
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 2000 Proceedings Americas Conference on Information Systems
(AMCIS)

2000

A Development Approach for Workflow-Based E-
Commerce using Reusable Distributed
Components
M. Brian Blake
George Mason University, mblake@gmu.edu

Follow this and additional works at: http://aisel.aisnet.org/amcis2000

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2000 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Blake, M. Brian, "A Development Approach for Workflow-Based E-Commerce using Reusable Distributed Components" (2000).
AMCIS 2000 Proceedings. 32.
http://aisel.aisnet.org/amcis2000/32

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2000%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000?utm_source=aisel.aisnet.org%2Famcis2000%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2000%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2000%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000?utm_source=aisel.aisnet.org%2Famcis2000%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000/32?utm_source=aisel.aisnet.org%2Famcis2000%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

A Development Approach for Workflow-Based E-Commerce using Reusable
Distributed Components

M. Brian Blake, Department of Information and Software Engineering
George Mason University, mblake@gmu.edu

Abstract
 With the emergence of component-based technologies,
there is a push toward software reuse. Reusable software
components, such as Java Beans, ActiveX components,
COM objects, registry services, etc., can be used to
support a wide variety of distributed services. The reuse
of such components has reduced the need for full lifecycle
development and deployment, both in research and
industry. Such “top-down” approaches are becoming
impractical, while there is the increasing trend toward
integrating reusable components from bottom up.
Furthermore, the use of technologies like introspection
and reflection has relinquished the design-time constraint
of having source code in order to integrate such
components. The implications of the aforementioned
technologies suggest that future development processes
will reside on the end-user’s workstation. Consequently,
end-users will produce their own systems as a product of
configuring multiple 3rd party components (i.e. software
“plug-and-play” (Bronsard, et al., 1997)). With this in
mind, the remaining problem is how to automate this
configuration to respect some user-determined policy of
interaction. One such policy is the implementation of
workflow. This paper describes a specification-driven
approach, WARP, to configuring components according
to workflow. This approach entails a process and an
agent-based architecture and implementation that supports
the “bottom-up” configuration and reconfiguration of
reusable component-based distributed services.

Introduction
 Workflow Automation through Agent-based
Reflective Processes (WARP) is a new approach to the
configuration of reusable components in the context of
workflow. This semi-automated approach provides
information to the user (workflow designer) about
reflective 3rd party components through the process of
introspection. A reflective language is one that has a base
language and a meta-language describing that base
language. Therefore in the process of introspection, a
designer can learn about a component without having the
actual source code. Reflection is the process of using
introspected information to invoke services on the
component. This gives the WARP architecture flexibility
in managing a workflow of components from only their
executables. After providing component information, the
WARP architecture elicits workflow interaction
information from the user in the form of object-oriented

models. The WARP approach defines a set of object-
oriented representations in the Unified Modeling
Language. Upon completion of these representations, the
management of the workflow is achieved through the
coordination of multiple software agents.
 Agents in industry and research have seen increased
exposure over the past several years. Agents have many
definitions and functions. WARP agents can be defined
as event-based software entities that have perception of
their environment. Specifically in this domain, agents act
as brokers or proxies (as is middle agents (Decker et al.,
1998)) for component-based services. The WARP
approach uses Configuration Layer agents that interpret
workflow specifications and capture them in a shared
repository. The Configuration Layer agents then deploy
the self-configurable Application Coordination Layer
agents to manage the workflow execution.
 The WARP approach is more evolutionary than
revolutionary. Software has evolved to the design and
development of modular components. The next logical
step is to set standards for software components as in
JavaBeans and ActiveX. The WARP approach is toward
the creation of a framework that will facilitate the
coordination of these components in the context of
workflow. This paper proceeds in the next section with
the workflow terminology used in this work. The on-line
stock ordering process is detailed in context of this
terminology. Next, there is an overview of the semi-
automated WARP process and architecture. The
following section describes the workflow representations
that will be captured in the database-centered workflow
ontology. Consequently, the operational environment is
discussed in detail. Finally, there is a summary in the
context of related work.

Workflow Terminology
 The workflow language here follows workflow
terminology used presently by researchers (Lei and Singh,
1997). In order to set the nomenclature for further
discussion, the following set of definitions are adhered to
throughout this paper.

• A task is the atomic work item that is a part of a
process.

• A task can be implemented with a service.
(In complex cases, it may take multiple services
to fulfill a one task)

568

• An actor or resource is a person or machine that
performs a task by fulfilling a service.

• A role abstracts a set of tasks into a logical
grouping of activities.

• A process is a customer-defined business process
represented as a list of tasks.

• A workflow model depicts a group of processes
with interdependence.

• A workflow (instance) is a process that is bound
to particular resources that fulfill the process.

Example Workflow
 A typical distributed workflow automates the on-line
stock process (as in E-trade and Waterhouse Securities).
The company is split into multiple divisions that handle
different aspects of the stock brokering process. Taking
a stepwise view of the stock purchase process, the first
task occurs when a customer requests to buy shares of
stock. Once the request is submitted, an portfolio
management department gathers information of the trade.
The trade division would purchase the stocks. Finally, a
payment division would then debit the customer’s
account.

 Figure 2.1 Typical Distributed WFMS: On-line Stock Purchase

The aforementioned process can be implemented with a
workflow that spans a network of distributed servers
(Figure 2.1). Each division plays a role containing
components that either automate the service or push
requests to human-based services. Therefore, a
centralized server and controller component can
coordinate the execution of the workflow. In this case,
the process definition is encapsulated in a central
workflow controller (WC).

Warp Overview
 This overview of WARP is discussed in two parts, the
architecture and the configuration process. In this section,
the WARP architecture is detailed briefly in context of the
configuration process by which the architecture operates.

WARP Architecture and Configuration Process
 This WARP architecture consists of software agents
that can be configured to control the workflow operation
of distributed services. The WARP architecture is divided
into two layers. These layers are the application
coordination layer and the automated configuration layer.
The application coordination layer is the level in which
the workflow instances are instantiated and the actual
workflow execution occurs. The application coordination
layer consists of two agents, the Role Manager Agent
(RMA) and the Workflow Manager Agent (WMA). The
RMAs have knowledge of a specific workflow role. The
WMA has knowledge of the workflow policy and

applicable roles. When a new process is configured the
workflow policy is saved in a shared distributed database.
The RMA plays a role in the workflow execution by
fulfilling one or multiple services as defined by the
workflow policy in the shared database. The RMA
registers for pertinent events in the event server based on
its predefined role. When an initiation event is written
into the event server, the RMA is notified. Subsequently
based on its localized knowledge of services and its
workflow role, the RMA invokes the correct service. The
WMA has similar functionality, but instead registers for
workflow level events. The WMA does not control the
workflow execution, but in some cases it adds events to
bring about nonfunctional changes to the execution of the
entire workflow. The WARP architecture is shown in
Figure 3.1. At the automated configuration layer, agents
accept new process specifications and deploy application
coordination layer agents with the new corresponding
policy. This layer consists of the Site Manager Agents
(SMA) and the Global Workflow Manager Agent
(GWMA). The GWMA accepts workflow
representations from a workflow designer as input. The
SMAs introspect available services and provides service
representations to the GWMAs by way of the shared
distributed database. The GWMAs accepts both of these
inputs and writes the workflow policy into the shared
database. The GWMA then instantiates the WMAs to
play certain workflow-level nonfunctional roles. At
completion of workflow-level configuration, the SMA
instantiates the RMAs to play each of the roles specified

Web Page
Interface

 Remote Debit
Functions

Trader Laptop
GUI

Component

Portfolio
Database
Accessor

Internet Customer Payment DepartmentTraderPortfolio Specialist

Portfolio
Intranet Server

TraderInterface
RemoteLaptop

Payment
Intranet ServerWeb Server

Workflow Controller (WC)

1. Customer
 requests stock

purchase

2. WC responds to
new request.

3. WC invokes
portfolio

management
service

4. WC notifies
traders laptop

interface to make
trade.

5. WC invokes
payment service

Centralized
Control Server

569

 Figure 3.1 WARP Architecture

in the shared workflow-based database. As a summary to
the components/processes of the Automated
Configuration Layer, the WARP process can be split into
6 steps. The WARP configuration process is essentially a

workflow process where the agents and the workflow
designer are the workflow roles. These configuration
steps are illustrated in Figure 3.2.

Figure 3.2 WARP Configuration Process

Role
Manager
Agents
(RMA)

Event
Server

Event
Server

Role
Manager
Agents
(RMA)

Workflow Manager
Agent

(WMA)

 Role
Manager
Agents
(RMA)

Global Workflow
Manager Agent

(GWMA)

SiteManager
Agent (SMA) Instantiates

Automated
Configuration Layer

Application
Coordination Layer

Instantiates

Existing
Services

Distributed DB

Introspects

Services

1. Automated Configuration Layer
agents introspect existing

components and renders service
information into shared database

Role-level
component

Role-level
component

Process-level
coordination
component

1. Designer associates non-
functional concerns with
functional interactions

1. Service Discovery

Services Services

Introspection

3. Functional Workflow
Specification

1. Designer completes
representations in the context

of functional interactions
between services

Workflow Designer/
Software Architect

Activity Diagram

Workflow Designer/
Software Architect

4. Non-Functional
Specification

Synchronization, Performance,
Operational Constraints.....

Services Services Services

6. Automated
Configuration and

Operation

1. Using shared the database,
Application Coordination Layer

agents manage the workflow
coordination

Workflow-based Data
Structure

Workflow Designer/
Software Architect

1. Automated Configuration Layer
agents renders service information

and initial representations into
design tool.

2. Setup Representation
Environment

1. Automated Configuration Layer
agents extract workflow policy

from representations and
populate the wokflow

coordination data structure

5. Populating Workflow
Policy in Database

2. Automated Configuration
Layer Agents configure and

deploy Application Coordination
Layer agents

Workflow Based Data
Structure

Workflow Based Data
Structure

Workflow Based Data
Structure

570

WARP Representations
 There is a great deal of investigation in the use of the
UML for business process modeling. This paper presents
a systematic approach to this modeling that is unique. Our
approach separates functional and non-functional
concerns, explicitly. This separation of concerns is in the
same spirit as research in aspect-oriented programming
(AOP) (Kiczales et al., 1997). This separation allows the

functional and non-functional configuration to occur
independently. The representations are separated into
three views, structural, functional, and non-functional
views. The structural views show specific information for
the component-based services (Service Representation
View), definition of the roles (Role Aggregation View),
and the composition of the workflow or process
(Workflow Structural View). The structural views are
represented in UML class diagrams as in Figure 4.1.

Figure 4.1. On-line Stock Purchasing Process: Structural Views

Service Representation View Workflow Structural View

 Role Aggregation View

The Service Representation View shows the actual
component-based services available for reconfiguration.
The Role Aggregation View and Workflow Structural
View use association relationships to show the
composition of the role and process, respectively. The
functional views show the data and control flow of the
workflow. The use of activity diagrams is becoming the

industry de facto for showing workflow representations.
Our representations use separate activity diagrams to
show control and data flow, the Control Flow View and
the Data Flow View. Figure 4.2 shows the control and
data flow views that detail the on-line stock purchasing
process illustrated in Figure 2.1.

Figure 4.2 On-line Stock Purchase Process: Functional Views

Control Flow View Data Flow View

getTradeRequest()
getAccountInfo()
cancel()

<<Divisional Services>>
Web Services

searchPortfolio()
updatePortfolio()

<<Divisional Services>>
Intranet Services

makeTrade()

<<Divisional Services>>
Intranet Services

<<Divisional Services>
Web Services

<<Divisional Services>>
Intranet Services

<<Divisional Services>
Intranet Services

<< Role>>
Customer Interface

<< Role>>
Portfolio Mgmt

<< Role>>
Trading

<< Process>>
Stock Purchasing

<< Role>>
Customer
 Interface

<< Role>>
Portfolio Mgmt

<< Role>>
Trading

Cust_Interface TradingPortfolio Mgmt

<< task>>
getTradeInfo

<<task>>
searchPortfolioInfo

<<task>>
makeTrade

<<task>>
UpdatePortfolio

<<fork>>

<<role>> <<role>> <<role>>
Cust_Interface TradingPortfolio Mgmt

<< task>>
getTradeInfo

<<task>>
searchPortfolioInfo

<<task>>
makeTrade

<<task>>
updatePortfolio

<<role>> <<role>> <<role>>

stock_name
customer_ID
accountinfo

<< Data Flow >>
requestInfo

<<Data Flow>>
TradeInfo

571

Typical nonfunctional concerns are those of
synchronization, concurrency, atomicity, etc. These
concerns are generally imposed on the system or the
process as a whole. We have done research into
representing these concerns into one generic view.
However, formalization of the nonfunctional view is
forthcoming.

Workflow-Oriented Database
 The WARP architecture relies heavily on a shared
database to determine the operations of the workflow.
The representations in the previous section are stored in a
shared repository. These models are translated into a
shared relational database structure. Agents access this
relational database to control the configuration,
reconfiguration, and operation of the workflow.
Considering the space for this paper, no further database
detailed is covered in this paper (Blake, 2000).

Operational Details
 To consider the operational environment, again let’s
use the on-line stock-purchasing domain. A configured
system would have a RMA for each of the roles. Let’s
consider the three aforementioned roles are the Customer
Interface Role, the Portfolio Management Role, and
Trading Role. There is a RMA for each role and there is

one WMA that helps in the coordination of the entire
workflow. Based on the Control Flow View, each role
would place notify commands in the space for service
completion prior to their affiliated services. For example,
the Portfolio Management Role would want a notification
on the completion event of a getTradeRequest service.
Suppose a customer invokes the getTradeRequest service.
The RMA for the Customer Interface Role would insert
the pertinent data for this service completion in the
database and publish the service completion in the event
server. The RMA for the Portfolio Management Role
would be notified of this completion. First it would check
to see if this service is pertinent to any of its workflow
instances. If the answer is yes, the RMA for the Portfolio
Management Role would wait for the ready event to be
written to the server by the WMA. The WMA would have
also been notified of the getTradeRequest service
completion. The WMA would update the Workflow
instance table with the new workflow process’ instance
ID. Finally, the WMA would submit a ready event to the
event server upon completion. The RMA would invoke
the proper service for this step in the workflow policy
based on the action specified in its role-based view
(searchPortfolio service). Subsequently the output data
would be inserted in the database and the service
completion would be written to event service. This
process sequence is shown in Figure 5.1 for case of the
stock purchase process excluding any error-handling.

 Figure 5.1 Operational Environment.

Web Page
Interface

Laptop GUi
Component

GUI/Database
Functionality

Internet Customer TraderBroker

Intranet Server Remote ClientWeb Server

Portfolio Mgmt Role (RMA) Trading Role
 (RMA)

Workflow Manager
Agent
(WMA)

Customer Interface
Role (RMA)

Event Server
(JavaSpace)

1. getRequestInfo() 6. Invoke
searchPortfolio()

2. Service
Completion

Entry

3b. Notify
RMA

5. Query service
from DB views

3a. Notify
WMA 4. Update Workflow

Instance table with
data and Instance_ID
and write ready event

572

Summary
This work describes a process and agent-based
architecture that supports the configuration of distributed
components in the context of workflow. This approach is
implemented with Java-based agents and uses a
JavaSpace event server. The design tool for capturing
workflow representations is the Rational Rose Developer
Enterprise 98 edition using the Rose Extensibility
Interface (REI). This initial architecture has the ability to
configure JavaBean components based on a user-defined
workflow captured in Rose.

Related Work
The WorkWeb system (Tarumi, 1997) handles the
coordination among various threads in a predefined
workflow. The workflow in the WorkWeb system is static
and the services are fixed. The WARP approach
encapsulates the coordination of multiple threads in the
workflow within the operation of the WARP agent
architecture. Moreover, the WARP approach considers a
larger set of services that are dynamic in nature.
 There is other work in dynamic reconfiguration and
run-time evolution (Shrivastava and Wheater, 1998).
This work details a system for evolving workflow systems
based on workflow scripts and task models. Using a
CORBA-based support architecture, they accept
workflow scripts as specifications for reconfiguration.
This approach relies on a static set of workflow
components. Shrivastav devises a system that takes a
“top-down” approach. The system uses a set of CORBA-
based services that can be dynamic in nature. Shrivastav
devises a workflow script that specifies the functional
nature of the workflow where nonfunctional constraints
are bundled in. The WARP approach separates functional
and non-functional specifications. This separation allows
for a greater ease of reuse for nonfunctional
considerations. The WARP approach also distributes the
workflow policy among the underlying services thus
decentralizing the control. This maintains the autonomy
among services for the support of the addition of new
services and the removal of deprecated services.

Future Work
 At this point in our work, we are developing the
WARP architecture and evaluating it on multiple e-
commerce domains. Future work in the short term is
toward the formalization of nonfunctional concerns. This
formalization will be leveraged on the operation of the
architecture. In addition, we are implementing the WARP
architecture to respect other domains in supply chain
management.

Acknowledgements
 I would like to recognize Dr. Prasanta Bose of the
Department of Information and Software Engineering for

his motivation and direction in the development of this
approach. His sound advice was instrumental in the
development of the architecture and the agent-based
collaboration.

References
Blake, M.B. and Bose, P. "An Agent-based Approach to
Alleviating Packaging Mismatch", Proceedings of the 4th

International Conference on Autonomous Agents
(AGENTS2000), Barcelona, Spain June 2000

Booch, G., Rumbaugh, J., Jacobsen, I., "The Unified
Modeling Language User Guide", Addison Wesley,
Reading MA, 1998

Blake, M.B., “WARP: An Agent-Based Process and
Architecture for Workflow-Oriented Distributed
Component Configuration”, Proceedings at the 2000
International Conference on Artificial Intelligence
(IC’AI2000), Las Vegas, NV, June 2000

Bronsard, F, et al., “Toward Software Plug-and-Play”
Proceedings of the 1997 Symposium on software
reusability, 1997 Pages 19-29

Decker, K., Sycara, K., and Williamson, M., “Middle-
Agents for the Internet” ,In the Proceedings of the 15th

International Joint Conference on Artificial Intelligence,
Nagoya, Japan,, August 1997

Kamath, M. and Ramamrithan, K., “Correctness Issues in
Workflow Management”. Distributed Systems
Engineering Journal-Special Issue on Workflow Systems,
3(4): 213-221, December 1996.

Kiczales, G., Lamping, J., Mandhekar, A., Maeda, C.,
Lopes, C., Loingtier, J. and Irwin, J., "Aspect-Oriented
Programming." Xerox Parc Technical Report spl-97-008,
1997.

Lei, K. and Singh, M.. A Comparison of Workflow
Metamodels, Proceedings of the ER-97 Workshop on
Behavioral Modeling and Design Transformations: Issues
and Opportunities in Conceptual Modeling, Los Angeles,
November 1997.

Shrivastava, S. and Wheater, S., "Architectural Support
for Dynamic Reconfiguration of Large Scale Distributed
Applications" The 4th International Conference on
Configurable Distributed Systems (CDS'98), Annapolis,
Maryland, USA, May 4-6 1998.

Tarumi, H., "WorkWeb System -- Distributed Multi-
Workflow Control with a Multi-Agent System", IPSJ
International Symposium on Information Systems and
Technologies for Network Society, World Scientific, Sep
1997

573

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2000

	A Development Approach for Workflow-Based E-Commerce using Reusable Distributed Components
	M. Brian Blake
	Recommended Citation

