Abstract

Advancements in technology and their impacts on the way people live and work has led to the emergence of new types of workers. This study examines a new type of mobile worker, called Offroaders. The aim of the study is to provide a deeper understanding on the nature of this new type of mobile workers. The paper reports on the results of a survey study, which draws on the findings of a qualitative study. A questionnaire survey was conducted for data collection. Variance-based SEM analysis was used for the statistical analysis. The results of the study validate that Autonomy, Feedback from the Job, Task Interdependence, and Cognitive Absorption have direct impact while Motivation at Work and Job Satisfaction have indirect impact on Offroaders. Furthermore, the distinctive attributes and behaviours of the distant workers are also identified. The existence of offroaders in the workforce - highly motivated, autonomous and talented workers - has important implications for management and organizations. Future areas of study are suggested.

Keywords
Mobility, Temporality, Offroaders, Mobile Workers.

Introduction and Literature Review

Technology enables workers to be physically distant from an organization’s normal places of work. These workers include ordinary teleworkers, nomadic workers, and people whose job simply requires them to be ‘on the road’. Among the commonly used labels are teleworker, telecommuter, virtual worker, road warrior, and nomadic worker. Such workers can be categorised on several dimensions including the extent to which they have autonomy, the extent of their embeddedness in the organization, and, most commonly, the mobility options open to them. Lilischkis (2003) developed a taxonomy of mobility types that included:

(1)“On-site movers”: work requiring movement around a certain site.
(2)“Yo-yos”: occasionally working away from a fixed location.
(3)“Pendulums”: alternate working at two different fixed locations.
(4)“Nomads”: working at changing fixed locations.
(5)“Carriers”: working on the move transporting goods or people.

However, none of these categories came close to describing the unique level of mobility found in a recent study of mobile workers, termed ‘offroaders’ (Harmer and Pauleen 2012). The offroader’s mobility is characterised by working from wherever they happen to be as well as whenever they need or want to work (ibid). In their research, based on interviews with 37 participants, the researchers found that the offroaders possessed a unique combination of skills and characteristics that were categorised as attitude, aptitude, and autonomy. These are described and summarised as follows:

• Attitude – for offroaders, motivation and achievement is intrinsic and an end in itself.
• Aptitude – the ability to use technology and their own domain-specific knowledge as well as acquire additional knowledge and capability as required.
Autonomy – the freedom to set their own priorities and to work when and where they want.

The original study used adaptive structuration theory to focus on both the emergent relationship between technology and the offroaders' own dispositions toward it and their work, but also how offroaders may bring significant change to their client organizations and managers; as employees as unconventional as offroaders may require new thinking in organizational forms and management processes. For these reasons, it is important that we try to better understand the nature of the offroader's existence. Hence this current study, which empirically builds on the findings of the aforementioned qualitative study.

What we found to be of particular interest in the Harmer-Pauleen study was the central role that temporality, understood as the subjective experience of time in a particular human context or circumstance, seemed to play in the life of the offroaders, as indicated by these findings:

- Participants displayed a single-minded focus on the task at hand, to the exclusion of all else.
- Participants demonstrated a high level of temporal dissociation, whereby the passage of chronological time ceased to be important to them.
- Participants have a more than usual level of comfort with technology and, in keeping with the notions and often seen to be immersed in a technological environment to a depth not commonly attainable or even desired by other people (Harmer and Pauleen 2012).

This experience of temporality forms a kind of goal or reward for the offroaders. The way technology and attitude, aptitude and autonomy work together help to create the opportunity for offroaders to experience temporality. In many cases they are oblivious of the passage of time. The reward mechanism can be captured in the phrase “time flies when you’re having fun” (Harmer and Pauleen 2012, p. 443). Agarwal and Karahanna’s (2000) notion of cognitive absorption captures the characteristics of temporality – temporal dissociation, focused immersion, heightened enjoyment, control, and curiosity.

These would seem to be important and sought after qualities in employees, particularly in companies that thrive on innovation and creativity. In this paper, we report on the results of a survey, which sought firmer evidence of the importance of cognitive absorption in the defining of offroaders as well as the relationship of cognitive absorption with the other definers of offroaders as well as the role of technology.

Self-Determination Theory

Self-determination theory (Ryan and Deci 2000) (SDT) has informed the development of the model used in this study. Self-determination Theory (SDT) has been widely used in organizational behavior, psychology (Gagne et al. 2010) and recently IS fields (Roca and Gagne 2007). One of the central arguments and the assumption of the theory is that motivation and well-being are affected by the social context (Deci and Ryan 1991; Stangate et al. 2006). SDT helps to explain human motivation and personality while considering the conditions affecting these aspects (Ryan and Deci 2000). Autonomy and motivation are among the central themes in the theory. The theory has been used with various environmental factors (Ryan and Deci 2000).

Motivation, Job Satisfaction, Cognitive Absorption and the Off Roader

Motivation can be defined as “the positive or negative needs, goals, desires and forces that impel an individual toward or away from certain actions, activities, objects or conditions. The inner needs and wants of an individual—what affects behavior” (Koontz 1998). Furthermore, the relationship (Herzberg 1968) and the similarity (Tan and Waheed 2011) between motivation and job satisfaction have been noted by several studies. Offroaders are motivated by the opportunity to reinforce their own positive sense of self, the opportunity to solve complex problems of a non-routine nature and possibility of doing something new at frequent intervals (Harmer and Pauleen 2012). Motivation has both direct and indirect effects on cognitive absorption. This aligns with studies of Agarwal and Karahanna (2000) who argue that cognitive absorption is highly related to intrinsic motivation and Gagne and Deci (2005) explaining high intrinsic motivation leading to higher job satisfaction.

For offroaders, achievement is measured more in terms of mastery of their craft and the completion of tasks and goals than money. Money is simply a measure for the esteem they receive from others. Work is
fun and is intrinsically motivating (Gagne and Deci 2005), which leads to an experience of pleasure and satisfaction. Thus, work well done is intrinsically rewarding, a major factor in what motivates (Arnold 1985; Katz 2005) and satisfies them.

Cognitive absorption represents an intrinsic motivator, which is associated with the situation (Vallerand 1997). Consistent with their previously identified tendency to deep task absorption arising from enjoyment of the task at hand (Kinman and Kinman 2001), offroaders demonstrate a high level of temporal disassociation, whereby the passage of chronological time ceased to be important to them. They operate ‘in their own time’, or as Orlikowski and Yates (2002) and Czarniawska (2004) would explain, in kairotic time.

It seems that moments of temporal disassociation or cognitive absorption both reflect on the satisfaction they get from their work and is what motivates them to continue their work. Cognitive absorption may be a defining characteristic of the offroader. As Harmer and Pauleen (2012) describe it, “they [offroaders] take intrinsic pleasure in the performance of the tasks they undertake and immerse themselves in their task to the exclusion of all else” (p. 439). Therefore, we hypothesize as follows:

Hypothesis 1: Motivation at Work is positively associated with Cognitive Absorption.

Hypothesis 2: Job satisfaction mediates the relationship between Motivation at Work and Cognitive Absorption.

Hypothesis 3: Cognitive Absorption is positively associated with being an Offroader.

Autonomy, Technology and the Offroader

Autonomy refers to the extent to which one can make significant decision without having to get consent from others (Brock 2003). The freedom to set their own priorities, to work when and where they want is a defining characteristic of offroaders. Foremost among the aspects of autonomy was the freedom to choose the time and place where they would work on a specific task, and importantly “free of direct managerial oversight” (Harmer and Pauleen 2012). Prior research has identified the importance some teleworkers give to autonomous working conditions as means by which they can take responsibility for the active pursuit of their own career aspirations (Taskin and Devos 2005). Offroaders are precisely that kind of mobile worker who revels in working autonomously and who accepts all the associated risks and responsibilities of his or her individual success in career and business, who we have identified as an emerging and special class of people.

Offroaders are both committed to and dependent on technology. They are often immersed in technology – in a way similar to cognitive absorption. Technology is an enabler - used to achieve task results - not an end in itself (Harmer and Pauleen 2012). Technology provides ‘connectivity’ with people and information (Harmer and Pauleen 2012). Technology seems to be instrumental in allowing offroaders to achieve the kind autonomy to work where and when they wish. This leads to our fourth and fifth hypotheses:

Hypothesis 4: Autonomy mediates the relationship between Reliance of ICT and being an offroader.

Hypothesis 5: Autonomy is positively associated with being an offroader.

Task Interdependence, Task Variety and Feedback from Others

The ability and the desire to work independently was found to be a significant characteristic of the offroader (Harmer and Pauleen 2012). Task interdependence reflects the need to work with others to get a task done (Van der Vegt and Van de Vliert 2000). Therefore we would expect task interdependence to negatively associate with being an offroader. In the same vein, the intrinsic motivation that the original study found to be a fundamental characteristic of the offroader would seem to mitigate the need for feedback from managers and colleagues. The feedback refers in this study to information on individual’s performance based on the quality and quantity of outcome of their job (Morgeson and Humphrey 2006). As expressed above, money is simply a measure of the feedback they receive for a job well-done, not the reason for doing the job well. Task Variety, is defined as “the degree to which a job requires employees to perform a wide range of tasks on the job” (Morgeson and Humphrey 2006, p. 1323) and was found in the original study to be important to the offroader. This included the opportunity to solve complex problems.
of a non-routine nature and the possibility of doing something new at frequent intervals. Therefore, we propose the following hypotheses:

Hypothesis 6: Task Interdependence is negatively associated with being offroader.

Hypothesis 7: Feedback from Job is negatively associated with being offroader.

Hypothesis 8: Task Variety is positively associated with being offroader.

Figure 1. Conceptual model of the study

Research Methodology

The data used in this study were collected through a survey questionnaire posted on LinkedIn and sent to colleagues and contacts, who we then asked to distribute through their networks. Using social media such as LinkedIn is not a traditional way of data collection. However, with the use and availability of new technology many researchers have been adopting this method as a valid source for data collection (Barzilay and Urquhart 2014; Benevenuto et al. 2012; Dholakia et al. 2004; Tachibana 2014). Considering the importance of technology as well as access to it by offroaders, it is safe to assume that offroaders will be actively engaged with different types of social media. Therefore, LinkedIn was considered an ideal way for reaching these people and invitation letters were distributed via several professional groups. The survey instrument was developed based on previous tested and validated measures: Offroader (Lilischkis and Revolution 2003), Cognitive Absorption (Agarwal and Karahanna 2000), Autonomy (Breaugh 1985), Task Interdependence (Van der Vegt and Van de Vliert 2000), Feedback from Job and Task Variety (Morgeson and Humphrey 2006), Motivation at Work (Gagne et al. 2010), and Job Satisfaction (Cammann et al. 1983). Finally the offroader construct included one question describing the main characteristics of offroaders as “I tend to work from wherever I happen to be, when the need or urge to work arises” (Harmer and Pauleen 2012).

We received 160 usable responses. According to the demographics analysis (see Table 1), more of the study participants were male (58.8%), and a majority of them are above age 50. Around 72% of the participants have a university degree. More than 40% of the participants have 30 years or more working experience and majority of them are from North America.

<table>
<thead>
<tr>
<th>Gender</th>
<th>N</th>
<th>%</th>
<th>Working in the current area</th>
<th>N</th>
<th>%</th>
<th>Work experience in general</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>66</td>
<td>41.3</td>
<td><1 year</td>
<td>10</td>
<td>6.3</td>
<td>3</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>94</td>
<td>58.8</td>
<td>1-5 years</td>
<td>30</td>
<td>18.8</td>
<td>17</td>
<td>10.6</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td>5-10 years</td>
<td>29</td>
<td>18.1</td>
<td>14</td>
<td>8.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20-29</td>
<td>18</td>
<td>11.3</td>
<td>10-15 years</td>
<td>28</td>
<td>17.5</td>
<td>11</td>
<td>6.9</td>
</tr>
<tr>
<td></td>
<td>30-39</td>
<td>12</td>
<td>7.5</td>
<td>15-20 years</td>
<td>16</td>
<td>10</td>
<td>8</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>40-49</td>
<td>29</td>
<td>18.1</td>
<td>20-25 years</td>
<td>15</td>
<td>9.4</td>
<td>21</td>
<td>13.1</td>
</tr>
<tr>
<td></td>
<td>50-59</td>
<td>46</td>
<td>28.7</td>
<td>25-30 years</td>
<td>11</td>
<td>6.9</td>
<td>18</td>
<td>11.3</td>
</tr>
<tr>
<td></td>
<td>60-69</td>
<td>38</td>
<td>23.8</td>
<td>>30 years</td>
<td>21</td>
<td>13.1</td>
<td>68</td>
<td>42.5</td>
</tr>
<tr>
<td></td>
<td>70-79</td>
<td>16</td>
<td>10.0</td>
<td>Region</td>
<td></td>
<td></td>
<td>Based on Residence</td>
<td></td>
</tr>
<tr>
<td></td>
<td>>80</td>
<td>1</td>
<td>0.6</td>
<td>Based on Nationality</td>
<td></td>
<td></td>
<td>N</td>
<td>%</td>
</tr>
</tbody>
</table>
The proposed model in the study was tested with Partial Least Square (PLS); a covariance based structural equation modelling (SEM) technique. Several advantages of using SEM based techniques have been explained in the literature (Urbach and Ahlemann 2010). SEM based analyses, such as PLS is considered a second generation multivariate analysis (Fornell and Larcker 1981; Urbach and Ahlemann 2010). PLS possesses additional benefits such as requiring relatively small sample size (Cassel et al. 1999), and being free from normality assumption (Urbach and Ahlemann 2010). PLS also allows for evaluating both the measurement model and the theoretical model at the same time. The strength of this technique is that it can be used for both theory development and theory confirmation (Chin 1998; Urbach and Ahlemann 2010).

Common method bias (CMB) needs to be assessed especially when using a single instrument for collecting data. CMB occurs when unexpected covariance exist among variables (Malhotra et al. 2006; Urbach and Ahlemann 2010). Four common approaches for testing CMB include using Harman’s (1976) single factor test (Podsakoff et al. 2003), partial correlation method (Podsakoff and Organ 1986), Lindell and Whitney’s (2001) method with marker variable, and testing full collinearity VIFs (Kock and Lynn 2012). Among these four, full collinearity VIFs is more appropriate to PLS analysis and it gives more robust results (Kock and Lynn 2012). The threshold value for VIFs from conservative approach is 3.3 and any value smaller than this threshold provides outcome free from CMB (Kock and Lynn 2012). Our results (see Table 2) reveal that all full collinearity VIF values are below 3.3, except one of them, Cognitive Absorption, which is slightly over 3.3. Considering the marginal difference as 0.05 is very small, we conclude that CMB is not a threat in this study.

Data Analysis and Results

Reliability and validity analysis for the measurement model must be conducted before testing the structural model (Urbach and Ahlemann 2010). The validity tests used commonly are content validity, criterion-related validity, and construct validity while the reliability tests are composite reliability and Cronbach’s alpha. The reliability and validity of the constructs have to be confirmed prior to testing the structural model.

Three of the constructs, Cognitive Absorption (Agarwal and Karahanna 2000), Autonomy (Breaugh 1985), and Motivation at Work (Gagne et al. 2010) were used as second order constructs on intrinsic motivation. In the original study by Agarwal and Karahanna (2000) cognitive absorption was measured through five constructs: Temporal Dissociation, Focused Immersion, Heightened Enjoyment, Control and Curiosity. During the measurement tests only three of the constructs were successfully loaded on the expected measures, while the reliability of Heightened Enjoyment was measured lower than the threshold. Curiosity construct was cross-loading with Motivation at Work construct. Therefore they were removed from the analysis. Autonomy is composed of three constructs: Work Methods Autonomy, Work Scheduling Autonomy, and Work Criteria Autonomy (Breaugh 1985). All three constructs were used to form the second order construct in this study. Finally, Motivation at Work construct is the second order construct of four constructs as Intrinsic Motivation, Identified Motivation, Introjected Motivation, and Extrinsic Motivation (results of measurement model for the first order constructs are available upon request from the authors).

The results for the measurement model shows that all variables loaded successfully to expected factors. Each variable needs to load onto one factor only and the loading should be 0.5 or higher (Hair et al. 2009). Factor loadings for the variables vary between 0.483 and 0.95. Although loading for one item is lower than 0.5, considering its proximity (0.483) to 0.5, the item was not removed from the construct. Results of the factor analysis indicate acceptable convergent and discriminant validities. Cronbach’s alpha
and composite reliability are the common measures of reliability. These measures are considered as indicators of internal consistency for the questions within a construct. While values of 0.7 or higher for Cronbach’s alpha are considered as acceptable, values between 0.6 and 0.7 are considered as marginally acceptable (Gliner and Morgan 2000; Murphy and Davidshofer 1988). Composite reliability is considered to be a more conservative method and values of 0.7 or higher considered as acceptable. Our results show that all of the reliability measures vary between 0.834 for Reliance on ICT and 0.949 for Motivation at Work for composite reliability and 0.69 and 0.925 for Cronbach’s alpha, therefore indicating acceptable level while only reliance on ICT is marginally acceptable with 0.69 in terms of internal consistency (see Table 2).

| WM_Id | WM_In | AUTOw | AUTohc | AUTOwrc | CA_CO | AUTO_RelICT1 | AUTO_RelICT2 | AUTO_JobsS1 | AUTO_JobsS2 | AUTO_JobsS3 | Auto_TV1 | Auto_TV2 | Auto_TV3 | AUTO_Auto_FB1 | AUTO_Auto_FB2 | AUTO_Auto_FB3 | AUTO_Auto_TV1 | AUTO_Auto_TV2 | AUTO_Auto_TV3 | AUTO_JobsS1 | AUTO_JobsS2 | AUTO_JobsS3 |
|--------|--------|--------|--------|---------|--------|---------------|---------------|--------------|--------------|--------------|------------|-----------|---------|--------------|---------------|---------------|---------------|---------------|---------------|---------------|--------------|--------------|--------------|
| 0.077 | 0.077 | 0.077 | 0.077 | 0.077 | 0.077 | 0.077 | 0.077 | 0.077 | 0.077 | 0.077 | 0.077 | 0.077 | 0.077 | 0.077 | 0.077 | 0.077 | 0.077 | 0.077 | 0.077 | 0.077 | 0.077 | 0.077 |

Table 2 presents Variance Inflation Factor (VIF) for Reliance on ICT, Job Satisfaction, Task Interdependence, Feedback from Job, Auto_TOPIC: Task Variety, CA: Cognitive Absorption, AutoW: Autonomy; MotWork: Motivation at Work

Table 2. Factor loadings, reliability and validity measures
Notes: RelICT: Reliance on ICT; Jobs: Job Satisfaction; AUTO: Task Interdependence; AUTO_FB: Feedback from Job; AUTO_TV: Task Variety; CA: Cognitive Absorption; AUTOw: Autonomy; MotWork: Motivation at Work

Average variance explained (AVE) values provide information on discriminant validity. Square root of AVE values higher than 0.707 and higher than the correlations on the same construct with the other constructs (i.e., all the values in the same column as in Table 3) indicate good discriminant validity (Fornell and Larcker 1981). Our results show that the square root of AVE values (shown in diagonal and in
parenthesis) satisfies this requirement, therefore indicate acceptable discriminant validity. Table 3 also shows the correlations among the constructs used in this study.

<table>
<thead>
<tr>
<th></th>
<th>GrpORYN</th>
<th>RealICT</th>
<th>JobS</th>
<th>AUTO_TI</th>
<th>AUTO_F</th>
<th>AUTO_TV</th>
<th>CA</th>
<th>AUTOhoc</th>
<th>MotWork</th>
</tr>
</thead>
<tbody>
<tr>
<td>GrpORYN</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RealICT</td>
<td>0.225**</td>
<td>(0.801)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JobS</td>
<td>0.223**</td>
<td>0.339**</td>
<td>(0.832)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUTO_TI</td>
<td>-0.258**</td>
<td>-0.004</td>
<td>0.002</td>
<td>(0.776)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUTO_FB</td>
<td>0.017</td>
<td>0.277**</td>
<td>0.407**</td>
<td>0.04</td>
<td>(0.86)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUTO_TV</td>
<td>0.127</td>
<td>0.269**</td>
<td>0.244**</td>
<td>0.29**</td>
<td>0.318**</td>
<td>(0.904)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td>0.318**</td>
<td>0.322**</td>
<td>0.671**</td>
<td>-0.1</td>
<td>0.464**</td>
<td>0.35**</td>
<td>(0.845)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUTOhocw</td>
<td>0.332**</td>
<td>0.521**</td>
<td>0.574**</td>
<td>0.068</td>
<td>0.389**</td>
<td>0.397**</td>
<td>0.62**</td>
<td>(0.902)</td>
<td></td>
</tr>
<tr>
<td>MotWork</td>
<td>0.286**</td>
<td>0.379**</td>
<td>0.721**</td>
<td>-0.011</td>
<td>0.447**</td>
<td>0.359**</td>
<td>0.698**</td>
<td>0.673**</td>
<td>(0.95)</td>
</tr>
</tbody>
</table>

Table 3: Correlations and Square Roots of Average Variance Extracted (AVE) Values

* Correlation is significant at the 0.05 level (2-tailed).
** Correlation is significant at the 0.01 level (2-tailed).

Following the measurement model, the structural model was tested. Figure 2 shows the structural model and the path coefficients found while testing the hypotheses. The results reveal that the relationships between Motivation at Work and Job Satisfaction (β=0.73, p<0.01), Motivation at Work and Cognitive Absorption (β=0.46, p<0.01), Job Satisfaction and Cognitive Absorption (β=0.37, p<0.01), Cognitive Absorption and being Offroader (β=0.17, p<0.01) are positive and significant. Similarly we found that Task Interdependence (β=0.28, p<0.01) and Feedback from Job (β=0.20, p<0.01) are significantly and negatively associated with being Offroader. No significant relationship was found between Task Variety and being Offroader.

The results suggest a mediating effect of Autonomy on the relationship between Reliance of ICT and being Offroader. In order to test the mediation effect, we followed the Baron and Kenny (1986) approach. Two separate models were tested to measure the mediating effects: while the first model tested the direct relationship between Reliance on ICT and being an Offroader, the other model tested the relationship between Reliance on ICT and Autonomy as well. The results support the hypothesis and show that Autonomy mediates the relationship between Reliance on ICT and being Offroader. In addition, we employed another test proposed by Preacher and Hayes (2004) and Hayes and Preacher (2010) to confirm the mediating relationship. For this purpose, Sobel test (Sobel 1982) was performed. Using the Sobel test calculator (Sobel 1982) Sobel test statistic was found as 2.98 (p<0.01) confirming the previous analysis on mediation. Similarly, Sobel test results for the mediation relationship of Job Satisfaction was significant as 4.61 (p<0.01).

Figure 2. Path coefficients on the structural model

Note: Dashed lines show non-significant paths

Unlike covariance-based SEM analysis, there is no globally accepted model fit indices for variance-based SEM such as PLS methods (Urbach and Ahlemann 2010). In PLS average path coefficient (APC), average R-Squared (ARS), and average variance inflation factor (AVIF) are commonly used for assessing the model fit. These values are recommended to be significant at least 0.05 level (Moqbel et al. 2013). As seen in Table 4, all values are significant at 0.01 level, indicating a good fit for the model with the data.
Additionally Tenenhaus GoF (Tenenhaus et al. 2005) of 0.565 confirms the model fits with a higher than the threshold of 0.36 value for “large effect sizes of R²” (Wetzels et al. 2009).

<table>
<thead>
<tr>
<th>Fit Indices</th>
<th>APC</th>
<th>ARS</th>
<th>AVIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement</td>
<td>0.315**</td>
<td>0.415**</td>
<td>1.750</td>
</tr>
</tbody>
</table>

Table 4. Model fit indices

Notes: *: p<0.05; **: p<0.01; APC: Average Path Coefficient, ARS: Average R-squared; AVIF: Average block VIF

The hypotheses of the study as well as the status showing whether they were supported or not, have been presented in Table 5.

<table>
<thead>
<tr>
<th>Hypotheses</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypothesis 1: Motivation at Work is positively associated with Cognitive Absorption</td>
<td>Supported</td>
</tr>
<tr>
<td>Hypothesis 2: Job satisfaction mediates the relationship between Motivation at Work and Cognitive Absorption</td>
<td>Supported</td>
</tr>
<tr>
<td>Hypothesis 3: Cognitive Absorption is positively associated with being Offroader</td>
<td>Supported</td>
</tr>
<tr>
<td>Hypothesis 4: Autonomy mediates the relationship between Realization of ICT and being Offroader</td>
<td>Supported</td>
</tr>
<tr>
<td>Hypothesis 5: Autonomy is positively associated with being Offroader</td>
<td>Supported</td>
</tr>
<tr>
<td>Hypothesis 6: Task Interdependence is negatively associated with being Offroader</td>
<td>Supported</td>
</tr>
<tr>
<td>Hypothesis 7: Feedback from Job is negatively associated with being Offroader</td>
<td>Supported</td>
</tr>
<tr>
<td>Hypothesis 8: Task Variety is positively associated with being Offroader</td>
<td>Not Supported</td>
</tr>
</tbody>
</table>

Table 5. Summary of Study Hypotheses

Discussion and Implications

This study takes us a step closer to a better understanding of the characteristics of those who might be offroaders. The research design explored the relationship between offroader and constructs like cognitive absorption, autonomy, reliance on technology, task interdependence, impact of feedback from the job and task variety. The study shows us that cognitive absorption is a characteristic of an offroader and that motivation supports cognitive absorption directly and through job satisfaction. In the original study, intrinsic motivation was shown to be an important characteristic of offroaders and being in a state of temporal disassociation was frequently referred to by study participants. The results also show that autonomy is an important characteristic of an offroader, again mirroring the findings of the original study. The current study finds that technology supports autonomy, but that, technology, in and of itself, does not correlate with being an offroader. This is an important finding as it indicates that while technology makes possible teleworking and other forms of working away from the office, by itself it cannot make one an offroader; rather, it seems to support the autonomy characteristic inherent in, or at least sought after by, an offroader. We expected a relationship between reliance on ICT with being an offroader. However, our results reveal that reliance on ICT is not directly related to being offroader. However, when autonomy is in place, reliance on ICT plays a determining role in being an offroader. In other words, while ICT is essential in telework and other forms of mobile work, what distinguishes the off-roader is the characteristic of autonomy. Without which, the offroader is just another mobile worker.

Finally, the results show that task interdependence and feedback from others are negatively associated with being an offroader. The most surprising finding was that task variety is not positively correlated with being an offroader. The findings of the original study indicated that task variety is quite important to offroaders. Quite possibly this construct is not quite right and further work on the validity of the construct and/or testing the construct with different data is required.

The existence of offroaders has important managerial and organizational implications. While using offroaders may produce higher performance with less overhead than conventional employees (Harmer...
and Pauleen 2012), managing offroaders will require managers who can relinquish conventional roles of monitoring and rather manage employees who value autonomy and the conditions that lead to cognitive absorption. The strategic work planning role of managers responsible for offroaders will be different in nature from tactical management of the time and attitudes of individuals carried out in more traditional work places (Harmer and Pauleen 2012). Organization wanting to make use of offroaders may need to adopt the characteristics of agile organizations (ibid) emphasizing the production of ‘chunks’ of high quality work produced to strict timelines. Future research could investigate which kinds of organizations are most amenable to adopting offroaders into their workplaces as well as organizational and managerial perspectives on offroaders and the viability of adapting established practices to accommodate them.

In the original study, Harmer and Pauleen (2012) noted the existence and the characteristics of offroaders were based to a large extent on the existence, attributes and behaviors of people whom they judged to be offroaders. Somewhat poetically they noted that “just as a discrepancy in the observed orbit of a distant star can be indicative of the presence of even more distant objects” (p. 449) their assessment on the real nature of offroaders as a class of people is based on the sum of many pointers. In this study we have provided another pointer and we continue to watch for evidence.

One limitation of the study is the findings of the study might not necessarily identify a comprehensive list of offroaders’ characteristics. To address the limitation, more data must be collected from large corporations and cluster industries who currently outsource a considerable number of temp offroaders.

This study extends the literature on teleworkers, by explicitly identifying the distinctive characteristics of offroaders. To the best of our knowledge, the teleworkers typologies suggested by other studies barely represent the category of offroaders. Accordingly, we suggest further research to refine the concepts, constructs and contexts associated with offroaders, which may include everything from the social dimensions of offroader lifestyles to the sociotechnical effects of offroaders on managerial practices and organizational structure.

References

Remaining References Available Upon Request