to that of their project team members, and whether they have worked or
now work as professional software developers. Moreover, we account for developers’ education and
training on reuse, which has been shown to be a determinant to reuse behavior in software
development firms in previous research (e.g., Frakes and Fox, 1995). Finally, we accommodate for
developers’ geographic residence on a continent level. Subramanyam and Xia (2008) have shown
that developers from different geographies prefer, for example, different levels of modularity in their
OSS projects. Following this line of thought, geographic origin might also be an antecedent for reuse
behavior.

We collected data for our study using a web-based survey that was developed based on 12
interviews with OSS developers8

The demographic profile of the developers participating in our study (see Table 1) is largely
consistent with that reported by other studies among OSS developers (e.g., Lakhani and Wolf, 2005;
Sen et al., 2008). In particular, we find no indication that nonresponse has biased our sample to
overrepresent less serious OSS developers.

 and on the existing literature. Moreover, all questionnaire items and
questions were assessed for clarity by fellow researchers and OSS developers in a qualitative pretest.
In the survey, we asked developers about their experiences with code reuse in the context of their
current main OSS project. In order to capture the high heterogeneity of OSS projects and their
developers, we chose the largest OSS project repository, SourceForge.net, as the source for our
survey participants. In April 2009, we invited 2,000 developers to take part in two rounds of
quantitative pretests in order to assess the quality of our questionnaire in terms of content, scope,
and language. Following minor refinements based on an analysis of the pretest and feedback from
the respondents, we sent an email to 7,500 developers from SourceForge.net inviting them to
participate in our survey in July 2009. The developers were selected at random from all
SourceForge.net developers who had been active on the platform in the first half of 2009. We
received a total of 686 responses, equaling a response rate of 9.6 percent (338 invitations could not
be delivered). This rate is similar to those obtained by other recent surveys among SourceForge.net
developers (e.g., Wu et al., 2007; Sen et al., 2008). Eleven responses had to be eliminated due to
inconsistent or corrupt entries, leaving us with 675 completed surveys.

9

Before starting the analysis of our data, we briefly assess the multi-item constructs we have
employed to measure developers’ motivation to work on their main project. The items for these
constructs were adopted from prior research both in the OSS domain (Hars and Ou, 2002; Lakhani
and von Hippel, 2003; Roberts et al., 2006) and in psychological motivation research (Amabile et al.,
1994; Clary et al., 1998), and were measured on seven-point Likert scales (“strongly disagree” to
“strongly agree”). We took several steps to ensure validity and reliability of these measures. Content
validity was qualitatively assessed through building on existing OSS literature whenever possible,

 Of special relevance to our endeavor is the fact that
only 92 percent (or 624) of the developers we surveyed actually write code for their OSS projects. As
only developers writing code can practice code reuse, our further analyses will focus on these 624
developers.

7 The number of years a developer has been active in OSS is treated as a control variable and not included in the local search

hypotheses because it is not the intensity of experience (as, e.g., measured by the number of years), but rather the breadth of
experience (as, e.g., measured by the number of projects involved), which is conjectured to facilitate better access to local search
and consequently more code reuse.

8 Ten of these interviews were conducted via phone or Internet-based voice communication, and two were conducted via email
exchange. Nine of the voice-based interviews were taped and transcribed and averaged 49 minutes.

9 Given the large number of surveys among SourceForge.net developers, one might suspect that especially the more active
developers on this platform would show signs of “survey fatigue.” However, comparing the self-reported weekly hours developers
spend working on their main project between our survey (mean: 8.8) and the first SourceForge.net survey ever taken by Lakhani
and Wolf (2005) (mean: 7.5), mitigates these concerns. The additional finding that 69 percent of the developers in our survey have
worked as professional software developers or are still working as professional software developers, with an average tenure of 7.9
years, rules out the further concern that only less skilled programmers took part in our survey.

Sojer & Henkel/Code Reuse in OSS Development

878 Journal of the Association for Information Systems Vol. 11 Special Issue pp.868-901 December 2010

discussions with fellow OSS researchers, and two rounds of pretests. Reliability was assessed via
Cronbach’s α for each multi-item variable. Not all Cronbach’s α values exceed Straub’s (1989) rule of
thumb of 0.8, but they all exceed Nunnally’s (1978) threshold of 0.6 (see Table A1 in the Appendix).
Convergent validity was assessed through factor analysis, which confirms that all items have their
highest loading with their respective intended construct, and all loadings are higher than 0.5 (Hair et
al., 2006) (see Table A1 in the Appendix). Discriminant validity is demonstrated by showing that the
square root of the average variance extracted of each construct is greater than its correlations with
other constructs (see Table A2 in the Appendix), thus satisfying the Fornell-Larcker criterion (Fornell
and Larcker, 1981).

Table 1. Demographics of Survey Participants
 Percentage
Age (mean: 31.8, median: 30)
 1-19 5%
 20-29 42%
 30-39 35%
 40-49 13%
 50+ 5%
Residence
 North America 26%
 South America 5%
 Europe 54%
 Asia and rest of world (RoW) 15%
Highest education level
 Non-university education 15%
 Undergraduate or equivalent 35%
 Graduate or equivalent 30%
 Ph.D. and higher 20%
Task profile in open source projects
 Includes writing code 93%
 Does not include writing code 7%
Hours spent working on main OSS project per week (mean: 8.8, median: 5)
 1-4 48%
 5-9 19%
 10-19 21%
 20+ 12%
Size of personal OSS network (mean: 29.9, median: 8)
 1-9 70%
 10-19 18%
 20+ 12%
Number of OSS projects ever involved in (mean: 3.7, median: 2)
 1-4 65%
 5-9 26%
 10-14 6%
 15+ 3%

In order to reduce common method bias, we employed several measures during data collection as
suggested by Podsakoff et al. (2003). We have taken care to formulate simple and unambiguous
questions for our survey by discussing our questionnaire items with our interview partners and
conducting multiple rounds of pretests. Further, survey respondents were assured when the survey
was introduced to them that their responses would be treated as strictly confidential. Moreover, much
of the survey items address motivations, attitudes, and beliefs for which, by nature, there are no right
or wrong answers.

879 Journal of the Association for Information Systems Vol. 11 Special Issue pp.868-901 December 2010

Sojer & Henkel/Code Reuse in OSS Development

To estimate the presence of common method bias in our data after survey completion, we employed
Harman’s test, in which all variables of a model are loaded onto a single factor in a principal
component factor analysis. A significant amount of common method bias is assumed to exist if this
one factor explains a large portion of all the variance in the data (Podsakoff et al., 2003). In our data
we find the maximum variance explained by one factor being 9.3 percent, which does not hint toward
strong common method bias.

5. Results and Discussion
Following the research questions presented above, this section consists of four parts. In the first, we
establish the importance of code reuse in OSS development. Next, we present perceived benefits
and issues of reuse as well as impediments to it, and address the question of why OSS developers
do or do not reuse code. The third part presents the core of this study in the form of a multivariate
analysis of code reuse behavior used to test our research model. In the final, fourth part we discuss
potential threats to validity and limitations of our study.

5.1. Importance of Code Reuse

When measuring code reuse, we focused on component and snippet reuse. In our survey,
component reuse was defined as “reusing of functionality from external components in the form of
libraries or included files. E.g., implementing cryptographic functionality from OpenSSL or
functionality to parse INI files from an external class you have included. Please do not count
functionalities from libraries that are part of your development language, such as the C libraries.” In a
similar fashion, snippet reuse was defined as “reusing of snippets (several existing lines of code)
copied and pasted from external sources. If you have modified the code after copying and pasting it
by, e.g., renaming variables or adjusting it to a specific library you use, this would still be considered
as…reuse….”

We used three different measures (depicted in Table 2) to investigate the importance of code reuse.
First, related to, for example, Cusumano and Kemerer (1990) or Frakes and Fox (1995), we asked
developers to indicate the share of functionality based on reused code that they added to their current
main project. We found that, on average, nearly one third (mean=30 percent, median=20 percent) of
the functionality OSS developers added to their project was based on reused code, which points out
that code reuse is, indeed, an important element of OSS development. This interpretation is further
supported by the fact that only six percent of the developers surveyed report that they have never
reused code. Furthermore, the maximum share of reused functionality of 99 percent shows that some
developers rely very heavily on code reuse and see their role mainly as writing “glue-code” to
integrate the various pieces of reused code. As a second measure, we employed a self-developed
four-item scale to directly measure the perceived importance of reuse for the individual developers’
work on their main project.10

Finally, as the third approach, using a further self-developed four-item scale,

 On seven-point Likert scales, developers indicated their agreement to
four statements that described, in various ways, reuse as “very important.” With a mean of 4.74
(median=5.25) and 58 percent of all developers at least “somewhat agreeing” to the statements, the
important role of code reuse in OSS development is again confirmed.

11

10 We developed the scale based on our interviews with developers and on research on general knowledge reuse (Watson and

Hewett, 2006). It also draws on the intention and behavior scales commonly employed in TAM or TPB research in the IS domain,
for example, by Riemenschneider et al. (2002) or by Mellarkod et al. (2007). The statements of the scale are: “Reusing has been
extremely important for my past work on my current main project,” “Without reusing, my current main project would not be what it
is today,” “I did reuse very much during my past work on my current main project,” and “My past work on my current main project
would not have been possible without reusing.” The scale explains 83.4 percent of the total variance and Cronbach’s α is 0.93.

 we asked developers
to indicate their intent to reuse existing code in the future development of their current main project.
The results are largely similar to those obtained with the second measure (perceived importance of

11The statements of the scale are: “Reusing will be extremely important in my future work on my current main project,” “Realizing my
future tasks and goals for my current main project will not be possible without reusing,” “I will reuse very much when developing
my current main project in the future,” and “Realizing my future tasks and goals for my current main project will be very difficult
without reusing.” The scale explains 83.8 percent of the total variance and Cronbach’s α is 0.94.

Sojer & Henkel/Code Reuse in OSS Development

880 Journal of the Association for Information Systems Vol. 11 Special Issue pp.868-901 December 2010

reuse in past work), once more indicating that code reuse is very important. However, both mean and
median are significantly lower (mean=4.57, median=4.75) than in the previous measure. This finding
might be a first indication supporting hypothesis H3, which states that code reuse is more important in
earlier phases of an OSS project.

Table 2. Average Share of Functionality Reused by Developer (in %)
Measure Mean Median S.D. Min. Max.

Share of implemented functionality based
on reused code (in %) 30.0% 20.0% 26.5% 0.0% 99.0%

Importance of reuse for past work on
project (seven-point Likert scale)* 4.74 5.25 1.86 1.00 7.00

Importance of reuse for future work on
project (seven-point Likert scale)* 4.57 4.75 1.69 1.00 7.00

*Measure is based on four single items.
N=624.

Despite the prominent role of code reuse as consistently indicated by all three measures, the high
standard deviations also reveal large heterogeneity in developers’ code reuse behavior. Developers’
individual reasons for and against code reuse in their development are suspected to largely drive this
heterogeneity and will be explored in the following section.

5.2. Developers’ Reasons For and Against Code Reuse

In our analysis of developer’s reasons for and against code reuse, we differentiate between three sets
of factors. First, we analyze the benefits of code reuse as perceived by OSS developers. Second, we
investigate the drawbacks and issues that developers see in code reuse, and, finally, we address the
importance of general impediments12

Based on our interviews, as well as on the existing literature, we have identified eight distinct benefits
of code reuse. Survey participants were asked to indicate their agreement on a seven-point Likert
scale to statements regarding these benefits. Results are displayed in Figure 2 and show that all of
the statements received rather high shares of agreement. The two statements with the highest level
of agreement both point to efficiency effects of reuse, followed by a statement pertaining to its
effectiveness effects. For the benefits on ranks four and higher, agreement drops significantly
compared to rank three, yet is still quite high. Ranked fourth and fifth are statements addressing
effects of reuse on the quality of the software being developed by making it more stable and more
compatible with standards. The statement that ranked eighth--about the effects of code reuse on
software security--also pertains to this group, however, it receives considerably less agreement. This
could be explained by the fact that many OSS projects develop types of software for which security is
not a major concern, for example, games. Ranked sixth and seventh are statements that position
reuse as a means for developers to select their project tasks by preference and avoid mundane jobs.
An example for this is “outsourcing” maintenance work to the original developers of the reused code
who fix bugs or implement new functionality in the code. Thus, the reusing developer benefits without
having to do this work by herself.

 to code reuse.

12 While these “general impediments” are rather objective compared to developers’ beliefs about benefits and issues, they may still

reflect individual developer’s opinions, having been measured by asking the developers.

881 Journal of the Association for Information Systems Vol. 11 Special Issue pp.868-901 December 2010

Sojer & Henkel/Code Reuse in OSS Development

50 0 50 100%

57%19%

60%24%

67%14%

72%12%

74%14%

85%9%

91%3%

92%3%

8. Reusing helps developers create more secure software, e.g. less
vulnerabilities

7. Reusing allows developers to "outsource" maintenance tasks for
certain parts of their code to developers outside of their project

6. Reusing allows developers to spend their time on the
development activities they have most fun doing

5. Reusing ensures compatibility with standards, e.g. the look and
feel of GUIs

4. Reusing helps developers create more reliable/ stable
software, e.g. less bugs

3. Reusing allows developers to solve difficult problems for which
they lack the expertise

2. Reusing allows developers to spend their time on the most
important tasks of the project

1. Reusing helps developers realize their project goals/ tasks faster

Reuse benefits as perceived by developers
(in % of developers)

Share agreement
Share disagreement

Note: The share of developers who are “indifferent” about the statements is not shown.
N=624.
Figure 2. Share of Developers that Disagree/Agree to Reuse Benefits

In order to check consistency of responses and to construct factor scores to be used in the
multivariate analyses later, we conduct an exploratory factor analysis. With four components, it
explains 77.2 percent of total variance and yields good quality measures (KMO: 0.76, p<0.0001).13
The resulting components can be interpreted as development efficiency (ranks 1, 2), software quality
(ranks 4, 5, 8), task selection (ranks 6, 7), and development effectiveness (rank 3).14

Following the benefits of code reuse, nine issues and drawbacks identified in our interviews and
existing literature (shown in Figure 3) were presented to participants who were again asked to
indicate their agreement to the respective statements. The highest share of agreement was received
by a statement pointing to the loss of control that a developer may have to accept when reusing code.
Statements ranked second and third also relate to losing control, however, with significantly lower
levels of agreement. The statement ranked second points to software being more difficult to install
(build) and use by end-users due to technical dependencies, while the statement ranked third reflects
the developer’s obligation to check and integrate updates of reused code.

15

13 For better interpretability of the resulting components, components with an Eigenvalue of less than 1 were also extracted. The

fourth component had an Eigenvalue of 0.79.

 Ranked fourth, fifth, and
eighth—and again with significantly lower levels of agreement than the previous statements—are two
potential issues of code reuse that point to quality and security risks. The statements ranked sixth,
seventh, and ninth all describe situations where development from scratch is more efficient than code
reuse. They do, however, receive at least 50 percent disagreement, which emphasizes that most
developers do not deem searching, understanding, and adapting reusable code as inefficient.

14 The factor analysis uses principal component analysis and Varimax rotation. Cronbach’s α for the components software quality,
development efficiency, and task selection is 0.80, 0.72 and 0.47, respectively. See Table A3 in the Appendix for detailed factor
loadings.

15 Both statements mainly refer to component reuse and are only partially applicable to snippet reuse.

Sojer & Henkel/Code Reuse in OSS Development

882 Journal of the Association for Information Systems Vol. 11 Special Issue pp.868-901 December 2010

100 50 0 50 100%

22%66%

20%56%

33%51%

34%50%

54%30%

54%26%

61%21%

68%22%

81%9%

Reuse issues and drawbacks as perceived by developers
(in % of developers)

9. Finding reusable resources usually takes longer than
implementing the functionality from scratch

8. Reuse hurts the performance of a project

7. Understanding reusable resources usually takes longer than
implementing the functionality from scratch

6. Adapting and integrating reusable resources usually takes longer
than implementing the functionality from scratch

5. Through reuse developers might introduce quality risks to
their project

4. Through reuse developers might introduce security risks to
their project

3. Reusing creates additional work, e.g. in the form of fixing
broken linkages after an update of the reused component
or checking for updates of reused components

2. Dependencies created by reuse make a project more difficult
to install and use

1. Through reuse projects become dependant on other projects, e.g.
to fix bugs or add functionality in the reused components

Share agreement
Share disagreement

Note: The share of developers who are “indifferent” about the statements is not shown.
N=624.
Figure 3. Share of Developers that Disagree/Agree to Reuse Issues and Drawbacks

An exploratory factor analysis of these issues and drawbacks explains 69.0 percent of total variance
with three components, and yields good quality measures KMO: 0.72, p<0.0001). The resulting
components can be interpreted as control loss (ranks 1, 2, 3), quality risks (ranks 4, 5, 8), and
inefficiency of reuse (ranks 6, 7, 9).16

To consolidate the number of variables in the multivariate model employed later, we conducted a
further factor analysis that merged the software quality benefits and the quality risks into one
component. Further, we merged the development efficiency benefits with the inefficiency of reuse.
The five final components used in the multivariate model are: effectiveness benefits, efficiency
benefits, quality benefits, task selection benefits, and loss of control risks.

While the benefits and issues/drawbacks of code reuse were subjective and perceived by the
individual developer, there also exist general impediments to reuse. These general impediments,
which we derived from our interviews and existing literature, make code reuse difficult or impossible
even if the individual developer wanted to rely on existing code (see Figure 4). Interestingly, however,
all four statements offered to the surveyed developers received more disagreement than agreement.
The statement “there exist only very few reusable resources for my current main project” ranked first,
with 39 percent of the developers agreeing. A one-way ANOVA analysis used to identify for which
projects there exist the least reusable resources found only the target operating system of a project
having a significant influence on the availability of reusable code (p=0.0497). Projects that are not
developed for POSIX operating systems (e.g., Linux) or Windows have less reusable code at their
disposal. Neither the type of the project (e.g., “Software Development,” “Scientific and Engineering,”
or “Games and Entertainment”) (p=0.2440), nor the graphical user interface employed by the project
(0.1171) had any significant influence.

Ranked as the second general impediment to code reuse, with 24 percent agreement, are license
incompatibilities. Such a situation would occur, for example, if a programmer wanted to reuse code
snippets licensed under the GPL in a project licensed under the BSD license. As expected, the
license of the developer’s main project significantly influences this general impediment (One-way
ANOVA, p<0.0001), with developers working on GPL licensed projects least likely to perceive this as

16 The factor analysis uses principal component analysis and Varimax rotation. Cronbach’s α for the components control loss, quality

risks, and inefficiency of reuse is 0.66, 0.76 and 0.85, respectively. See Table A4 in the Appendix for detailed factor loadings.

883 Journal of the Association for Information Systems Vol. 11 Special Issue pp.868-901 December 2010

Sojer & Henkel/Code Reuse in OSS Development

an issue. However, the low share of agreement is surprising. Three possible explanations for this
finding seem plausible: First, there might exist enough reusable code in each license category.
Second, developers might able to mitigate the license incompatibilities through modular project
architectures that clearly separate modules under different licenses and, thus, avoid contamination
issues (Henkel and Baldwin, 2009). Third, developers are not knowledgeable about license
incompatibilities and ignore the potential issues. Ranked third and fourth with 17 percent and nine
percent agreement, respectively, are the architecture of the developer’s current main project being
not modular enough to allow for easy integration of reusable code (rank 3) and incompatibilities
between the project’s main programming language and the programming language of the code the
developer wants to reuse (rank 4). Both are significantly dependent on the programming language of
the developer’s project (One-way ANOVA, p=0.0036 and p<0.0001 for rank 3 and rank 4,
respectively), with C++ and Java as object-oriented languages posing the least issues.

100 50 0 50%

9%85%

17%73%

24%63%

1. There exist only very few reusable resources for my current main
project 39%48%

4. The programming language of my current main projects makes
reusing very difficult, e.g. the programming language of my
current main projects makes including popular libraries difficult

3. The software architecture of my current main project makes
reusing very difficult, e.g. the architecture of my current main
projects is not very modular

2. License issues make reusing in my current main project very
difficult, e.g. reusing a GPL component would require the license
of my current main project to be changed to GPL as well

General impediments to reuse as perceived by developers
(in % of developers)

Share agreement
Share disagreement

Note: The share of developers who are “indifferent” about the statements is not shown.
N=624.
Figure 4. Share of Developers that Disagree/Agree to General Reuse Impediments

5.3. Multivariate Analysis of Reuse Behavior

Following the descriptive analysis, the objective of our research model is to explain the observed
heterogeneity in developers’ reuse behavior found earlier with both developer and project
characteristics. We test the research model with our three different measures of reuse behavior as
dependent variables in three different regression models in order to ensure robustness of results.17
All three models will be tested using Tobit regressions, as their dependent variables are restricted to
either [0-100%] or [1-7]. 18

17 Descriptive statistics of all explanatory variables are depicted in Table A5 in the Appendix. The correlation matrix is shown in Table

A6 in the Appendix.

 A summary of the research model hypotheses and the support they
received in the multivariate analyses is presented in Table 3 while the detailed regression tables
containing the Tobit models are depicted in Table 4. As a further robustness check, we ran
specifications of the three models with successive elimination of insignificant variables. The results of
this robustness check, which are largely consistent with the results of the main models, are shown in
Table A7 in the Appendix. We present and discuss the results of the multivariate analyses next.

18 In contrast to an OLS regression, a Tobit model accounts for the censoring of the dependent variable. In the present case this
means, for example, that the share of functionality from reused resources cannot be less than zero percent, or larger than 100
percent.

Sojer & Henkel/Code Reuse in OSS Development

884 Journal of the Association for Information Systems Vol. 11 Special Issue pp.868-901 December 2010

Table 3. Summary of hypotheses testing
Hypotheses Confirmed?

Attitude toward reuse: Developers reuse more on existing code…
 H1a: …the more strongly they perceive the effectiveness benefits of reuse.
 H1b: …the more strongly they perceive the efficiency benefits of reuse.
 H1c: …the more strongly they perceive the quality benefits of reuse.
 H1d: …the more strongly they perceive the task selection benefits of reuse.
 H1e: …the less strongly they perceive the loss of control risks of code reuse.
Access to local search: Developers reuse more existing code…
 H2a: …the larger their personal OSS network.
 H2b: …the greater the number of OSS projects they have been involved in.
Project maturity:
 H3: Developers reuse more existing code the less mature their project.
Compatibility with project goals: Developers reuse more existing code…
 H4a: …the less important challenge seeking is for them as a motivation to work on

their project.
 H4b: …the less important coding for fun and enjoyment is for them as a motivation

to work on their project.
 H4c: …the more important skill improvement is for them as a motivation to work on

their project.
 H4d: …the more important community commitment is for them as a motivation to

work on their project.
 H4e: …the more important OSS reputation building is for them as a motivation to

work on their project.
 H4f: …the more important commercial signaling is for them as a motivation to work

on their project.
Legend: : fully confirmed; : partially confirmed; : not supported

885 Journal of the Association for Information Systems Vol. 11 Special Issue pp.868-901 December 2010

Sojer & Henkel/Code Reuse in OSS Development

Table 4. Multivariate Analysis of Developers’ Reuse Behavior
 Past importance of reuse (3) Future

importance of reuse
(Likert scale)

 (1) Likert scale (2) Percentage scale

Attitude toward reuse
 BenefitEffectiveness (H1a) 0.222*** (0.076) 2.701*** (1.021) 0.168*** (0.063)
 BenefitEfficiency (H1b) 0.653*** (0.084) 5.959*** (1.114) 0.517*** (0.069)
 BenefitQuality (H1c) 0.303*** (0.081) 1.800* (1.073) 0.250*** (0.067)
 BenefitTaskSelection (H1d) 0.155** (0.078) 3.528*** (1.041) 0.132** (0.064)
 IssueControlLoss (H1e) -0.030 (0.077) -0.506 (1.036) -0.004 (0.064)
Access to local search
 DevOSSNetsize (log) (H2a) 0.165** (0.083) 2.098* (1.102) 0.230*** (0.069)
 DevOtherProjects (H2b) 0.022 (0.016) 0.398* (0.208) 0.032** (0.013)
Project maturity
 ProjPhase (H3) -0.149** (0.070) -3.227*** (0.928) -0.219*** (0.057)
Compatibility with project goals
 MotChallenge (H4a) -0.148* (0.083) -2.559** (1.103) -0.067 (0.068)
 MotFun (H4b) 0.098 (0.080) 0.575 (1.072) 0.055 (0.066)
 MotLearning (H4c) 0.003 (0.080) -1.438 (1.053) -0.015 (0.066)
 MotCommunity (H4d) 0.177** (0.086) 1.964* (1.150) 0.148** (0.071)
 MotOSSReputation (H4e) 0.005 (0.057) 0.128 (0.758) 0.065 (0.047)
 MotSignaling (H4f) -0.054 (0.061) 0.336 (0.817) 0.013 (0.051)
Subjective norms
 DevNorm 0.140** (0.066) 2.372*** (0.887) 0.197*** (0.055)
Perceived behavioral control
 ProjPolSupport 0.440** (0.200) 0.946 (2.670) 0.297* (0.165)
 ProjPolDiscourage -1.087** (0.457) -4.977 (6.161) -1.279*** (0.383)
 ConditionLack -0.250*** (0.044) -2.317*** (0.589) -0.168*** (0.036)
 ConditionLicense 0.065 (0.045) 0.309 (0.599) 0.018 (0.037)
 ConditionLanguage 0.030 (0.060) -0.071 (0.802) 0.060 (0.049)
 ConditionArchitecture 0.017 (0.052) 0.481 (0.698) 0.017 (0.043)
 DevSkill -0.075 (0.095) -0.123 (1.270) -0.018 (0.078)
Further control variables
 ProjSize 0.000 (0.002) -0.021 (0.024) -0.002 (0.001)
 ProjComplexity 0.131 (0.092) 2.194* (1.236) 0.0190 (0.076)
 ProjStack 0.210** (0.091) 1.499 (1.209) 0.135* (0.074)
 ProjStandalone 0.118 (0.197) 0.233 (2.633) 0.203 (0.163)
 DevOSSExperience 0.010 (0.018) 0.076 (0.249) 0.000 (0.015)
 DevProjTime 0.014* (0.008) -0.039 (0.107) 0.008 (0.007)
 DevProjShare 0.003 (0.002) 0.031 (0.033) 0.001 (0.002)
 DevProf 0.056 (0.186) 0.214 (2.492) 0.184 (0.154)
 DevEduReuse -0.127 (0.165) -1.177 (2.201) -0.266* (0.136)
 DevProfEduReuse 0.603** (0.237) 5.883* (3.094) 0.378* (0.193)
 Residence-N. America -0.159 (0.181) -3.310 (2.408) 0.120 (0.149)
 Residence-S. America 0.236 (0.359) -3.424 (4.743) -0.013 (0.294)
 Residence-Asia & RoW -0.102 (0.226) 0.764 (3.031) -0.109 (0.187)
Constant 3.026*** (0.888) 23.275* (11.87) 2.545*** (0.731)
Observations 624 624 624
Pseudo R² 0.107 0.029 0.119
Likelihood ratio Χ²(35)=267.42

p<0.0001
Χ²(35)=162.74

p<0.0001
Χ²(35)=289.55

p<0.0001
σ 1.790 24.337 1.493
Notes: All models are Tobit models; standard errors in parentheses; * significant at 10%;
** significant at 5%; *** significant at 1%.

Sojer & Henkel/Code Reuse in OSS Development

886 Journal of the Association for Information Systems Vol. 11 Special Issue pp.868-901 December 2010

3.5.1. Attitude Toward Reuse

The regression results confirm hypotheses H1a to H1d. Developers who perceive higher
effectiveness, efficiency, quality, or task selection benefits from code reuse attribute a higher
importance to it and practice it more. The coefficients for all four hypotheses are positive and
significant for all dependent variables and all specifications. In contrast, hypothesis H1e is not
confirmed. The data does not show that developers who fear losing control over their projects reuse
less code. This is surprising as, in our descriptive analysis, loss of control was ranked as the main
issue developers have with code reuse. A plausible interpretation is that developers’ concerns about
losing control over their project affect their decision as to which code to reuse, but do not affect the
total amount of code they reuse. For example, developers concerned about losing control might
choose to reuse only components developed by other projects that have a proven track record of
fixing bugs quickly and keeping the structure of their code stable (Haefliger et al., 2008).

3.5.2. Access to Local Search

The effect of developers’ access to local search on their reuse behavior was captured by the
logarithm of the size of their OSS network (H2a) and the number of other OSS projects they have
been involved in (H2b). Hypothesis H2a is confirmed in all models while H2b is confirmed only
partially, its coefficient not being significant in model 1. Nonetheless, all coefficients are positive in all
models, supporting our assumption that developers who can access, evaluate, understand, and
integrate reusable code more easily due to local search practice more code reuse.

The finding that the number of years a developer has been involved in OSS does not exhibit a
significant effect on her reuse behavior (see control variable DevOSSExperience) is consistent with
our argument regarding local search. We claimed that developers who can turn to their personal OSS
network or their experience in other OSS projects reuse more because of their better access to local
search. A greater number of years involved in OSS alone does not yet facilitate such better access
because, for example, a developer with 10 years of OSS work spent in only one project does not
have access to local search regarding which code other projects use to solve a particular problem.

3.5.3. Project Maturity

Our hypothesis that developers reuse less code once their project has matured (H3) is confirmed
across all dependent variables and specifications.19

3.5.4. Compatibility with Project Goals

 Developers do, indeed, seem to leverage reuse
as a tool to deliver a “credible promise” early on and overcome the liabilities of newness to get on a
par with competing existing projects, while later project phases call for specific refinements of their
projects where there is less available code to reuse.

Regarding the compatibility of code reuse with a developer’s individual project goals, hypothesis H4d
(community commitment) is confirmed in all models except model 2; H4a (challenge seeking) is
confirmed only in models with past reuse as the dependent variable (models 1, 2 and 5). For all other
hypotheses (coding fun and enjoyment (H4b), skill improvement (H4c), OSS reputation building (H4e),
and commercial signaling (H4f)) the null hypothesis cannot be rejected.

The support for H4d highlights that developers who feel they are part of the OSS community and
want it to grow and be successful rely more on code reuse than other developers. Code reuse is
compatible with their goal of contributing to the OSS community because by leveraging code reuse

19 Note that in models 1, 2, 4, and 5 where past reuse behavior is the dependent variable, the amount of reused code reported by

developers with projects in later development phases is their average reuse level, including the assumed high levels of code reuse
of early phases and the proposed lower levels of later phases. However, if reuse declines with maturity, as proposed, then
average reuse decreases over the lifetime of a project.

887 Journal of the Association for Information Systems Vol. 11 Special Issue pp.868-901 December 2010

Sojer & Henkel/Code Reuse in OSS Development

they can contribute more and of higher quality. 20

We now turn to those hypotheses that are not supported. We argued that similar to challenge seeking,
the fun and enjoyment developers experience when writing code leads them to reuse less code (H4b),
but we cannot confirm this hypothesis. In fact, the respective coefficients are not negative as
expected, but positive, though insignificant. The remaining unconfirmed hypotheses, skill
improvement (H4c), OSS reputation building (H4e), and commercial signaling (H4f) partially show
varying coefficient signs. This could be because, contrary to our assumptions, code reuse could be
both supportive and detrimental to these goals. While reused code could be used as an example to
improve programming skills, it could also hamper learning if developers treat the reused code as a
black box. Regarding reputation building and commercial signaling, we expected that developers who
make their projects more successful with the help of code reuse are regarded more highly in the OSS
community and can present themselves as better developers to potential employers or business
partners. However, it is also possible that in certain situations the code created by developers
themselves without the help of code reuse is important to build their OSS reputation or signal skills to
potential employers and partners. In these situations, developers would refrain from code reuse if
reputation building or signaling is a main motivation for their OSS work.

 The partial confirmation of H4a supports our
assumption that the developers’ goal to seek and tackle technical challenges impedes code reuse. By
reusing existing code, developers would be denied the pleasure of solving a problem by themselves.
Thus, they would rather refrain from code reuse if challenge seeking is of major importance to them in
their OSS work. The finding that the respective coefficient is not significant when the dependent
variable is the developers’ future intent to reuse may be due to the fact that desiring to solve a
problem alone is something that can occur spontaneously and is, thus, difficult to predict.

3.5.5. Control Variables

Due to the large number of control variables included in our model, we only point out a few main
results. The social norms as perceived by developers show a consistently significant and positive
influence as predicted by TPB. Consequently, OSS developers who feel that their peers appreciate
them reusing existing code will reuse more. Of the variables describing developers’ perceived
behavioral control, the lack of reusable code has a consistently negative and significant influence on
reuse behavior. With the exception of one dependent variable, project policies discouraging reuse
lead to reduced code reuse, while policies promoting reuse are found to significantly increase reuse
behavior in three models (1, 4, 6). Last, developers who received training on reuse in companies,
practice significantly more code reuse, while developers who learned about reuse only during their
academic education do not differ in their code reuse behavior from developers who were never
exposed to reuse in their curriculum.

To summarize, the regression analyses shed light on developers’ code reuse behavior. In particular,
the (partially) confirmed H2 (access to local search), H3 (project maturity), and H4a (challenge
seeking) provide interesting findings that are also relevant beyond the scope of OSS.

5.4. Possible threats to validity and limitations of the study

In the following we employ the four generally accepted criteria of validity (Cook and Campbell, 1979)
as our structure: construct validity, internal validity, statistical conclusion validity, and external validity.

Construct validity threats concern the ability to measure what we are interested in measuring. As
pointed out in sections 4 and 5, the measures employed in this study are based on existing measures
from other studies and our interviews. All measures were assessed for clarity by other researchers
and OSS developers during pretests as described above. Furthermore, all multi-item constructs were
quantitatively gauged with regard to reliability, convergent validity, and discriminant validity. Thus, we
consider our study to possess sufficient construct validity. Nonetheless, a potential issue is whether

20 Moreover, developers who are more sympathetic toward the OSS community might also be affected by the general positive

attitude of this community toward reuse (e.g., Raymond, 2001). This effect is, however, captured via subjective norms as a control
variable.

Sojer & Henkel/Code Reuse in OSS Development

888 Journal of the Association for Information Systems Vol. 11 Special Issue pp.868-901 December 2010

developers are able to accurately estimate their level of code reuse in a questionnaire. While an
additional verification of our results using an objective measure of code reuse is certainly worthwhile,
developers in our pretests convinced us that they can, with considerable precision, estimate their
degree of code reuse. Furthermore, to ensure the robustness of our findings, we employed three
different measures of code reuse in the survey. Finally, many other reuse studies also rely on
reported reuse levels (e.g., Frakes and Fox, 1995; Lee and Litecky, 1997).

We are confident of the study’s internal validity--confirmation that there are no alternative
explanations for the relationships identified between our research model constructs--since our
research model relies on the well established TPB and because we have included multiple further
control variables derived from our interviews and OSS or reuse literature. A potential issue is our
approach to deal with component and snippet reuse simultaneously. If component reuse in OSS
development is the same as black-box reuse, there might exist different drivers for it than for snippet
reuse. However, because we find that about 50 percent of the surveyed developers modify the
components they reuse, we argue that, at least in the OSS context, component reuse does not
constitute typical black-box reuse. Consequently, we expect both component and snippet reuse to be
influenced largely by the same drivers.

In addition to that, we also consider our results to be valid with regard to our statistical conclusions,
since they are based on a sample of considerable size and backed by the significance levels of our
hypotheses as well as the largely consistent results in various model specifications and with various
dependent variables.

Finally, external validity threats concern the generalization of our findings. In line with the other main
studies of individual OSS developers, we drew our sample from SourceForge.net developers. As
pointed out in chapter 4, we have no reason to believe that our sample is not representative of
SourceForge.net developers. Thus, generalization for this most frequently researched group of OSS
developers should be feasible. To ensure external validity when generalizing to OSS developers
registered on other platforms (where, e.g., projects are larger) or to traditional software developers
working on proprietary software in commercial firms, it would be necessary to replicate our study in
these settings. However, both our data and our research model suggest that generalization to other
contexts should yield similar results. For example, on the data side we do not find significant
differences between the reuse behavior of paid and hobbyist OSS developers. Regarding the
research model, it would be surprising to find that rather general hypotheses such as the effects of
network size or challenge seeking work differently in the context of proprietary software development.

6. Conclusion
In this paper, we set out to use quantitative data obtained through a survey to explain and understand
code reuse in OSS projects. Contributing to the emerging stream of scholarly work on code reuse in
OSS, we present strong evidence that code reuse is of major importance in OSS development and
has contributed to its success. We further show that OSS developers perceive efficiency and
effectiveness as the main benefits of code reuse. Of relevance not only to OSS research but also to
the domains of software engineering and the receiving side of open innovation processes in general,
our investigation of drivers of code reuse finds that developers with better access to local search due
to a larger personal OSS network or more exposure to different OSS projects reuse more existing
code, presumably because their costs of accessing this code are lower. Further, developers
convinced of the benefits of code reuse (efficiency and effectiveness gains, enhanced software
quality, and the chance to work on preferred tasks) practice it more, as do developers who can use
code reuse to support their goal of serving the OSS community. Moreover, developers see code
reuse as a means to kick-start new projects, as it helps them deliver a “credible promise” and close
the gap to existing and competing projects more quickly. Last, we find partial support for our
hypothesis that those developers who desire to solve technical problems for the satisfaction of it
refrain from reuse and, thus, make their projects less efficient and effective than they could be.

889 Journal of the Association for Information Systems Vol. 11 Special Issue pp.868-901 December 2010

Sojer & Henkel/Code Reuse in OSS Development

As academic work on code reuse in OSS has only just begun, it merits further research. While our
study has addressed development with reuse, future work should investigate development for reuse,
that is, OSS projects that develop components primarily intended to be reused in other projects.
Questions of relevance in this context are: Why do developers bear the reportedly large additional
costs of writing reusable code,21

Beyond their scholarly implications, our findings are also of relevance to managerial practice. They
highlight the high level of reuse within the OSS community that should provide motivation to firms to
also leverage existing OSS code in their software development, thereby partly mitigating the typically
high upfront investment costs of building an internal reuse library for artifacts that are not firm-specific
(Frakes and Kang, 2005).

 or have they have found ways to mitigate those costs? Additionally,
as has been pointed out by Haefliger et al. (2008), the strategies that OSS developers employ to
make their reusable code known and reused deserve investigation. Moreover, the limitations of our
work open up several further research avenues. First, our dependent variables reflect developers’
subjective perception of the importance of code reuse for their OSS work. In an alternative way, and
potentially adding robustness to our findings, the importance of reuse could be captured more
objectively by analyzing the code of a project. Similarly, independent variables captured from other
data sources could be added to our model. For example, social network data derived from
SourceForge.net (e.g., Fershtman and Gandal, 2009) could be employed to further extend and test
our hypotheses on local search. Moreover, we have described code reuse in general, not
differentiating between its various forms (components, snippets, algorithms). A more fine-grained
analysis using these dimensions might yield further insights into the mechanics of code reuse in OSS
projects. Finally, while we have focused on developers and their projects as determinants of code
reuse, future work could employ an even more detailed approach and analyze single reuse incidents,
incorporating developers, their projects, and the artifacts they consider for reuse. Such an approach
could, for instance, analyze the impact of the quality of the relationship between the “giving” and the
“receiving” side of the open innovation process on code reuse.

22

Acknowledgements

 Further, if they intend to pursue this avenue of reusing OSS code,
commercial firms should encourage and support their employees to enhance their access to local
search for OSS code by building personal OSS networks and by becoming involved in various OSS
projects. Beyond reuse of OSS code, modified incentives and development processes based on our
findings could support internal corporate reuse activities in software engineering and beyond. As part
of such modifications, developers could be provided with the option to select tasks themselves,
according to their preference, they could be compensated according to their work results delivered
and not based on the time they have spent at work, and they could be required to deliver “credible
promises” in new development projects (Haefliger et al., 2008). Last, to accommodate the desire of
developers to tackle difficult technical challenges, which makes them reuse less than they could,
firms could consider job enrichment (e.g., Herzberg, 1968) to integrate challenges into developers’
work that are in the best interests of the firm, thereby accommodating the needs of both developer
and firm.

We are grateful to three anonymous reviewers, Oliver Alexy, Timo Fischer, Stefan Haefliger,
Francesco Rullani, and seminar participants at the Pre-ECIS 2009 Open Source and Innovation
Workshop, the TUM/Imperial Paper Development Workshop 2009, and the Open Source, Innovation,
and Entrepreneurship Workshop 2010 for helpful comments.

21 For example Tracz (1995) estimates that writing reusable code leads to 100 percent of additional effort.
22 Obviously this has to be in accordance with the licenses of the OSS code. However, well-designed product architectures can

mitigate many of the issues potentially arising here (Henkel and Baldwin, 2009).

Sojer & Henkel/Code Reuse in OSS Development

890 Journal of the Association for Information Systems Vol. 11 Special Issue pp.868-901 December 2010

References
Ajzen, I. (1991) "The Theory of Planned Behavior," Organizational Behavior and Human Decision

Processes 50 (2), pp. 179-211.
Ajzen, I. (2002) "Constructing a TpB Questionnaire: Conceptual and Methodological Considerations,"

Manuscript, University of Massachusetts, Available at URL: http://people.umass.edu/aizen/
pdf/tpb.measurement.pdf.

Aldrich, H. and E. Auster (1986) "Even Dwarfs Started Small: Liabilities of Age and Size and Their
Strategic Implications," in Cummings, L. and B. Staw (Eds.) Research in Organizational
Behavior, San Francisco, CA: JAI Press, pp. 165-198.

Amabile, T.M., K.G. Hill, A. Hennessey, and E.M. Tighe (1994) "The Work Preference Inventory:
Assessing Intrinsic and Extrinsic Motivational Orientations," Journal of Personality and Social
Psychology 66 (5), pp. 950-967.

Baldwin, C.Y. and K.B. Clark (2006) "The Architecture of Participation: Does Code Architecture
Mitigate Free Riding in the Open Source Development Model?," Management Science 52 (7),
pp. 1116-1127.

Banker, R.D., R.J. Kauffman, and D. Zweig (1993) "Repository Evaluation on Software Reuse," IEEE
Transactions of Software Engineering 19 (4), pp. 379-389.

Bonaccorsi, A., S. Giannangeli, and C. Rossi (2006) "Entry Strategies under Competing Standards:
Hybrid Business Models in the Open Source Software Industry," Management Science 52 (7),
pp. 1085-1098.

Chang, H.-F.A. and A. Mockus (2008) "Evaluation of Source Code Copy Detection Methods on
FreeBSD," International Working Conference on Mining Software Repositories, Leipzig,
Germany.

Chesbrough, H.W. (2003) Open Innovation. The New Imperative for Creating and Profiting from
Technology. Boston, MA: Harvard Business School Press.

Clary, E.G., M. Snyder, R.D. Ridge, J. Copeland, A.A. Stukas, and J. Haugen (1998) "Understanding
and Assessing the Motivations of Volunteers: A Functional Approach," Journal of Personality
and Social Psychology 74 (6), pp. 1516-1530.

Cook, T.D. and D.T. Campbell (1979) Quasi-Experimentation: Design and Analysis Issues for Field
Setting. Chicago, IL: Rand McNally.

Crowston, K. and B. Scozzi (2008) "Bug Fixing Practices within Free/Libre Open Source Software
Development Teams," Journal of Database Management 19 (2), pp. 1-30.

Crowston, K., K. Wei, J. Howison, and A. Wiggins (2009) "Free/Libre Open Source Software
Development: What We Know and What We Do Not Know," (07.07.2009), Working Paper,
Available at URL: http://floss.syr.edu/StudyP/Review%20Paper_070709.pdf.

Csíkszentmihályi, M. (1990) Flow: The Psychology of Optimal Experience. New York, NY: Harper and
Row.

Cusumano, M. and C. Kemerer (1990) "A Quantitative Analysis of U.S. And Japanese Practice in
Software Development," Management Science 36 (11), pp. 1384-1406.

Dahlander, L. (2005) "Appropriation and Appropriability in Open Source Software," International
Journal of Innovation Management 9 (3), pp. 259-285.

Davis, F.D., R.P. Bagozzi, and R.P. Warshaw (1989) "User Acceptance of Computer Technology: A
Comparison of Two Theoretical Models," Management Science 35 (8), pp. 982-1002.

Desouza, K.C., Y. Awazu, and A. Tiwana (2006) "Four Dynamics for Bringing Use Back into Software
Reuse," Communications of the ACM 49 (1), pp. 96-100.

DiBona, C. (2005) "Open Source and Proprietary Software Development," in DiBona, C., D. Cooper,
and M. Stone (Eds.) Open Source 2.0: The Continuing Evolution, Sebastopol, CA: O'Reilly
Media.

DiBona, C., J. Ockerbloom, and M. Stone (1999) "Introduction," in DiBona, C., S. Ockman, and M.
Stone (Eds.) Open Sources: Voices of the Open Source Revolution, Sebastopol, CA: O'Reilly
& Associates, pp. 1-17.

Fershtman, C. and N. Gandal (2009) "R&D Spillovers: The 'Social Network' of Open Source,"
(16.05.2009), Working Paper, Available at URL: http://www.tau.ac.il/~gandal/OSS.pdf.

Fornell, C. and F. Larcker (1981) "Evaluating Structural Equation Models with Unobservable Variables
and Measurement Error," Journal of Marketing Research 13 (1), pp. 39-50.

891 Journal of the Association for Information Systems Vol. 11 Special Issue pp.868-901 December 2010

Sojer & Henkel/Code Reuse in OSS Development

Frakes, W.B. and C.J. Fox (1995) "Sixteen Questions About Software Reuse," Communications of the
ACM 38 (6), pp. 75-87.

Frakes, W.B. and K. Kang (2005) "Software Reuse Research: Status and Future," IEEE Transactions
of Software Engineering 31 (7), pp. 529 - 536

German, D.M. (2007) "Using Software Distributions to Understand the Relationship among Free and
Open Source Software Projects," 4th International Workshop on Mining Software
Repositories, Minneapolis, MN.

Ghosh, R.A., R. Glott, B. Krieger, and G. Robles (2002) "Free/Libre and Open Source Software:
Survey and Study - Deliverable D18: Final Report - Part IV: Survey of Developers," Available
at URL: http://www.infonomics.nl/FLOSS/report/FLOSS_Final4.pdf.

Gruber, M. and J. Henkel (2005) "New Ventures Based on Open Innovation - an Empirical Analysis of
Start-up Firms in Embedded Linux," International Journal of Technology Management 33 (4),
pp. 354-372.

Haefliger, S., G. von Krogh, and S. Spaeth (2008) "Code Reuse in Open Source Software,"
Mangement Science 54 (1), pp. 180-193.

Hair, J.F., Jr., R.L. Tataham, J.E. Anderson, and W. Black (2006) Multivariate Data Analysis. Upper
Saddle River, NJ: Pearson Prentice Hall.

Hardgrave, B.C., F.D. Davis, and C.K. Riemenschneider (2003) "Investigating Determinants of
Software Developers' Intentions to Follow Methodologies," Journal of Management
Information Systems 20 (1), pp. 123-151.

Hardgrave, B.C. and R.A. Johnson (2003) "Toward an Information Systems Development Acceptance
Model: The Case of Object-Oriented Systems Development," IEEE Transactions on
Engineering Management 50 (3), pp. 322-336

Hars, A. and S. Ou (2002) "Working for Free? Motivations for Participating in Open-Source Projects,"
International Journal of Electronic Commerce 6 (3), pp. 25-39.

Henkel, J. (2006) "Selective Revealing in Open Innovation Processes: The Case of Embedded
Linux," Research Policy 35 (7), pp. 953-969.

Henkel, J. (2009) "Champions of Revealing - the Role of Open Source Developers in Commercial
Firms," Industrial and Corporate Change 18 (3), pp. 435-471.

Henkel, J. and C.Y. Baldwin (2009) "Modularity for Value Appropriation: Drawing the Boundaries of
Intellectual Property," (March 2009), Working Paper, Harvard Business School.

Hertel, G., S. Niedner, and S. Hermann (2003) "Motivation of Software Developers in the Open
Source Projects: An Internet-Based Survey of Contributors to the Linux Kernel," Research
Policy 32 (7), pp. 1159-1177.

Herzberg, F. (1968) "One More Time: How Do You Motivate Employees?," Harvard Business Review
46 (1), pp. 53-62.

Isoda, S. (1995) "Experience of a Software Reuse Project," Journal of Systems and Software 30, pp.
171-186.

Kim, Y.E. and E.A. Stohr (1998) "Software Reuse: Survey and Research Directions," Journal of
Management Information Systems 14 (4), pp. 113-147.

Krueger, C.W. (1992) "Software Reuse," ACM Computer Surveys 24 (2), pp. 131-183.
Lakhani, K.R. and E. von Hippel (2003) "How Open Source Software Works: "Free" User-to-User

Assistance," Research Policy 32 (6), pp. 923-943.
Lakhani, K.R. and R.G. Wolf (2005) "Why Hackers Do What They Do: Understanding Motivation and

Effort in Free/Open Source Software Projects," in Feller, J., B. Fitzgerald, S. Hissam, and
K.R. Lakhani (Eds.) Perspectives on Free and Open Source Software, Cambridge, MA: MIT
Press, pp. 3-22.

Langlois, R.N. (1999) "Scale, Scope, and the Reuse of Knowledge," in Dow, S.C. and P.E. Earl (Eds.)
Economic Organization and Economic Knowledge, Cheltenham, UK: Edward Elgar, pp. 239-
254.

Lee, N.-Y. and C.R. Litecky (1997) "An Empirical Study of Software Reuse with Special Attention to
Ada," Transactions on Software Engineering 23 (9), pp. 537-549.

Lerner, J. and J. Tirole (2002) "Some Simple Economics of Open Source," The Journal of Industrial
Economics 50 (2), pp. 197-234.

Majchrak, A., L.P. Cooper, and O.P. Neece (2004) "Knowledge Reuse for Innovation," Management
Science 50 (2), pp. 174-188.

Sojer & Henkel/Code Reuse in OSS Development

892 Journal of the Association for Information Systems Vol. 11 Special Issue pp.868-901 December 2010

Mellarkod, V., R. Appan, D.R. Jones, and K. Sherif (2007) "A Multi-Level Analysis of Factors Affecting
Software Developers' Intention to Reuse Software Assets: An Empirical Investigation,"
Information & Management 44 (7), pp. 613-625.

Mockus, A. (2007) "Large-Scale Code Reuse in Open Source Software," 1st International Workshop
on Emerging Trends in FLOSS Research and Development, Minneapolis, MN.

Moore, G.C. and I. Benbasat (1991) "Development of an Instrument to Measure the Perceptions of
Adopting an Information Technology Innovation," Information Systems Research 2 (3), pp.
192-222.

Morisio, M., M. Ezran, and C. Tully (2002) "Success and Failure Factors in Software Reuse," IEEE
Transactions on Software Engineering 28 (4), pp. 340-357.

Naur, P. and B. Randell (1968) Software Engineering; Report on a Conference by the Nato Science
Committee. Brussels, Belgium: NATO Science Affairs Division.

Nunnally, J.C. (1978) Psychonometric Theory. New York, NY: McGraw-Hill.
Podsakoff, P.M., S.B. MacKenzie, J. Lee, and N.P. Podsakoff (2003) "Common Method Biases in

Behavioral Research: A Critical Review of the Literature and Recommended Remedies,"
Journal of Applied Psychology 88 (5), pp. 879-903.

Ravichandran, T. and M.A. Rothenberger (2003) "Software Reuse Strategies and Component
Markets," Communications of the ACM 46 (8), pp. 109-114.

Raymond, E.S. (2001) The Cathedral and the Bazaar. Sebastopol, CA: O'Reilly & Associates 2nd
Edition.

Riemenschneider, C.K. and B.C. Hardgrave (2001) "Explaining Software Development Tool Use with
the Technology Acceptance Model," Journal of Computer Information Systems 41 (4), pp. 1-8.

Riemenschneider, C.K., B.C. Hardgrave, and F.D. Davis (2002) "Explaining Software Developer
Acceptance of Methodologies: A Comparison of Five Theoretical Models," IEEE Transactions
on Software Engineering 28 (12), pp. 1135-1145

Roberts, J.A., I. Hann, and S.A. Slaughter (2006) "Understanding the Motivations, Participation, and
Performance of Open Source Software Developers: A Longitudinal Study of the Apache
Projects," Management Science 52 (7), pp. 984-999.

Rossi Lamastra, C. (2009) "Software Innovativeness: A Comparison between Proprietary and
Free/Open Source Solutions Offered by Italian SMEs," R&D Management 39 (2), pp. 153-
169.

Sen, A. (1997) "The Role of Opportunism in the Software Design Reuse Process," IEEE Transactions
of Software Engineering 23 (7), pp. 418-436.

Sen, R., C. Subramaniam, and M.L. Nelson (2008) "Determinants of the Choice of Open Source
Software License," Journal of Management Information Systems 25 (3), pp. 207-239.

Sherif, K., R. Appan, and Z. Lin (2006) "Ressources and Incentives for the Adoption of Systematic
Software Reuse," International Journal of Information Management 26 (1), pp. 70-80.

Spaeth, S., M. Stuermer, S. Haefliger, and G. Von Krogh (2007) "Sampling in Open Source Software
Development: The Case for Using the Debian GNU/Linux Distribution," 40th Annual Hawaii
International Conference on System Sciences, Waikoloa, HI.

Stewart, K.J. and S. Gosain (2006) "The Impact of Ideology on Effectiveness in Open Source
Software Teams," MIS Quarterly 30 (2), pp. 291-314.

Straub, D. (1989) "Validating Instruments in MIS Research," MIS Quarterly 13 (2), pp. 147-169.
Subramanyam, R. and M. Xia (2008) "Free/Libre Open Source Software Development in Developing

and Developed Countries: A Conceptual Framework with an Exploratory Study," Decision
Support Systems 46 (1), pp. 173-186.

Tracz, W. (1995) Confessions of a Used Program Salesman: Institutionalizing Software Reuse.
Reading, MA: Addison-Wesley.

von Krogh, G., S. Spaeth, and S. Haefliger (2005) "Knowledge Reuse in Open Source Software: An
Exploratory Study of 15 Open Source Projects," 38th Annual Hawaii International Conference
on System Sciences, Big Island, HI.

von Krogh, G., S. Spaeth, S. Haefliger, and M. Wallin (2008) "Open Source Software: What We Know
(and Do Not Know) About Motives to Contribute," (April 2008), Working Paper, DIME Working
Papers on Intellectual Property, Available at URL: http://www.dime-eu.org/files/active/0/
WP38_vonKroghSpaethHaefligerWallin_IPROSS.pdf.

von Krogh, G., S. Spaeth, and K.R. Lakhani (2003) "Community, Joining, and Specialization in Open

893 Journal of the Association for Information Systems Vol. 11 Special Issue pp.868-901 December 2010

Sojer & Henkel/Code Reuse in OSS Development

Source Software Innovation: A Case Study," Research Policy 32 (7), pp. 1217-1241.
Watson, S. and K. Hewett (2006) "A Multi-Theoretical Model of Knowledge Transfer in Organizations:

Determinants of Knowledge Contribution and Knowledge Reuse," Journal of Management
Studies 43 (2), pp. 141-173.

West, J. (2003) "How Open Is Open Enough? Melding Proprietary and Open Source Platform
Strategies," Research Policy 32 (7), pp. 1259-1285.

Wu, C.-G., J.H. Gerlach, and C.E. Young (2007) "An Empirical Analysis of Open Source Software
Developers’ Motivations and Continuance Intentions," Information & Management 44 (3), pp.
253-262.

Ye, Y. and G. Fischer (2005) "Reuse-Conducive Development Environments," Automated Software
Engineering 12 (2), pp. 199-235.

Sojer & Henkel/Code Reuse in OSS Development

894 Journal of the Association for Information Systems Vol. 11 Special Issue pp.868-901 December 2010

Appendix

Table A1. Factor Analysis and Reliability of Developer Motivation Constructs
 Rotated component matrix
Construct/item 1 2 3 4 5 6 Cronbach’s α
1. Challenge seeking 0.807
Chal1 0.052 0.794 0.137 0.203 0.007 0.043
Chal2 -0.031 0.891 0.119 0.135 0.034 0.019
Chal3 0.020 0.794 0.075 0.172 -0.026 0.026
2. Coding fun and enjoyment 0.746
Fun1 0.021 0.176 0.122 0.763 -0.024 0.111
Fun2 -0.008 0.284 0.217 0.718 0.100 0.005
Fun3 0.038 0.165 0.077 0.839 0.010 0.002
3. Community commitment 0.640
Com1 -0.068 0.043 0.109 0.055 0.154 0.743
Com2 0.138 0.112 0.010 0.027 -0.099 0.691
Com3 -0.051 -0.017 0.089 0.033 0.186 0.832
4. Skill improvement 0.758
Learn1 0.101 0.148 0.832 0.162 0.003 0.044
Learn2 0.192 0.120 0.831 0.159 0.027 0.058
Learn3 0.034 0.093 0.721 -0.005 0.190 0.125
5. OSS reputation building 0.901
OSSRep1 0.253 -0.004 0.053 0.035 0.892 0.098
OSSRep2 0.240 0.021 0.055 0.010 0.900 0.091
6. Commercial signaling 0.866
ComSig1 0.847 0.004 0.178 0.065 0.095 0.019
ComSig2 0.857 -0.027 0.087 -0.007 0.250 -0.016
ComSig3 0.800 0.056 0.045 -0.009 0.359 -0.031
Notes: The factor analysis uses principal component analysis and Varimax rotation; high factor
loadings under each component in the rotated matrix are indicated by bold text and gray shading.
N=624.

Table A2. Discriminant Analysis of Developer Motivation Constructs
 1 2 3 4 5 6
1. Challenge seeking 0.757
2. Coding fun and

enjoyment 0.444*** 0.705

3. Community
commitment 0.112*** 0.132*** 0.657

4. Skill improvement 0.285*** 0.323*** 0.207*** 0.751
5. OSS reputation

building 0.033 0.064 0.194*** 0.189*** 0.906

6. Commercial
signaling 0.047 0.063 0.026 0.254*** 0.495*** 0.832

Notes: The diagonal bolded entries are square roots of the average variance extracted (AVE) of the
respective construct; the off-diagonal entries are standardized correlations between constructs; *
correlation significant at 10%; ** correlation significant at 5%; *** correlation significant at 1% level.
N=624.

895 Journal of the Association for Information Systems Vol. 11 Special Issue pp.868-901 December 2010

Sojer & Henkel/Code Reuse in OSS Development

Table A3. Exploratory Factor Analysis of Reuse Benefits
 Rotated component matrix
Item (Rank in Figure 2) 1 2 3 4
Difficult Problem (Rank 3) 0.081 0.171 0.090 0.948
Faster (Rank 1) 0.181 0.793 -0.001 0.326
Most Important (Rank 2) 0.176 0.834 0.236 0.062
Most Fun (Rank 6) -0.021 0.414 0.743 0.021
Outs Maintenance (Rank 7) 0.332 -0.029 0.779 0.162
Reliable SW (Rank 4) 0.840 0.278 0.130 -0.031
Secure SW (Rank 8) 0.872 0.124 0.113 0.090
Standard SW (Rank 5) 0.739 0.002 0.097 0.237
Notes: The factor analysis uses principal component analysis and Varimax rotation; high factor
loadings under each component in the rotated matrix are indicated by bold text and gray shading.
N=624.

Table A4. Exploratory Factor Analysis of Reuse Issues and Drawbacks
 Rotated component matrix
Item (Rank in Figure 3) 1 2 3
Finding (Rank 9) 0.854 0.089 0.036
Understanding (Rank 7) 0.876 0.125 0.073
Adapting (Rank 6) 0.847 0.165 0.087
Quality Risks (Rank 5) 0.156 0.934 0.100
Security Risks (Rank 4) 0.088 0.935 0.084
Performance Loss (Rank 8) 0.231 0.451* 0.284
Installation (Rank 2) 0.152 0.089 0.764
Dependence (Rank 1) -0.051 0.118 0.785
Additional Work (Rank 3) 0.162 0.162 0.707
Notes: The factor analysis uses principal component analysis and Varimax rotation; high factor
loadings under each component in the rotated matrix are indicated by bold text and gray shading.
*The loading of this item on its construct is rather low, however, it is retained due to the good
overall Cronbach’s α of the construct (0.76).
N=624.

Sojer & Henkel/Code Reuse in OSS Development

896 Journal of the Association for Information Systems Vol. 11 Special Issue pp.868-901 December 2010

Table A5. Descriptive Statistics of Explanatory Variables Used in Table 6

Variable Dummy variable equal to “1” if… Frequency
of “0”

Frequency
of “1”

ProjPolSupport Developer’s current main project has a policy
encouraging its developers to reuse 438 (70%) 186 (30%)

ProjPolDiscourage Developer’s current main project has a policy
discouraging its developers from reuse 606 (97%) 18 (3%)

ProjStandalone Developer’s current main project is a standalone
executable application project and not a
component project

162 (26%) 462 (74%)

DevProf Developer is working as professional developer
or has worked as professional developer for a
firm

191 (31%) 433 (69%)

DevEduReuse Developer has received training on reuse during
her education 412 (66%) 212 (34%)

DevProfEduReuse Developer has received training on reuse when
working as software developer for a firm 544 (87%) 80 (13%)

Residence-
N.America Developer resides in North America 455 (73%) 169 (27%)

Residence-
S.America Developer resides in South America 594 (95%) 30 (5%)

Residence-
Asia&RoW

Developer resides Asia, Africa, Australia or
Oceania 536 (86%) 88 (14%)

Variable Explanation Min. Max. Med. Mean S.D.

Benefit-
Effectiveness

Factor score from exploratory factor
analysis… on developer’s perception
of effectiveness effects of code reuse

-4.762 2.047 0.178 0 1

Benefit-
Efficiency

…on developer’s perception of
efficiency effects of code reuse -3.568 2.313 0.093 0 1

BenefitQuality …on developer’s perception of quality
effects of code reuse -3.972 2.909 -0.027 0 1

Benefit-
TaskSelection

…on developer’s perception of task
selection effects of code reuse -3.884 3.026 0.033 0 1

Issue-
ControlLoss

…on developer’s perception of control
loss effects of code reuse -3.781 2.376 0.065 0 1

DevOSS-
Netsize (log)

Size of developer’s personal OSS
network (as logarithm) 0 6.217 2.197 2.001 1.033

DevOthe-
rProjects

Number of OSS projects besides
current main project, that developer
has ever been involved in

0 48 2 3.617 5.388

ProjPhase Development phase of developer’s
current main project (1=Pre-Alpha,
2=Alpha, 3=Beta, 4=Stable/
Production, 5=Mature)

1 5 3 3.221 1.184

MotChallenge Index variable constructed from
challenge scale (1=Strongly
disagree,…, 7=Strongly agree)

1 7 5.333 5.128 1.060

MotFun Index variable constructed from fun
scale (1=Strongly disagree,…,
7=Strongly agree)

1.667 7 5.000 5.152 1.092

MotLearning Index variable constructed from
learning scale (1=Strongly
disagree,…, 7=Strongly agree)

1 7 5.333 5.317 1.100

897 Journal of the Association for Information Systems Vol. 11 Special Issue pp.868-901 December 2010

Sojer & Henkel/Code Reuse in OSS Development

Mot-
Community

Index variable constructed from
community commitment scale
(1=Strongly disagree,…, 7=Strongly
agree)

1 7 5.667 5.614 1.003

MotOSS-
Reputation

Index variable constructed from OSS
reputation scale (1=Strongly
disagree,…, 7=Strongly agree)

1 7 4.000 3.609 1.621

MotSignaling Index variable constructed from
signaling scale (1=Strongly
disagree,…, 7=Strongly agree)

1 7 4.667 4.312 1.527

DevNorm Index variable constructed from
subjective norms scale (1=Strongly
disagree,…, 7=Strongly agree)

1 7 4.000 3.927 1.555

ConditionLack Developer’s agreement (1=Strongly
disagree,…, 7=Strongly agree) to…
lack of reusable code as impediment
to reuse

1 7 4 3.784 1.823

Condition-
License

… issues with license incompatibilities
as impediment to reuse 1 7 2 3.006 1.852

Condition-
Language

… issues with programming language
incompatibilities as impediment to
reuse

1 7 2 2.154 1.401

Condition-
Architecture

... issues with project architecture as
impediment to reuse 1 7 2 2.630 1.597

DevSkill Self-assessment of developer’s
software development skills compared
to the average OSS developer
(1=Much worse,…, 5=Much better)

1 5 3 3.269 0.989

ProjSize Size of developer’s current main
project in number of developers 1 999* 2 6.091 44.420

Proj-
Complexity

Complexity of developer’s current
main project compared to average
project on SourceForge.net (1=Much
less complex,…, 5=More more
complex)

1 5 3 2.947 1.029

ProjStack Position of developer’s current main
project in software stack (1=Very
low,…, 5=Very high)

1 5 4 3.333 0.921

DevOSS-
Experience

Number of years developer has been
active working on OSS projects 1 40** 5 5.668 4.709

DevProjTime Average weekly hours developer
works on her current main project 0.5 58 5 8.775 10.723

DevProjShare Share of work that has been done by
developer in her current main project
as opposed to other project team
members

5 100 90 67.436 36.998

*The main project of this developer is Linux where a very high number of project team members
seems reasonable.
**This developer claims to have been involved in OSS even before it got started. We assume that
she implies that she has already been working on a project that later became OSS at that point in
time.
N=624.

Sojer & Henkel/Code Reuse in OSS Development

898 Journal of the Association for Information Systems Vol. 11 Special Issue pp.868-901 December 2010

899 Journal of the Association for Information Systems Vol. 11 Special Issue pp.868-901 December 2010

Sojer & Henkel/Code Reuse in OSS Development

Sojer & Henkel/Code Reuse in OSS Development

900 Journal of the Association for Information Systems Vol. 11 Special Issue pp.868-901 December 2010

Table A7. Multivariate Analysis of Developers’ Reuse Behavior – Robustness Check
 Past importance of reuse (6) Future

importance of reuse
(Likert scale)

 (4) Likert scale (5) Percentage scale

Attitude toward reuse
 BenefitEffectiveness (H1a) 0.220*** (0.076) 2.464** (1.010) 0.146** (0.062)
 BenefitEfficiency (H1b) 0.634*** (0.080) 6.047*** (1.059) 0.499*** (0.066)
 BenefitQuality (H1c) 0.322*** (0.079) 2.262** (1.048) 0.273*** (0.065)
 BenefitTaskSelection (H1d) 0.157** (0.077) 3.368*** (1.026) 0.144** (0.064)
 IssueControlLoss (H1e)
Access to local search
 DevOSSNetsize (log) (H2a) 0.172** (0.080) 2.307** (1.047) 0.246*** (0.066)
 DevOtherProjects (H2b) 0.030* (0.015) 0.465** (0.196) 0.034*** (0.013)
Project maturity
 ProjPhase (H3) -0.124* (0.066) -2.984*** (0.871) -0.204*** (0.054)
Compatibility with project goals
 MotChallenge (H4a) -2.466** (0.962)
 MotFun (H4b)
 MotLearning (H4c)
 MotCommunity (H4d) 0.180** (0.081) 1.912* (1.067) 0.163** (0.066)
 MotOSSReputation (H4e)
 MotSignaling (H4f)
Subjective norms
 DevNorm 0.120* (0.065) 2.133** (0.870) 0.205*** (0.054)
Perceived behavioral control
 ProjPolSupport 0.405** (0.180) 0.335** (0.143)
 ProjPolDiscourage -1.210*** (0.447) -1.299*** (0.375)
 ConditionLack -0.236*** (0.042) -2.355*** (0.564) -0.160*** (0.035)
 ConditionLicense
 ConditionLanguage
 ConditionArchitecture
 DevSkill
Further control variables
 ProjSize
 ProjComplexity
 ProjStack 0.232*** (0.083) 0.172** (0.069)
 ProjStandalone
 DevOSSExperience
 DevProjTime 0.016** (0.007)
 DevProjShare
 DevProf
 DevEduReuse
 DevProfEduReuse 0.573** (0.232) 5.581* (3.012) 0.414** (0.189)
 Residence-N. America
 Residence-S. America
 Residence-Asia & RoW
Constant 3.145*** (0.622) 34.228*** (8.393) 2.858*** (0.509)
Observations 624 624 624
Pseudo R² 0.101 0.026 0.112
Likelihood ratio Χ²(15)=252.81

p<0.0001
Χ²(12)=149.36

p<0.0001
Χ²(14)=272.67

p<0.0001
σ 1.814 24.600 1.514
Notes: All models are Tobit models; standard errors in parentheses; * significant at 10%;
** significant at 5%; *** significant at 1%. Eliminated variables are also jointly insignificant.

901 Journal of the Association for Information Systems Vol. 11 Special Issue pp.868-901 December 2010

Sojer & Henkel/Code Reuse in OSS Development

About the Authors

Manuel SOJER received a Ph.D. degree in business administration from Technische Universität
München in 2010. Additionally, he holds a degree in information systems from the University of
Regensburg. In his dissertation he investigated various facets of knowledge reuse through large-scale
quantitative analyses of open source code reuse. His research has appeared in the proceedings of
multiple international information systems conferences. Currently he is working with the consulting
firm Bain & Company.

Joachim HENKEL is a professor of technology and innovation management at Technische
Universität München. His research focuses on open source software, user innovation, patent
infringements, and profiting from innovation. His work has been published in Entrepreneurship Theory
and Practice, Harvard Business Review, Industrial and Corporate Change, Journal of Business
Venturing, Rand Journal of Economics, Research Policy, and Strategic Management Journal. He
serves as an advisory editor on the editorial board of Research Policy. He was a visiting scholar at
University College London, at Massachusetts Institute of Technology, and at Harvard Business School.
Joachim Henkel received a degree in physics from the University of Bonn, a Ph.D. in economics from
the University of Mannheim, and was an assistant professor at Ludwig-Maximilians-University Munich.
After his Ph.D., he worked for two years with the consulting firm Bain & Company.

	Code Reuse in Open Source Software Development: Quantitative Evidence, Drivers, and Impediments
	Recommended Citation

