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Abstract 

Researchers who want to gather and classify data on a specific topic are doomed to use 
several tools in a tedious process given the lack of software tools to collect data from 
multiple sources for posterior analysis and classification. Our study addresses these issues 
by designing a novel software platform named Maestro that automatically gathers, 
classifies, and provides specific datasets from a dynamic set of configurable components 
(plugins). Extensibility is Maestro’s main feature, which allows new plugins to be 
incrementally added by the core team or other developers without changing the source 
code. To evaluate this proposal and support the discussion, a simple working example with 
images of the former U.S. president, Donald Trump and his facial expressions is shown. 
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1. Introduction 

The World Wide Web, hereafter referred to as Web, has become the most extensive wealth 
of information in human civilization, containing information about virtually every topic. 
More so, ever since the dawn of the so-called “Web 2.0” and the popularization of “The 
Web as a platform” [8] where users were able to produce their content, this trend has only 
increased over these last decades. During the last few years, there have been several efforts 
to combine Web crawling with machine learning (ML) [2–4]. These technologies usually 
involve data gathering through Web crawlers and then feeding the obtained data to a ML 
model, either as training data or for classification. A key advantage of Web crawlers 
compared to prepared data sets is providing timely real-world data, which allows ML 
models to generalize better to unseen scenarios. Since ML requires many examples to 
generalize well and the Web is the humankind’s biggest source of data, some works that 
use data from the Web to train ML algorithms have been proposed [5, 7, 10]. However, 
since the scope of this work is not to research ML algorithms, we leverage already trained 
ML algorithms and treat them as regular algorithms. 

This paper proposes and discusses a novel platform for data gathering and 
classification, named Maestro (available at https://maestro.ml). Maestro is an extensible 
and configurable system that allows users to create and customize search contexts that 
automatically collect and classify data through multiple plugins, and then, the resulting 
data from this process can be exported or fed another application services.  

This paper is structured in 7 sections. Section 2 introduces the background concepts 
that are related to the techniques Maestro uses. Section 3 introduces Maestro key concepts 
and overviews its workflow. Section 4 presents the Maestro software architecture, namely 
its modular and pluggable architecture. Section 5 shows the use of Maestro based on a 
simple and illustrative example. Section 6 compares and discusses the related works. 
Finally, section 7 wraps up and gives an insight into future research. 
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2. Background 

Web crawlers are software systems that wander through the Web by analyzing Web pages 
content and extracting relevant data. The two major types of crawlers are [6]: generic Web 
crawlers and focused Web crawlers. The goal of the former is to traverse through as many 
pages as possible to index and rank them. The latter type of Web crawler tries to find more 
fine-grained information about a specific end target. 

The results of Web crawlers can be obtained in two ways: by crawling them or 
accessing them through an API. Most providers block the first option, therefore, we mainly 
use APIs to access this data. Usually, APIs make available a set of filtering parameters that 
can be very useful when narrowing the results to the user’s preferences. Most data sources 
can be accessed through APIs. Popular examples that are used in our system are social 
network APIs. These allow accessing the social network’s inner data, such as posts, and 
filtering it by criteria like hashtags, location, and date. For instance, Twitter API [16] 
allows finding tweets through many parameters. 

On the other hand, data classification algorithms match a data input into an output label. 
It is considerably associated with ML algorithms, but that does not need to be the case. For 
instance, a simple classification algorithm can use a set of conditional expressions to fit the 
data in some class. However, that usually does not scale very well, which is why artificial 
intelligence classification algorithms have become so popular with techniques like decision 
trees, convolutional neural networks, or transformers [9]. 

With Maestro, we do not intend to create a new Web crawler but, instead, use existing 
ones to support its gathering feature because Web crawlers require a significant amount of 
resources such as computation power and memory. It is not our goal to dig into these 
aspects. Likewise, we do not intend to research classification algorithms in the scope of 
this work. We just considered that these algorithms are ready-to-use programs that can be 
accessed through standard interfaces. In the particular case of ML applications, these 
algorithms shall be already trained and ready to be properly integrated and used. 

3. Maestro Key Concepts and Workflow 

Maestro can be described from two perspectives, namely the user perspective and the 
system’s perspective. Some concepts overlap, and others are invisible to its users to prevent 
overwhelming them with technical concepts. 

3.1. Key Concepts: Organizations, Users, and Search Contexts 

Maestro is a multi-user and multi-organization platform. Users can create and manage 
“Search Contexts”, which is Maestro core concept. In a Search Context, users define what 
they want to search for, classify, and deliver based on configurable parameters. 

 
Fig. 1. Maestro top-level concepts (UML class diagram). 
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An organization may be created by a user who becomes its owner. This owner may 
invite other users that become organization members. An owner may then manage the 
permissions of organization members and perform other access control actions. Depending 
on the permissions set by the owner, organization members may consult or manage the 
organization's search contexts. The data gathered in a Search Context is a datastream, i.e., 
a collection of data objects. The datastream is progressively enhanced according to the 
Search Context’s configurations. Users can customize the behavior of the Search Context 
by tailoring the results for a concrete use case. The essential configuration object is 
required and represents the bare minimum configuration a Search Context needs to 
execute, and it includes fields such as the search term and keywords. Complementary, the 
advanced configuration allows for further refine the potential output results, allowing for 
much more fine-grained control. 

3.2. Maestro Workflow 

The Maestro workflow is a sequence of steps that Maestro must follow to fully process a 
Search Context. This workflow works asynchronously, meaning that when a Search 
Context starts, the server processes the request in the background but without preventing 
its ability to interact with the user. A process is spawned to handle this workflow and 
concludes when the job finishes, as shown in Fig. 2. 

   
Fig. 2. Maestro workflow (BPMN process diagram). 

After creating the Search Context and (at least) the definition of the core configuration, 
the user can trigger its execution. The system starts by fetching the URLs from its data 
sources (fetchers) and downloads the results to its file system (through the gatherer). Next, 
if the user wants to inspect the obtained datastream manually, the system stops and waits 
for the user to resume the execution. Once it is resumed, the post-processing step starts, 
enhancing the datastream. The data objects can then be filtered in the filtering stage, which 
is the last step responsible for improving the datastream according to the defined 
configurations. The datastream is then classified and, if the number of objects is greater 
than a defined minimum, this datastream is sent through a webhook to a target service. 
Otherwise, the workflow repeats, as suggested in Fig. 2. 

4. Maestro Platform 

Maestro is defined as a modular and extensible platform decomposed into a set of well-
defined plugins. These plugins are executed asynchronously and sequentially with the 
datastream obtained from previous steps. 

Due to its extensibility, Maestro allows new components to be added to enhance its 
capabilities. New fetchers, gatherers, post-processors, filters, and classifiers can be added 
easily. A developer uses Maestro’s documentation to build a compatible component and 
submits it for review. If it is accepted by a Maestro admin, then it will be added to the 
system through Maestro’s back-office, which allows managing all the existing components 
(at the time of writing, only Python plugins are supported, but integration with other 
languages is a possibility).  

Maestro provides a hierarchy of internal plugins, explained in the following sections. 
Currently, Maestro supports plugins such as: “Bing Image API” to fetch URLs for images; 
“Default Image Gatherer” downloads images from URLs; “Exif retriever” post-processor 
extracts metadata from images; location and date filters based on the retrieved metadata; 
“Facial expression classifier” classifies images with people regarding the expression on 
their faces; webhook provider allows for server-to-server asynchronous communication. 
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Fig. 3. Maestro workflow (BPMN process diagram). 

Fig. 3 emphasizes the flow and evolution of the datastream. As referred above, the 
datastream represents the set of all data objects associated to the search context which, 
during the execution of the workflow, are transformed with the goal of matching to the 
configurations the user set for the search context. 

Each individual data object of the datastream has two major components: the data itself 
(e.g., the image, text, sound), and the respective metadata. The latter is continuously 
updated throughout the execution of the search context and plays a crucial role on the 
refinement of the search context. 

For example, considering that a search context was configured to look for images of 
flood events in a particular region. In stage (3), URLs are fetched from several sources 
including Twitter which may provide the location where the tweets were posted. Therefore 
a “location” field can be defined in the data object’s metadata and set it to this location 
obtained from Twitter. In stage (6), the “Exif retriever” may be used to extract Exif [1] 
metadata from the images, which can include the latitude and longitude of where it was 
taken. We can then update the “location” field in the data object’s metadata to this value 
because the location extracted from the image’s metadata is more accurate than the one 
obtained from the tweets. Finally, in the filtering stage (7), the search context could be 
configured to exclude data objects that were not in a given location. 

There are some relationships between datastream, data and metadata. The datastream 
is composed by a set of data objects that move together along the workflow. The size of 
this datastream is variable, since it depends on how many data objects the system is able 
to gather from the URLs provided by the fetchers. Data is an abstract element whose 
properties are implemented by one of its specializations. The type of data that the search 
context is configured to gather determines the instance of the data element that is used, and 
the data subclasses have specific properties for that datatype. The metadata element can 
hold multiple properties related to the data object, such as: source of the data, post-
processing, and classification results when it was gathered. The flexibility of the metadata 
element is supported using a non-structured data model to store these properties, which 
allows to store arbitrary key-value pairs in JSON format. This enables metadata properties 
to be incrementally added to the data objects through new plugins without the need of 
changing the underlying model. 

Fetchers. Fetchers are a central component of Maestro because they support the entry 
point of the whole process. Fetchers retrieve URLs from a data source and transfer those 
to the workflow's next step. These data sources can be an API that exposes endpoints to 
access a specific service, an RSS feed, or any source that returns URL links to documents 
or media files. Fetcher services allow some sort of filtering or tuning to be defined on the 
request. For example, some APIs allow querying for data in a specific date interval. To 
take advantage of these capabilities, Maestro provides to the fetchers relevant information 
about the Search Context configuration, allowing them to use this information to retrieve 
more meaningful results. Multiple fetchers can be used for the same Search Context. The 
greater the number of fetchers is used, the more URLs are obtained and, therefore, more 
data objects can be possibly retrieved. 

Gatherers. Gatherers are responsible for turning the URLs obtained by the Fetchers 
into actual data that can be further processed. These URLs can lead to two types of data: 
media files or hypertext markup language (HTML) documents. URLs for media files are 
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straightforward because they point directly to the media file. Thus, the gatherer’s only job 
is downloading that file to Maestro’s filesystem. Links that point to HTML documents 
require a different approach. Because relevant data may be nested inside the document 
object model (DOM) or inside webpages linked by the original document. Hence, a Web 
crawler is used to handle the parsing and traversal through the documents’ structure and 
find URLs to related webpages. The crawler’s approach to extracting data from documents 
can vary depending on the use case, making it impossible to have a single fit for all cases. 
So, Maestro provides a simple implementation of a crawler for each supported data type 
and leaves room for users to add their implementation of a crawler written in Scrapy [15]. 

Post-Processors. After gathering as much data as possible, the post-processing stage 
and the filtering stage try to tailor the datastream to the user’s preferences. Two types of 
post-processors are possible: data manipulation and metadata retrieval post-processors. 
The former kind allows manipulating the individual data objects to uniformize them. For 
example, image data objects can be rotated, sound data objects can have background noise, 
and text data objects can contain slang. It may be beneficial to have all images in portrait, 
clean sound objects, and slang-free text. A post-processor can be used for these 
applications. The latter kind extracts some metadata from the data object that can be used 
in the following stage (filtering) to remove some data objects from the datastream. For 
example, one may want to retrieve EXIF [1] metadata from images, which contain 
information such as location and date where the image was taken. This information is 
associated with each data object and can be used in the next stage to remove data objects. 

Filters. Filters remove data objects from the datastream according to their actual data 
or by the metadata associated with them, extracted in the previous stage. Filters can 
therefore be of one of two types: data filters or metadata filters. The result of a filter is a 
conditional expression that states whether the data object matched the filtering condition 
or not. Data filters check for some properties associated with the data object itself. For 
instance, one may want to filter out grayscale images or intense sounds. Metadata filters 
conditionally remove data objects from the datastream based on the metadata associated 
with them collected in the post-processors. There is a high correlation between post-
processors and filters. Thus, some operations can be done on both ends. In the image 
orientation example, we may rotate the images to portrait on the post-processor, filter the 
non-rotated images on the filters or do both. This highlights the difference in approaches 
one may have when building a Search Context. 

Classifiers. So far, previous components have been refining the datastream to curate it 
to the user’s preference. The classifiers represent one of Maestro’s main characteristics: 
the ability to classify the data gathered from multiple sources. Classifiers can be a wide 
range of programs. They can vary from simple decision trees to highly complex ML 
algorithms. Maestro handles them always in the same way: as a black box. The system 
passes the data objects to the classifier, and it outputs another data object whose type can 
be different from the input. An image classification algorithm usually receives as input an 
image and outputs a text string. It is worth mentioning that Maestro, unlike other similar 
applications, expects them to be already trained when handling ML programs.  

Providers. The final component of Maestro is the list of providers. These are 
responsible for providing the classified data to external services for them to use for their 
use-cases. The most common provider is expected to be the webhooks provider. Through 
webhooks, a user can specify a REST endpoint for an external service to which the data 
will be sent in a POST request after the classification step. This requires that the external 
service is online. If that does not verify, the user responsible for the search context can 
manually execute this step afterward. One can also download the results directly to the 
filesystem for manual inspection. 

The components above described interact with each other using procedure calls. When 
one finishes successfully, it calls the next component to continue the process. The data is 
shared through a relational database, which is accessible from all components. 
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5. Running Example: The Donald Trump’s Dataset of Images! 

This section shows how to define and execute a simple search context, which intends to 
collect images of the former U.S. president, Donald Trump, and classify them with a ML 
algorithm that captures facial expressions, and labels expressions as “Excited” or “Happy”. 
 

  
Fig. 4. Create a search context view. Fig. 5. Essential search context configuration. 

  
Fig. 6. Search context gathering results. Fig. 7. Results after using the “Facial expression” 

classifier filtered by the label “Happy”. 

Task 1. The user creates a search context through the Maestro’s interface as shown in 
Fig. 4. A search context has an owner, a name, and a unique code. After creating the search 
context, the user must configure it. There are two types of configurations: essential 
configuration and advanced configuration, where the former is mandatory, and the latter is 
optional. The essential configuration includes the parameters required for a search context 
execution. By default, the system automatically defines all other parameters (i.e., 
configurable in the advanced configuration). The advanced configuration includes 
parameters that allow tuning the Search Context to be more suitable to the user’s 
preferences but requires more understanding from the users. We only configure the 
essential configuration for this demonstration, as shown in Fig. 5. 

Task 2. The user starts the execution of the search context. This operation triggers a 
background process on the server, and the user can monitor the progress of this process by 
clicking the button “Progress” that appears after the context is started. 

Tasks 3..5. Depending on the configuration, the process stops after the gathering stage. 
This behavior is configurable by the “Yield after gathering data” parameter, which is 
enabled by default. This option allows the user to validate the collected data by removing 
data that he/she might find unfit or even to get more data (Task. 5). Since we did not 
configure this parameter, it is enabled, and therefore the process stopped after the data 
gathering (see the result in Fig. 6). 

Tasks 6..8. After making the desired modifications to the dataset, the user can click on 
the “Continue” button, which continues Maestro’s progress, proceeding to the enhancing 
stage, where the data is post-processed (Task 6) and filtered (Task 7). Then, the 
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classification (Task 8) starts, and the ML algorithm is used to classify the facial expressions 
of the former U.S. president. Fig. 7 shows the images that were identified as “Happy” by 
the “Facial expression” classifier.  

Task 9. The collected data, namely the classification results, are sent to an external 
service connected to the internet through a communication protocol. The progress of these 
steps can be followed through a progress bar that shows the current execution stage and 
the operations that each step has already performed. 

6. Related Work 

From our analysis, we did not find any system like Maestro that combines all the 
features discussed in this innovative platform.  
Table 1 shows a summary of the main analyzed features. Some tools combined gathering 
and classification features, using the data gathered from the internet to train neural 
networks, thus allowing for real-world data.  

K. Yanai [10] proposed a system that uses the Image Collector [11, 12] that, based on 
a set of keywords, collects images from the Web and uses them to train a neural network 
for image classification. Similarly, Lee et al. [7] described a technique that uses images of 
cars scraped from Web pages, combining the original images and images derived from the 
originals by applying transformations like flipping, to train a deep neural network. 

Others have applied ML directly to the crawling process. For instance, Johnson et al. 
[4] use a genetic learning algorithm to learn strategies to rank URLs and order the crawled 
results. Jiang et al. discuss a technique based on deep reinforcement learning to find the 
next page to crawl by learning based on a reward system that rewards pages that contain 
the keyword that is being searched for [2]. 

inTIME [5] is a platform used in the Cyber-Threat Intelligence (CTI) domain, that 
allows to identify and extract CTI and security artefacts from various data sources such as 
webpages and social media networks, classify them through ML algorithms to extract CTI 
features (e.g., use natural language processing to find if a CVE [13] is being mentioned) 
and then export to the MISP database, which is an open-source collaborative threat 
intelligence sharing platform [14]. Like Maestro, inTIME allows users to configure the 
sources from which the data will be fetched. 

Maestro differentiates from this related works because its goal is not only to crawl the 
Web, or train some classification application; instead, it provides an integrated service 
capable of both gathering and classifying data, built in an extensible and customizable way. 
The data processed by this system can thereafter be exported to external services so that 
these can leverage this data and use it to improve the capabilities to solve problems on their 
domains. Furthermore, Maestro is built with pluggability at its core, which can be used in 
various application domains. On the other hand, a disadvantage of its flexible and modular 
architecture is that it may underperform other more focused systems because it may not be 
able to employ specific tasks for some narrow use-cases. Moreover, Maestro sets itself as 
a service, available to be used by other systems as a resource to enhance their capabilities, 
without having to implement data gathering and classification functionalities. From our 
perspective, this is one of the key aspects that differentiates Maestro from other tools. 

 

Table 1. Comparison between Maestro and similar works 

Work Gather 
data 

Enhance 
data 

Classify 
data 

Train 
classifier 

Provide to external 
services 

Maestro (this paper) Yes Yes Yes No Yes 

inTIME [5] Yes Yes Yes No No 

Image Collector [11, 12] Yes No No No No 

Generic Image… [10] Yes No Yes Yes No 

7. Conclusion and Future Work 

Nowadays we have access to large amounts of information through the internet. Ever since 
the dawn of Web 2.0, this trend has only increased, because of the active participation of 
users. However, this can also be a problem because information is now scattered around 
the Web. Therefore, it is no surprise why search engines like Google Search are on the top 
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of the most visited websites: with their extensive processing capabilities, they index 
webpages based on a set of keywords provided by a user, making it easier to find 
information in the Web. Nonetheless, search engines have their limitations. For instance, 
they cannot scrape the information from meaningful and highly active sources such as 
social networks because these systems block such actions, neither can have very fine-
grained queries. Maestro provides a system capable of having “smart” searches, that can 
gather information from multiple data sources like search engines, social networks, and 
others, and also classify that data, simultaneously exposing a general-purpose architecture 
that can be used in various domains. 

Maestro is still in development, and therefore additional updates soon would be 
introduced. Designed with modularity and extensibility as first-order priorities, many 
services in different and unrelated areas would use it to enhance their data processing 
mechanisms. After developing its core features, we intend to create a collaborative 
environment where developers can submit their plugins to enhance and extend Maestro 
and allow it to support more use cases increasingly. We are also planning to perform a 
quantitative evaluation of the platform with end users. Another interesting idea to further 
improve the platform is to verify whether the content gathered within a search context is 
true and has not been maliciously modified. 
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