
30TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD2022 CLUJ-NAPOCA, ROMANIA)

Maestro: An Extensible General-Purpose Data Gathering and
Classification Platform

Alexandre Magalhães Serra
INESC-ID, Instituto Superior Técnico, Universidade de Lisboa
 Lisboa, Portugal alexandre.serra@tecnico.ulisboa.pt

Alberto Rodrigues da Silva
INESC-ID, Instituto Superior Técnico, Universidade de Lisboa
 Lisboa, Portugal alberto.silva@tecnico.ulisboa.pt

Jacinto Estima
INESC-ID, Lisboa, Portugal
CISUC, Dep. of Informatics Engineering, University of Coimbra
 Coimbra, Portugal estima@dei.uc.pt

Abstract

Researchers who want to gather and classify data on a specific topic are doomed to use
several tools in a tedious process given the lack of software tools to collect data from
multiple sources for posterior analysis and classification. Our study addresses these issues
by designing a novel software platform named Maestro that automatically gathers,
classifies, and provides specific datasets from a dynamic set of configurable components
(plugins). Extensibility is Maestro’s main feature, which allows new plugins to be
incrementally added by the core team or other developers without changing the source
code. To evaluate this proposal and support the discussion, a simple working example with
images of the former U.S. president, Donald Trump and his facial expressions is shown.

Keywords: Data Gathering, Data Classification, Data Providing, Data Science

1. Introduction

The World Wide Web, hereafter referred to as Web, has become the most extensive wealth
of information in human civilization, containing information about virtually every topic.
More so, ever since the dawn of the so-called “Web 2.0” and the popularization of “The
Web as a platform” [8] where users were able to produce their content, this trend has only
increased over these last decades. During the last few years, there have been several efforts
to combine Web crawling with machine learning (ML) [2–4]. These technologies usually
involve data gathering through Web crawlers and then feeding the obtained data to a ML
model, either as training data or for classification. A key advantage of Web crawlers
compared to prepared data sets is providing timely real-world data, which allows ML
models to generalize better to unseen scenarios. Since ML requires many examples to
generalize well and the Web is the humankind’s biggest source of data, some works that
use data from the Web to train ML algorithms have been proposed [5, 7, 10]. However,
since the scope of this work is not to research ML algorithms, we leverage already trained
ML algorithms and treat them as regular algorithms.

This paper proposes and discusses a novel platform for data gathering and
classification, named Maestro (available at https://maestro.ml). Maestro is an extensible
and configurable system that allows users to create and customize search contexts that
automatically collect and classify data through multiple plugins, and then, the resulting
data from this process can be exported or fed another application services.

This paper is structured in 7 sections. Section 2 introduces the background concepts
that are related to the techniques Maestro uses. Section 3 introduces Maestro key concepts
and overviews its workflow. Section 4 presents the Maestro software architecture, namely
its modular and pluggable architecture. Section 5 shows the use of Maestro based on a
simple and illustrative example. Section 6 compares and discusses the related works.
Finally, section 7 wraps up and gives an insight into future research.

SERRA ET AL. EXTENSIBLE GENERAL-PURPOSE DATA GATHERING AND CLASSIFICATION SYSTEM…

2. Background

Web crawlers are software systems that wander through the Web by analyzing Web pages
content and extracting relevant data. The two major types of crawlers are [6]: generic Web
crawlers and focused Web crawlers. The goal of the former is to traverse through as many
pages as possible to index and rank them. The latter type of Web crawler tries to find more
fine-grained information about a specific end target.

The results of Web crawlers can be obtained in two ways: by crawling them or
accessing them through an API. Most providers block the first option, therefore, we mainly
use APIs to access this data. Usually, APIs make available a set of filtering parameters that
can be very useful when narrowing the results to the user’s preferences. Most data sources
can be accessed through APIs. Popular examples that are used in our system are social
network APIs. These allow accessing the social network’s inner data, such as posts, and
filtering it by criteria like hashtags, location, and date. For instance, Twitter API [16]
allows finding tweets through many parameters.

On the other hand, data classification algorithms match a data input into an output label.
It is considerably associated with ML algorithms, but that does not need to be the case. For
instance, a simple classification algorithm can use a set of conditional expressions to fit the
data in some class. However, that usually does not scale very well, which is why artificial
intelligence classification algorithms have become so popular with techniques like decision
trees, convolutional neural networks, or transformers [9].

With Maestro, we do not intend to create a new Web crawler but, instead, use existing
ones to support its gathering feature because Web crawlers require a significant amount of
resources such as computation power and memory. It is not our goal to dig into these
aspects. Likewise, we do not intend to research classification algorithms in the scope of
this work. We just considered that these algorithms are ready-to-use programs that can be
accessed through standard interfaces. In the particular case of ML applications, these
algorithms shall be already trained and ready to be properly integrated and used.

3. Maestro Key Concepts and Workflow

Maestro can be described from two perspectives, namely the user perspective and the
system’s perspective. Some concepts overlap, and others are invisible to its users to prevent
overwhelming them with technical concepts.

3.1. Key Concepts: Organizations, Users, and Search Contexts

Maestro is a multi-user and multi-organization platform. Users can create and manage
“Search Contexts”, which is Maestro core concept. In a Search Context, users define what
they want to search for, classify, and deliver based on configurable parameters.

Fig. 1. Maestro top-level concepts (UML class diagram).

ISD2022 ROMANIA

An organization may be created by a user who becomes its owner. This owner may
invite other users that become organization members. An owner may then manage the
permissions of organization members and perform other access control actions. Depending
on the permissions set by the owner, organization members may consult or manage the
organization's search contexts. The data gathered in a Search Context is a datastream, i.e.,
a collection of data objects. The datastream is progressively enhanced according to the
Search Context’s configurations. Users can customize the behavior of the Search Context
by tailoring the results for a concrete use case. The essential configuration object is
required and represents the bare minimum configuration a Search Context needs to
execute, and it includes fields such as the search term and keywords. Complementary, the
advanced configuration allows for further refine the potential output results, allowing for
much more fine-grained control.

3.2. Maestro Workflow

The Maestro workflow is a sequence of steps that Maestro must follow to fully process a
Search Context. This workflow works asynchronously, meaning that when a Search
Context starts, the server processes the request in the background but without preventing
its ability to interact with the user. A process is spawned to handle this workflow and
concludes when the job finishes, as shown in Fig. 2.

Fig. 2. Maestro workflow (BPMN process diagram).

After creating the Search Context and (at least) the definition of the core configuration,
the user can trigger its execution. The system starts by fetching the URLs from its data
sources (fetchers) and downloads the results to its file system (through the gatherer). Next,
if the user wants to inspect the obtained datastream manually, the system stops and waits
for the user to resume the execution. Once it is resumed, the post-processing step starts,
enhancing the datastream. The data objects can then be filtered in the filtering stage, which
is the last step responsible for improving the datastream according to the defined
configurations. The datastream is then classified and, if the number of objects is greater
than a defined minimum, this datastream is sent through a webhook to a target service.
Otherwise, the workflow repeats, as suggested in Fig. 2.

4. Maestro Platform

Maestro is defined as a modular and extensible platform decomposed into a set of well-
defined plugins. These plugins are executed asynchronously and sequentially with the
datastream obtained from previous steps.

Due to its extensibility, Maestro allows new components to be added to enhance its
capabilities. New fetchers, gatherers, post-processors, filters, and classifiers can be added
easily. A developer uses Maestro’s documentation to build a compatible component and
submits it for review. If it is accepted by a Maestro admin, then it will be added to the
system through Maestro’s back-office, which allows managing all the existing components
(at the time of writing, only Python plugins are supported, but integration with other
languages is a possibility).

Maestro provides a hierarchy of internal plugins, explained in the following sections.
Currently, Maestro supports plugins such as: “Bing Image API” to fetch URLs for images;
“Default Image Gatherer” downloads images from URLs; “Exif retriever” post-processor
extracts metadata from images; location and date filters based on the retrieved metadata;
“Facial expression classifier” classifies images with people regarding the expression on
their faces; webhook provider allows for server-to-server asynchronous communication.

SERRA ET AL. EXTENSIBLE GENERAL-PURPOSE DATA GATHERING AND CLASSIFICATION SYSTEM…

Fig. 3. Maestro workflow (BPMN process diagram).

Fig. 3 emphasizes the flow and evolution of the datastream. As referred above, the
datastream represents the set of all data objects associated to the search context which,
during the execution of the workflow, are transformed with the goal of matching to the
configurations the user set for the search context.

Each individual data object of the datastream has two major components: the data itself
(e.g., the image, text, sound), and the respective metadata. The latter is continuously
updated throughout the execution of the search context and plays a crucial role on the
refinement of the search context.

For example, considering that a search context was configured to look for images of
flood events in a particular region. In stage (3), URLs are fetched from several sources
including Twitter which may provide the location where the tweets were posted. Therefore
a “location” field can be defined in the data object’s metadata and set it to this location
obtained from Twitter. In stage (6), the “Exif retriever” may be used to extract Exif [1]
metadata from the images, which can include the latitude and longitude of where it was
taken. We can then update the “location” field in the data object’s metadata to this value
because the location extracted from the image’s metadata is more accurate than the one
obtained from the tweets. Finally, in the filtering stage (7), the search context could be
configured to exclude data objects that were not in a given location.

There are some relationships between datastream, data and metadata. The datastream
is composed by a set of data objects that move together along the workflow. The size of
this datastream is variable, since it depends on how many data objects the system is able
to gather from the URLs provided by the fetchers. Data is an abstract element whose
properties are implemented by one of its specializations. The type of data that the search
context is configured to gather determines the instance of the data element that is used, and
the data subclasses have specific properties for that datatype. The metadata element can
hold multiple properties related to the data object, such as: source of the data, post-
processing, and classification results when it was gathered. The flexibility of the metadata
element is supported using a non-structured data model to store these properties, which
allows to store arbitrary key-value pairs in JSON format. This enables metadata properties
to be incrementally added to the data objects through new plugins without the need of
changing the underlying model.

Fetchers. Fetchers are a central component of Maestro because they support the entry
point of the whole process. Fetchers retrieve URLs from a data source and transfer those
to the workflow's next step. These data sources can be an API that exposes endpoints to
access a specific service, an RSS feed, or any source that returns URL links to documents
or media files. Fetcher services allow some sort of filtering or tuning to be defined on the
request. For example, some APIs allow querying for data in a specific date interval. To
take advantage of these capabilities, Maestro provides to the fetchers relevant information
about the Search Context configuration, allowing them to use this information to retrieve
more meaningful results. Multiple fetchers can be used for the same Search Context. The
greater the number of fetchers is used, the more URLs are obtained and, therefore, more
data objects can be possibly retrieved.

Gatherers. Gatherers are responsible for turning the URLs obtained by the Fetchers
into actual data that can be further processed. These URLs can lead to two types of data:
media files or hypertext markup language (HTML) documents. URLs for media files are

ISD2022 ROMANIA

straightforward because they point directly to the media file. Thus, the gatherer’s only job
is downloading that file to Maestro’s filesystem. Links that point to HTML documents
require a different approach. Because relevant data may be nested inside the document
object model (DOM) or inside webpages linked by the original document. Hence, a Web
crawler is used to handle the parsing and traversal through the documents’ structure and
find URLs to related webpages. The crawler’s approach to extracting data from documents
can vary depending on the use case, making it impossible to have a single fit for all cases.
So, Maestro provides a simple implementation of a crawler for each supported data type
and leaves room for users to add their implementation of a crawler written in Scrapy [15].

Post-Processors. After gathering as much data as possible, the post-processing stage
and the filtering stage try to tailor the datastream to the user’s preferences. Two types of
post-processors are possible: data manipulation and metadata retrieval post-processors.
The former kind allows manipulating the individual data objects to uniformize them. For
example, image data objects can be rotated, sound data objects can have background noise,
and text data objects can contain slang. It may be beneficial to have all images in portrait,
clean sound objects, and slang-free text. A post-processor can be used for these
applications. The latter kind extracts some metadata from the data object that can be used
in the following stage (filtering) to remove some data objects from the datastream. For
example, one may want to retrieve EXIF [1] metadata from images, which contain
information such as location and date where the image was taken. This information is
associated with each data object and can be used in the next stage to remove data objects.

Filters. Filters remove data objects from the datastream according to their actual data
or by the metadata associated with them, extracted in the previous stage. Filters can
therefore be of one of two types: data filters or metadata filters. The result of a filter is a
conditional expression that states whether the data object matched the filtering condition
or not. Data filters check for some properties associated with the data object itself. For
instance, one may want to filter out grayscale images or intense sounds. Metadata filters
conditionally remove data objects from the datastream based on the metadata associated
with them collected in the post-processors. There is a high correlation between post-
processors and filters. Thus, some operations can be done on both ends. In the image
orientation example, we may rotate the images to portrait on the post-processor, filter the
non-rotated images on the filters or do both. This highlights the difference in approaches
one may have when building a Search Context.

Classifiers. So far, previous components have been refining the datastream to curate it
to the user’s preference. The classifiers represent one of Maestro’s main characteristics:
the ability to classify the data gathered from multiple sources. Classifiers can be a wide
range of programs. They can vary from simple decision trees to highly complex ML
algorithms. Maestro handles them always in the same way: as a black box. The system
passes the data objects to the classifier, and it outputs another data object whose type can
be different from the input. An image classification algorithm usually receives as input an
image and outputs a text string. It is worth mentioning that Maestro, unlike other similar
applications, expects them to be already trained when handling ML programs.

Providers. The final component of Maestro is the list of providers. These are
responsible for providing the classified data to external services for them to use for their
use-cases. The most common provider is expected to be the webhooks provider. Through
webhooks, a user can specify a REST endpoint for an external service to which the data
will be sent in a POST request after the classification step. This requires that the external
service is online. If that does not verify, the user responsible for the search context can
manually execute this step afterward. One can also download the results directly to the
filesystem for manual inspection.

The components above described interact with each other using procedure calls. When
one finishes successfully, it calls the next component to continue the process. The data is
shared through a relational database, which is accessible from all components.

SERRA ET AL. EXTENSIBLE GENERAL-PURPOSE DATA GATHERING AND CLASSIFICATION SYSTEM…

5. Running Example: The Donald Trump’s Dataset of Images!

This section shows how to define and execute a simple search context, which intends to
collect images of the former U.S. president, Donald Trump, and classify them with a ML
algorithm that captures facial expressions, and labels expressions as “Excited” or “Happy”.

Fig. 4. Create a search context view. Fig. 5. Essential search context configuration.

Fig. 6. Search context gathering results. Fig. 7. Results after using the “Facial expression”

classifier filtered by the label “Happy”.

Task 1. The user creates a search context through the Maestro’s interface as shown in
Fig. 4. A search context has an owner, a name, and a unique code. After creating the search
context, the user must configure it. There are two types of configurations: essential
configuration and advanced configuration, where the former is mandatory, and the latter is
optional. The essential configuration includes the parameters required for a search context
execution. By default, the system automatically defines all other parameters (i.e.,
configurable in the advanced configuration). The advanced configuration includes
parameters that allow tuning the Search Context to be more suitable to the user’s
preferences but requires more understanding from the users. We only configure the
essential configuration for this demonstration, as shown in Fig. 5.

Task 2. The user starts the execution of the search context. This operation triggers a
background process on the server, and the user can monitor the progress of this process by
clicking the button “Progress” that appears after the context is started.

Tasks 3..5. Depending on the configuration, the process stops after the gathering stage.
This behavior is configurable by the “Yield after gathering data” parameter, which is
enabled by default. This option allows the user to validate the collected data by removing
data that he/she might find unfit or even to get more data (Task. 5). Since we did not
configure this parameter, it is enabled, and therefore the process stopped after the data
gathering (see the result in Fig. 6).

Tasks 6..8. After making the desired modifications to the dataset, the user can click on
the “Continue” button, which continues Maestro’s progress, proceeding to the enhancing
stage, where the data is post-processed (Task 6) and filtered (Task 7). Then, the

ISD2022 ROMANIA

classification (Task 8) starts, and the ML algorithm is used to classify the facial expressions
of the former U.S. president. Fig. 7 shows the images that were identified as “Happy” by
the “Facial expression” classifier.

Task 9. The collected data, namely the classification results, are sent to an external
service connected to the internet through a communication protocol. The progress of these
steps can be followed through a progress bar that shows the current execution stage and
the operations that each step has already performed.

6. Related Work

From our analysis, we did not find any system like Maestro that combines all the
features discussed in this innovative platform.
Table 1 shows a summary of the main analyzed features. Some tools combined gathering
and classification features, using the data gathered from the internet to train neural
networks, thus allowing for real-world data.

K. Yanai [10] proposed a system that uses the Image Collector [11, 12] that, based on
a set of keywords, collects images from the Web and uses them to train a neural network
for image classification. Similarly, Lee et al. [7] described a technique that uses images of
cars scraped from Web pages, combining the original images and images derived from the
originals by applying transformations like flipping, to train a deep neural network.

Others have applied ML directly to the crawling process. For instance, Johnson et al.
[4] use a genetic learning algorithm to learn strategies to rank URLs and order the crawled
results. Jiang et al. discuss a technique based on deep reinforcement learning to find the
next page to crawl by learning based on a reward system that rewards pages that contain
the keyword that is being searched for [2].

inTIME [5] is a platform used in the Cyber-Threat Intelligence (CTI) domain, that
allows to identify and extract CTI and security artefacts from various data sources such as
webpages and social media networks, classify them through ML algorithms to extract CTI
features (e.g., use natural language processing to find if a CVE [13] is being mentioned)
and then export to the MISP database, which is an open-source collaborative threat
intelligence sharing platform [14]. Like Maestro, inTIME allows users to configure the
sources from which the data will be fetched.

Maestro differentiates from this related works because its goal is not only to crawl the
Web, or train some classification application; instead, it provides an integrated service
capable of both gathering and classifying data, built in an extensible and customizable way.
The data processed by this system can thereafter be exported to external services so that
these can leverage this data and use it to improve the capabilities to solve problems on their
domains. Furthermore, Maestro is built with pluggability at its core, which can be used in
various application domains. On the other hand, a disadvantage of its flexible and modular
architecture is that it may underperform other more focused systems because it may not be
able to employ specific tasks for some narrow use-cases. Moreover, Maestro sets itself as
a service, available to be used by other systems as a resource to enhance their capabilities,
without having to implement data gathering and classification functionalities. From our
perspective, this is one of the key aspects that differentiates Maestro from other tools.

Table 1. Comparison between Maestro and similar works

Work Gather
data

Enhance
data

Classify
data

Train
classifier

Provide to external
services

Maestro (this paper) Yes Yes Yes No Yes

inTIME [5] Yes Yes Yes No No

Image Collector [11, 12] Yes No No No No

Generic Image… [10] Yes No Yes Yes No

7. Conclusion and Future Work

Nowadays we have access to large amounts of information through the internet. Ever since
the dawn of Web 2.0, this trend has only increased, because of the active participation of
users. However, this can also be a problem because information is now scattered around
the Web. Therefore, it is no surprise why search engines like Google Search are on the top

SERRA ET AL. EXTENSIBLE GENERAL-PURPOSE DATA GATHERING AND CLASSIFICATION SYSTEM…

of the most visited websites: with their extensive processing capabilities, they index
webpages based on a set of keywords provided by a user, making it easier to find
information in the Web. Nonetheless, search engines have their limitations. For instance,
they cannot scrape the information from meaningful and highly active sources such as
social networks because these systems block such actions, neither can have very fine-
grained queries. Maestro provides a system capable of having “smart” searches, that can
gather information from multiple data sources like search engines, social networks, and
others, and also classify that data, simultaneously exposing a general-purpose architecture
that can be used in various domains.

Maestro is still in development, and therefore additional updates soon would be
introduced. Designed with modularity and extensibility as first-order priorities, many
services in different and unrelated areas would use it to enhance their data processing
mechanisms. After developing its core features, we intend to create a collaborative
environment where developers can submit their plugins to enhance and extend Maestro
and allow it to support more use cases increasingly. We are also planning to perform a
quantitative evaluation of the platform with end users. Another interesting idea to further
improve the platform is to verify whether the content gathered within a search context is
true and has not been maliciously modified.

Acknowledgements

Research partially funded by FCT UIDB/50021/2020 and 02/SAICT/2017/29360.

References

1. Japan Electronics and Information Technology Industries Association: Exchangeable image
file format for digital still cameras: Exif Version 2.2. 154

2. Jiang, L., Wu, Z., Feng, Q., Liu, J., Zheng, Q.: Efficient deep web crawling using
reinforcement learning. In: Pacific-Asia Conference on Knowledge Discovery and Data
Mining. pp. 428–439. Springer (2010)

3. Jiang, L., Wu, Z., Zheng, Q., Liu, J.: Learning deep web crawling with diverse features. In:
2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent
Agent Technology. pp. 572–575. IEEE (2009)

4. Johnson, J., Tsioutsiouliklis, K., Giles, C.L.: Evolving strategies for focused web crawling.
In: Proceedings of the 20th international conference on machine learning (ICML-03) (2003)

5. Koloveas, P., Chantzios, T., Alevizopoulou, S., Skiadopoulos, S., Tryfonopoulos, C.: intime:
A machine learning-based framework for gathering and leveraging web data to cyber-threat
intelligence. Electronics. 10 (7), 818 (2021)

6. Kumar, M., Bhatia, R., Rattan, D.: A survey of Web crawlers for information retrieval. Wiley
Interdiscip. Rev. Data Min. Knowl. Discov. 7 (6), e1218 (2017)

7. Lee, Y., Kang, S.-J.: Web Scraping Crawling-based Automatic Data Augmentation for Deep
Neural Networks-based Vehicle Classifications. In: 2019 IEEE International Conference on
Consumer Electronics (ICCE). pp. 1–2. IEEE (2019)

8. O’reilly, T.: What is web 2.0. O’Reilly Media, Inc. (2009)
9. Sen, P.C., Hajra, M., Ghosh, M.: Supervised classification algorithms in machine learning: A

survey and review. In: Emerging technology in modelling and graphics. Springer (2020)
10. Yanai, K.: Generic image classification using visual knowledge on the web. In: Proceedings

of the eleventh ACM international conference on Multimedia. pp. 167–176. (2003)
11. Yanai, K.: Image Collector: An Image-Gathering System From The World-Wide Web

Employing Keyword-Based Search Engines. In: ICME. (2001)
12. Yanai, K.: Image collector II: A system for gathering more than one thousand images from

the web for one keyword. In: 2003 International Conference on Multimedia and Expo.
ICME’03. Proceedings (Cat. No. 03TH8698). p. I–785. IEEE (2003)

13. CVE - CVE, https://cve.mitre.org/, Accessed: April 12, 2022
14. MISP Open Source Threat Intelligence Platform & Open Standards For Threat

Information Sharing, https://www.misp-project.org/, Accessed: March 30, 2022
15. Scrapy | A Fast and Powerful Scraping and Web Crawling Framework, https://scrapy.org/,

Accessed: March 30, 2022
16. Twitter API | Products | Twitter Developer Platform,

https://developer.twitter.com/en/products/twitter-api, Accessed: March 29, 2022

