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ABSTRACT (REQUIRED) 

End-to-End business processes in organizations are implemented across multiple applications, legacy systems, ERP systems 

and products. In such scenarios where applications are developed over a period of time and with varying technologies, 

monitoring end-to-end business processes is a challenge. Typical methods for providing process monitoring capabilities are 

intrusive methods like changing code and introducing probes; or introducing new software tools like EAI and BAM. We 

propose a non-intrusive process instance monitoring (PIM) method that uses the persistent data generated by the business 

transactions to monitor the process instances in Legacy Information Systems. We propose a slightly unconventional data 

mining method where the transaction data is parsed from the application data stores, loaded into custom schema and then 

associated to the process flow for monitoring the state of individual process instances. The approach further provides for 

alerting when business events like an SLA violation occur.  

Keywords (Required) 

Data Mining, Process Monitoring, Legacy Information Systems. 

INTRODUCTION 

In the globalized competitive market, organizations need greater visibility into the process execution to maintain control over 

their business operations. Managers require monitoring tools that help in identifying exception situations and facilitating 

timely decision making to ensure adherence of service level agreements (SLA) and compliance requirements. Operational 

control requires visibility into the process execution at a process instance level. Individual applications and departments 

implement various means of monitoring system and functional level parameters. Most large organizations have their core 

business processes implemented across many applications, legacy systems, ERP systems and products. The processing logic 

and rules are coded in algorithms, batch jobs, database constraints etc. The process flow in such scenarios is achieved by the 

integration and data hand offs between applications, systems and programs and hence is not explicit.  A single end to end 

business process is implemented across more than one application with many of them being process unaware systems 

(Leymann, Reisig, Thatte and van der Aalst 2006). In such situations providing process instance-level visibility for the end-

to-end business processes would involve expensive IT system changes to get the required process information.  

Sophisticated tools and methods are available for monitoring at the level of data and IT systems but providing business 

process level monitoring capabilities in legacy information systems has limited rudimentary approaches. Usually changes are 

made to the application code to identify exception events and send an alert. This is an expensive approach as the application 

code has to be modified, tested and redeployed. Another approach involves adding probes in the middleware or adding 

database triggers to monitor each process instance at run-time. Adding probes can hamper system performance, and is risky 

as it involves changes, even if minor, in a production environment as well as significant effort in testing the applications.  

Adding database triggers similarly deteriorates the performance of the existing process. Technologies like Business Process 

Management Systems (BPMS) with its out-of-the-box process monitoring feature and Business Activity Monitoring (BAM) 

tools can be implemented to provide the process monitoring capabilities on legacy systems. But such implementations 

involve investments in process and application level changes to ensure that the process execution data at the instance level is 

available to the BPMS/BAM layer in the required format. There are other people related challenges which make the above 

approaches unsuitable like lack of skilled programmers or knowledge in the technology of the existing legacy systems; Fear 

of introducing errors into the complex application which currently works fine; lack of consensus between the application 

business owner and the business unit which requires visibility for investments in process and system changes.  In such 

situations there is a need to explore other methods for providing process visibility without having to make any changes or 

intrude into the execution of the processes implemented in the existing systems. 

We propose Process Instance Monitoring (PIM), a non-intrusive method of providing process instance-level monitoring in 

systems by using the data generated and persistent in the information systems. When a business process executes in the IT 
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systems the process instance logs transaction information in various data sources like database tables, files, logs, message 

queues, etc. PIM provides visibility at the process instance-level execution by reading the state of the transaction data and 

inferring the status of each process instance and associating it to the process flow available in the process models. This 

requires each process instance and the related data to be uniquely identifiable and associated to a process definition model. 

The method is non intrusive as it does not intrude into the execution of the business process and does not add probes into the 

execution layer of the IT systems (like the middleware, network or database). The method does not require any changes to be 

made to the current systems executing the process. The approach further provides for alerting when business events like an 

SLA violation occurs which enables the process user to take alternate preventive/corrective action for the specific business 

process instance.  

In the next section the challenges involved in Process Instance Monitoring in Legacy Information Systems are described. The 

subsequent sections provide an overview and details of the PIM method. We provide a case study to illustrate how the PIM 

method was applied to meet the process monitoring requirements. We discuss and compare other related work and 

monitoring technologies with our approach. In the end we discuss the conclusion and future work in this area. 

CHALLENGES 

Flow of the Process to be monitored is not known: The objective is to monitor the process instances in process-unaware 

legacy information systems. As the process model is not explicit in legacy systems, the process flow to be monitored is not 

available. The first challenge is to discover the as-is process model. This challenge however can be addressed by using 

process elicitation methods (Verner 2004; Basili and Weiss 1984; Wolf and Rosenblum 1993) or process mining techniques 

(van der Aalst, Weijters and Maruster 2004) to discover the process and create the process models. Once the as-is process is 

known, the next challenge is to simplify the process model and identify the process flow which is to be monitored. This may 

involve creating a monitored process flow by removing activities (i.e., not displaying the activities in the model) which are 

required to be monitored from the user point of view.   

Missing process state information: Process Aware Information systems (PAISs) like BPMS, workflow systems, ERP, etc., 

have explicit process definitions and execute the process as sequences of activities and maintain the status of execution 

(Dumas, van der Aalst and Ter Hofstede 2005). The concept of a business activity is missing in traditional or legacy 

information systems as the process flow is implicit and implemented by invoking methods, procedures and programs 

(callable units). While the process flow can be documented, the challenge of not knowing the state of business activity 

instances and process instances still exists.  The process state information can be obtained from legacy systems by making 

code changes, using probes and instrumentation of code. But in practice this is not possible as stakeholders do not allow code 

changes in the production environment. Insufficient information and skills regarding the code and programming language as 

well as unavailability of source code (e.g., third party product) are some additional challenges faced by organizations.  

Manual activities: The business process may contain manual activities which usually have a higher probability of delay as 

they are dependent on availability of people and other resources. Monitoring manual activities is a challenge using the 

automated tools thus we would ignore this challenge while discussing PIM.  

Identifying the data sources: An end-to-end business process spans multiple applications and technologies. Identifying the 

relevant systems and the format of the data sources of these systems is a challenge. If any of the data sources from the 

systems is missed, the results of monitoring will be erroneous. 

Identify data traces for each activity: To monitor the state of a business activity, the exact data trace or data event which 

indicates the state change of the business activity needs to be identified. For example, in an order to remittance process the 

create order activity may be completed when a new row is inserted in order_details table of order entry system, while the 

activity order ready for shipping  is completed when an entry is made in flat file generated by a batch process in a mainframe 

based order provisioning system. A single business activity instance may leave multiple data traces as it will update various 

data sources during execution. The challenge is to identify the most appropriate data trace from the multiple data traces. In 

some cases the data trace created by business activities is overwritten by other subsequent business activities. 

Correlation of business activities: As legacy systems do not maintain a process identifier while storing process execution 

data, the business activity instances need to be correlated to the correct process instances. There may be several process 

instances executing simultaneously and hence correlation of business activity instances to process instances becomes a 

challenge.  

Unavailability of adaptor: PIM needs to connect to various data sources thus the adaptors should be available for all data 

sources. In case the adaptor is not available the challenge is to create a new adaptor so that it can work with other components 

of PIM seamlessly. 



Bhat et al  Mining Transaction Data for Process Instance Monitoring  

Proceedings of the Seventeenth Americas Conference on Information Systems, Detroit, Michigan August 4th-7th 2011 3 

Real time monitoring capability: The process instance monitoring is useful from operations management point of view and to 

provide the relevant alerts to the concerned people. If the approach for process monitoring is non-intrusive, the process 

monitoring cannot be real-time. It is a challenge to achieve the process monitoring as near-real time as possible. 

Process Instance Monitoring Approach is explained in detail in the next few sections. 

PROCESS INSTANCE MONITORING (PIM) OVERVIEW  

Non-intrusive process instance monitoring implies that the business process instances can be monitored across systems 

independent of the technology and platform, as it is not necessary to modify code or introduce probes into the middleware. 

For a given business process, the process instance execution is traced across systems using the persisted data by identifying 

events of relevance to monitor the process instance progress. The PIM approach relies on the premise that every business 

activity which is executed as part of a business process leaves its footprint in the form of data traces such as transaction data 

or audit logs in databases, web logs, application server logs or flat files. PIM makes use of these data traces to capture the 

state of process instances. The persistent data is read in a non-intrusive manner using adaptors.   

As the process instances are executed, PIM identifies pre-defined events like missing an SLA and raises alerts thereby 

leading to improved exception handling and SLA monitoring. For a specific event, the user can be alerted to take an alternate 

action or the system can be configured to trigger an alternate action. PIM consists of the following high level capabilities:  

(1) Identifying the creation of new process instances;  

(2) Tracking the status of each process instance against the process flow in near real time;  

(3) Raising alerts for each transaction as per pre-defined rules;  

(4) Identifying the process activity which caused the alert.  

To provide these capabilities PIM needs the following:  

Awareness of the flow of activities of the process(es) being monitored: The processes are captured in processes models by 

studying existing operations and system documentation. The as-is process model can be mined using the process mining 

techniques [16, 17, 18] or by using process elicitation methods [6] in case the process is not known. The as-is process model 

is then converted into a monitored process model by simplifying it. Activities which need to be monitored and need an alert 

in case of delays or which trigger an alternate action or process are usually part of the monitored process model.  

Ability to uniquely identify each process instance in the system: PIM assigns an identifier to each process instance and 

business activity instance. This is used to correlate the business activity to the process instance. The exact value of the 

process instance identifier can change as the process state changes based on the business activities completed. For example, if 

the value of order id is assigned as the process instance identifier, it can change to a combination of order id, invoice id, 

shipping id etc as the process instance executes. The process instance identifier or correlation identifier is progressively built 

using the activity identifiers based on the activities which match the existing process correlation identifier. If the activity has 

more than one identifier (i.e., a composite identifier), all the correlation identifiers are added to the process sequence 

identifier.  

Ability to infer the execution (completion) of process activities from the business transaction data: The updates or changes to 

the business transaction data due to process activities are parsed, converted into events and processed to identify the 

execution and completion of process activities and hence the associated process instance. For example, Insertion of a row in 

order table can be used to infer that the Create Order activity is complete. 

Ability to capture the current state of individual process instance: As the process instance progresses, the PIM captures and 

stores the state of the instance which includes data related to various process metrics like queue time, processing time and 

other process specific data. The data about the current status of process instances and business activities can be used for 

advanced process analysis as well. 

Raise alerts when defined transactions violate pre-defined rules: Each process instance initiated is verified against the pre-

defined rules and alerts are raised accordingly. The alerts can be leading alerts and can be triggered before the pre-defined 

rule is violated or can be lagging alerts and are triggered after the pre-defined rule is violated. 

Figure 1 shows the different components of a proposed system based on PIM. Process Repository stores the monitored 

process models that contain the activities and the flow of the processes. The pre-defined rules against which the process 

execution is tracked namely the KPIs and SLAs are stored in the KPI definition database. Event handler is the run-time 

component which consists of multiple adaptors with capability to read different data sources. These adaptors poll the data 
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sources and identify the new data traces created since last poll. The event handler then consolidates data traces from each data 

source and creates events. The events can be of type process start, process end, activity start and activity end. Each event is 

assigned a unique correlation id as pre-defined. Each event is correlated to the relevant process model and process instance 

using the correlation id by the event-process correlator. Process instances are created when a process start event is 

encountered and a process instance is progressed to the next step when an activity start or activity end event is processed. The 

current process instance details are updated into the transaction database. The event-process correlator maintains a queue of 

process instances and the subsequent activities to be performed for each incomplete process instance. The alerts engine maps 

the process monitoring requirements defined in the KPI definition database against the status of the various process instances 

stored in the transaction database and raises alerts. A dashboard component delivers the status of each business transaction 

and flags the alerts as monitored by the PIM. 

 

Figure 1. PIM Architecture 

DETAILED APPROACH 

Process Instance Monitoring system requires information on the business process, business rules against which the process is 

monitored, requirements for alerts, details of the data traces created by information systems to be provided to implement the 

monitoring capability. PIM has the following three-stage flow for implementing non-intrusive monitoring.  

Setup Activities 

The business processes to be monitored are modelled using standard process modelling tools. The process model is simplified 

to capture only those activities which need to be monitored.  

Once the process model to be monitored is identified, the different systems where the business activities execute are 

identified with the help of the IT group. Data sources of the multiple like database management systems, flat files, message 

queues, log files, etc, are studied to identify candidate data events. The event handler of PIM connects with data sources 

using available adaptors.  

The events to be identified are process start and process end for each process and activity start and activity end of each 

activity in all the processes. The event activity end helps to track the process instance while the other events capture 

improvised data which can be used for accurate analysis. Hence the activity end event is mandatory while the others are 

optional. Identifying the right data trace for each event is important as there can be multiple data traces available for a single 

event and for some events data trace is not available or is overwritten. The data trace for each event should have a unique 

identifier which can distinguish one trace to another. For example, in case of activity end event of create order the data field 

order id is the unique identifier. The data trace should also have the timestamp information of when the data trace was 

created. For e.g., the data field order creation date would be the timestamp for the create order data trace. 

The data trace which does not get overwritten at later point of time and is updated more frequently and is easy to read and 

decipher should be used. For example it is better to choose the data trace in an audit table over data trace in the transaction 

table if there is a possibility of the transaction table being over-written. Also it is better to choose a transaction table over flat 

files which are written by batch programs and are available for processing only at the completion of batch program. From a 

different context the data trace in an RDBMS is better than that in a log file as it is easier for the user to configure the 

monitored process for data trace RDBMS as compared to log file. 
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We assume that the data trace is created after the business activity is completed as we find that it is easy to identify the 

activity end event. In case activity end event is not available for an activity (if activity is manual or data is overwritten) in 

such case the activity cannot be monitored. The setup activities involve creating the process model to be monitored, 

identifying and configuring the data events to the activities and identifying the process correlation ids and their values. 

Tracking the process execution 

The algorithm for tracking the process execution by mapping the data events to the process instances is shown in Figure 2. As 

the processes execute across the systems the data from identified data sources is extracted and transformed at pre-defined 

polling interval. The data change events are collected from multiple sources and mapped to events such as process start, 

activity start, activity end and process end as per definition. The events created relate to different processes and processes 

instances. Each event is associated to exactly one process instance and the current state of process is updated accordingly. 

Each process start event triggers a new process instance. Once the process instance is created, the subsequent activities in the 

process are correlated to a process instance using the correlation id. The events created from the execution data contain 

relevant information to correlate the event to the right process instance. 

 

Figure 1. Algorithm to map process data events to process instance 

The core of tracking the progress of a process instance is to correlate an activity to the right process instance. For every 

process instance created, the subsequent activity/activities in the flow are inferred using the process model. The correlation 

identifier of the subsequent activities is known as well. At any given point of time all active process instances and subsequent 

activities for those process instances are known. When an event is processed, it is correlated with the correct process instance 

by matching the correlation identifier of the event and the subsequent activities of the active process instances. The process 

instance and activity instance is updated in the transaction database. The next subsequent activity for the process instance is 

inferred and the process instance waits for the matching event to be processed. In case the completed activity was the last 

activity of the process and there are no more subsequent activities, the process instance is considered completed and updated 

in transaction database accordingly. 

The subsequent activity in a process execution flow depends on the various paths that the process can take based on the data. 

These paths are available in the process models and the subsequent waiting activity for the process model can be inferred. 

The logic to infer the subsequent activity for workflow pattern Fork is illustrated below as an example.  

 

Figure 3. Process with Fork construct 

 

For a Parallel-Split (AND-split) or Inclusive Gateway, where more than one path is possible, there is more than one activity 

which is tagged as the subsequent for the process instance. When one of the subsequent activities is completed, the remaining 

subsequent activities are maintained till completed. For e.g. in Figure 3 once F is completed, H is still maintained as 

subsequent activity of M. 
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Similar inferring logic can be developed for all other workflow modelling constructs like sequence, exclusive-or, loop, join 

etc. 

Completed 

Activity  

Subsequent Waiting 

Activities 

M F, H 

F G, H 

H G, I 

G J, I 

I J 

Table 1: Subsequent Activities for a Fork construct 

Monitoring Process Instances 

As the process instances are tracked along the process model the data of the process instance progress is transformed and 

loaded into custom schema. This data about process instance progress can be verified against pre-defined KPIs and SLAs. 

The specific activity in a process flow which caused the KPI/SLA violation for a process instance can be flagged while 

monitoring. 

The process monitoring data extracted, transformed and loaded by PIM in transaction database can be used later for mining 

business process intelligence reports, performing analysis for process performance and auditing. This data can be provided to 

BAM tools for advanced analysis. Thus PIM can complement BAM tools in scenarios where legacy systems cannot be 

changed or instrumented to collect the data required for analysis. 

CASE STUDY 

We use the case study of a telecom major in Asia-Pacific region where the proposed approach was used for monitoring 

process instances. We highlight the challenges faced and how it was addressed using the PIM approach. 

Background: The order entry system of a large Telecom organization is a GUI based front end system and the processing of 

orders is handled by multiple systems on different technologies like web based, client server and legacy applications on 

Mainframes. The requirement was to monitor the hand-off of orders from the internet based order-entry front-end system to 

downstream systems and back. The objective was to ensure that no orders got dropped off or missed during the hand-offs 

which could cause delays in the order processing. 

Process details: The order details are entered by the Sales Representative into the internet based system, the order is then 

processed and completed which involves multiple steps in order provisioning system. The order provisioning system is a 

legacy system and has an in-built capability to monitor the status of an order. The details of each order created are transferred 

to the order provisioning system using a custom built data integration application. For each order entered in order entry 

system, a new request file with the order details is created and the file is placed in a specific folder of the front end system. 

The intermediate data integration application picks up the file and enters the order details in the order provisioning system.  

Once the order is created or if there is an error reported by the downstream system, the response details of each order is 

captured as a file and the file is placed in the „Response‟ folder in the front end system. The intermediate application polls the 

Response folder and for each new response it notifies the user about the status of the order. The order once created in the 

downstream system is picked up by various users and systems for further processing. But if a request file is not created due to 

an error in the data integration application or in the order entry system, the order is not translated into the legacy system. In 

such cases, the order is lost as the business user also does not get any notification of the error.  

Business Challenges: A dropped or missing order from the order entry system can be identified only when a customer 

complaint is received or when a customer query comes. The Sales Representative then had to follow up with the IT 

production support team to track the order as there is no mechanism to monitor the order status before it enters the legacy 

system. As the information on the lost orders was not readily available in the system, the production support team had to 

analyse the data for the previous few days  to identify the missing order and reinitiate the process of sending it to legacy 

system. This led to delays in order processing and customer dissatisfaction due to dropped orders and missed SLAs. 

Identifying the lost order and fixing it involved considerable effort and time for the production support team. 
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Technical Challenges: The order entry process is implemented by data hand-offs across the systems. Hence when an order is 

lost due to a problem at the system level, there is no log of the lost order. The production support team had to go through the 

orders and find out the details of the lost order manually. Production support work was outsourced to another organization so 

the telecom organization did not allow them to make changes in the existing code to enable proactive fault finding. 

Solution: PIM was implemented to track each order created at the front end. Though the process of order provisioning is 

quite large, we did not have to monitor all of it. The scope of this case was to monitor the hand-off between the order entry 

system and order provisioning system so we simplified the process to 2 steps. One step of sending the order details from 

order entry system to order provisioning system and another step of receiving the response back from order provisioning 

system. We decided to use the first step as process start event. Thus in this scenario we had only one step process which 

needed to be monitored as shown in Figure 4. 

Next step was to identify the data traces created by process start event, activity start and activity end event. We mapped the 

creation of the request file as process start event and receiving the response file as activity end event for activity Receive 

Response. We could not find the activity start event but it was not a critical event for tracking the process. Hence it was not 

possible to monitor the queue time of the activity as the activity start event was not available for calculations. In this case we 

assumed that process start timestamp is the timestamp of activity start event of Receive Response activity. 

 

Figure 2. Process Model 

The information required to correlate the two events was available in the file names. The file name contains the order id to 

uniquely identify an order. The format of the request file name was REQ_<order_id>.dat and format of response file name 

was RES_<order id>.dat. We set the correlation identifier of the activity Receive Response as substring of filename 

containing order id.  

Since the maximum order processing time was 45 minutes, the SLA for the process was set for 1 hour to avoid any incorrect 

leading alerts. An alert could be sent by PIM to the production support team when a response for an order was not received 

within an hour. The polling frequency for capturing the events was set to an hour. 

When a new request file is created, it indicates a process start event, and the creation of new response file indicates the 

activity end of Receive Response activity. The events are polled periodically (1 hour in this case) and then processed, thus 

creating the data for process monitoring. Any process instance waiting for a response file for more than an hour is considered 

a lost order and an alert is sent to the production support team with details of the order. The production support team is able 

to identify the orders immediately and manually reinitiate the order processing well ahead of the business user raising a 

ticket. This eliminates the delays in order processing and ensures timely processing of orders. 

The adaptor to identify file creation as a data event was developed in 5 days. The setup activities such as creating the process 

model, configuring the events and SLA were completed in 5 days. The process models and identification of problem areas 

and data sources or traces was done along with the IT group in a workshop of 3 hour duration. Thus the entire effort for 

creating a process monitoring solution took around 2 weeks of effort.  

The alternate options or solutions to achieve the above objective were either modifying the front end GUI system or 

implementating a system monitoring tool. In both the alternatives the estimated IT effort to implement the solution was 

greater than 4 weeks. The cost involved in modifying and testing the front end system or in procuring a monitoring tool was 

also considerably greater than cost of implementing the PIM approach. Here we have discussed a case where the process 

model has only one problem area. But we have found during our subsequent implementations that the effort and cost 

involved for implementing the PIM approach increases only marginally (about 20% ) even when there are 10 problem areas 

to monitor. This is because effort is involved only in customizing the adaptors for the new data traces. But for modifying the 
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existing systems, each problem area to be monitored would increase the IT effort by at least 80% as each of them have to be 

developed and tested.  

By implementing the PIM approach, the case study organization was able to identify and reinitiate dropped orders within an 

hour of the error, which reduced the customer queries on order delays due to the data hand-off errors to zero. It also reduced 

effort of the production support team as it re moved the need to analyse and locate the lost orders. There were other business 

benefits due to the reduction in the dropped orders like increased customer satisfaction and greater adherence to order 

processing SLAs, but we did not collect and analyse the impact on these parameters.   

We chose the above case study with just 2 monitoring steps to showcase the PIM approach. The case study highlights the fact 

that all the process steps do not have to be tracked to monitor an end-to-end business process. We can identify the problem 

areas and hand-off points and monitor only some steps of the process. The case study showcases how process instance-level 

monitoring can be achieved by mining the transaction data and correlating the data trace to the business activities. 

RELATED TECHNOLOGIES 

As information technology systems are the major enablers and components of business processes there is a need for 

providing detailed, real time and accurate information of the business process being executed within the IT systems. The 

visibility into the process execution is provided through reports, dashboards, alerts, etc. While process monitoring 

requirements are a part of the requirements when a system is being developed, the continuous changes to the systems due to 

process and technology changes create a disconnect between the monitoring requirements built into the system and those 

required by the business users. This problem is more prominent in legacy systems than in the newer generations‟ applications 

built using process aware information systems like application servers, workflow systems, Business Process Management 

Systems (BPMS).  While a certain amount of process level visibility is available through the process aware systems, process 

monitoring technologies with enhanced capabilities are being developed. These process monitoring approaches cannot be 

easily implemented on to process unaware legacy systems without intruding into the system making them costly and risky. 

Business activity monitoring (BAM) tools provide real-time process information by accessing data from multiple application 

systems and other internal and external sources (Luckham 2004). BAM can be implemented in systems that use some 

integration mechanism like Enterprise Application Integration (EAI), Service Oriented Architecture (SOA) or BPMS. In 

legacy systems BAM implementations need some probes in the code or data layer for getting real-time information.  

While BAM provides real-time process information, Business Intelligence (BI) uses historic process information and 

provides post-facto analysis to improve the business operations (Jourdan, Rainer and Marshall 2008). BI cannot be used for 

real time process visibility as it works off process data stored in the data warehouse. Business process intelligence (BPI) 

(Grigori, Casati, Catellanos, Dayal, Sayal and Shan 2008) provides both BAM and BI capabilities on top of the BPMS by 

applying data warehousing and data mining techniques to business process execution data. BAM, BI and BPI process simple 

events. Complex Event Processing (CEP) technology processes events from multiple sources across the IT layers and helps 

detect the complex situations (Luckham 2002). Another related event processing technology is the event stream processor 

which provides visibility into business operations from streaming events emitted from systems, including hardware systems 

Cohen, Ramesh and Chen 2005; Abadi, Ahmad, Balazinska et al 2005; McGregor and Schiefer 2004) . While CEP 

technologies claim to take care of event processing within a process and provide process execution information (Ammon, 

Springer and Wolff 2008; Kharbili 2008; Sen 2008)  investment into CEP can be an overkill for processing simple events 

which are required for operations control. 

Process Mining (van der Aalst et al 2004) uses event logs from transactional information systems like ERP, CRM or 

workflow based systems to provide process analysis. Process mining analyses historic data from single system logs to 

provide process information. While process mining is completely non-intrusive and hence cost-effective; it assumes that 

sequential events logs would be available from the information system, which is not always true. This approach may not be 

suitable for legacy systems where the process data is not stored in the format required by process mining algorithms and 

hence end to end process information may not be presented to the business user.  

Business Provenance technology (Curbera, Doganata, Martens, Mukhi and Slominski 2008) helps trace end-to-end business 

operations across heterogeneous systems by collecting, co-relating and analyzing operational data. This approach involves 

creating a provenance graph for the specific application need based on which the provenance data is generated for extracting 

the required information about the business operations. The provenance data is generated by accessing application events 

from either event reporting middleware or by processing the application data and identifying the events. This approach can be 

used to gather, correlate and monitor process information for the specific need which is identified to create the provenance 

graph. The business process flow for each instance cannot be traced using such provenance graphs.  
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Our PIM approach and Business Provenance technology trace the process execution by identifying events of relevance from 

application data. The main difference is related to the non-intrusiveness of the approach. Business provenance uses specific 

instrumentation to extract the relevant information. This implies some intrusion into the existing systems. Instrumentation 

implies additional software routines and data which are to be added during compilation of the program, either by addition of 

routines to the program code and data or by linking routines from a suitable library. The provision of instrumentation adds 

extra code to the program which is not needed for the program's operation, thus increasing its size, and is hence not suitable 

for monitoring conventional operation of a process. Our approach uses application data created by the processes and hence 

does not affect the process execution in any manner. Some other differences are - we use business process model against 

which process instances are tracked, hence various rules and requirements for tracking can be modelled into the solution by 

the business user at a later stage. PIM uses the BPMN models to represent the process and provide analytics information in 

the same manner as BAM tools. Business provenance makes use of Open Provenance Method (Moreau, Freire, Futrelle, 

McGrath, Myers, and Paulson 2007) to create provenance graphs. Process analysis is done by querying the graphs, using 

graph patterns, etc. Since provenance graph is specific to the collected data and relationship among them, a different 

requirement for visibility (for e.g. compliance assurance instead of KPI adherence) would require a new provenance graph to 

be created. 

CONCLUSIONS AND FURTHER WORK 

PIM is a cost effective solution for monitoring end-to-end business processes. Its non-intrusiveness and ability to monitor 

processes across different systems is a key advantage. The process monitoring is done from persistent process execution data 

available in various data sources and adequately meets the monitoring requirements where users can take alternate action 

based on the alerts. While all business transaction data which is of any relevance is usually logged for further processing, a 

limitation of the current approach is that if a business activity does not leave a trace in persisted data, it cannot be tracked; 

manual activities and the calculations done in system memory fall within this category. But in reality there is no requirement 

to track all activities as seen in the above case. Identifying the problem areas and the activities to be tracked has to be done 

along with the business users and the IT group. Non-intrusiveness would also mean that it is a “near real-time” monitoring. 

The process execution is always one cycle ahead of the monitoring system, the monitoring lag is equal to the frequency of 

polling or reading of the process execution data. The process tracking will have this lag and hence the alerts will not be in 

perfect synchronization with the process execution. This drawback can be overcome by calculating the optimal polling 

frequency and scheduling some leading alerts. To handle any impact on performance, the monitoring can also be done off a 

data dump created at predefined frequencies instead of accessing the run-time database. PIM tool can also work in 

conjunction with BPM systems. If a part of the process is deployed on BPM software and rest of the process is on other 

systems, the process owner can still gain visibility over the complete process on a single dashboard.  

The areas of subsequent research are on making the method more generic to monitor processes across different system 

architectures and on processes implemented as batch processes. Developing compliance related features and pointing out 

compliance violations is another planned area of research. 
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