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Abstract

This paper is devoted to the study of the problems of learning inner and general decision rules
that are true for the maximum number of decision trees from a given set. Inner rules correspond
to paths in decision trees from the root to terminal nodes. General rules are arbitrary rules
that use attributes from the considered decision trees. We propose a polynomial time algorithm
for the optimization of inner rules, show that the problem of optimization of general rules is
NP-hard, and describe a heuristic for this problem. We compare the considered algorithm and
heuristic experimentally on artificially generated datasets and induced from them decision trees
with Gini index as a splitting criterion.
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1. Introduction
Decision trees and decision rules are widely used as classifiers, as a means of knowledge rep-
resentation, and as algorithms [1, 3, 4, 5, 6, 7]. Learning decision trees from sets of decision
rules is a nontrivial problem [2]. Learning decision rules from a decision tree is simple: we
can “read” a decision rule when move from the root of the decision tree to its terminal node. In
this paper, we show that there are complicated enough problems related to the learning decision
rules from a given set of decision trees.

Let we have a finite set of decision trees S. We define two types of decision rules: general
rules over S (arbitrary rules that use attributes from the decision trees belonging to S) and inner
rules over S (rules corresponding to paths from the roots to terminal nodes in decision trees
from S). A rule r is called true for a decision tree Γ from S if there exists an inner decision rule
r′ over Γ such that the set of elementary conditions in the left-hand side of r′ is a subset of the
set of elementary conditions in the left-hand side of r, and these rules have the same decision in
the right-hand sides.
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Our aim is to study two optimization problems: (i) to find an inner rule over S that is true
for the maximum number of decision trees from S and (ii) to find a general rule over S that is
true for the maximum number of decision trees from S.

Efficient algorithms for exact or approximate solving of these problems can be useful in the
situation when different agents create their own experimental datasets using subsets of a com-
mon set of attributes and return knowledge about these datasets represented as decision trees.
Rules that are true for the maximum number of decision trees can be considered as a common
knowledge about these datasets. They allow us to discover major and general patterns hidden
in the data. The novelty of the proposed way of induction of decision rules is its application to
distributed knowledge.

We show that there is a polynomial (depending on the total number of nodes in the decision
trees from S) algorithm A, which can find an inner rule over S that is true for the maximum
number of decision trees from S. However, this algorithm is not suitable if, for example, the
decision trees from S have no common attributes and, hence, each inner rule is true for only one
decision tree from S.

We prove that the problem of finding a general rule over S that is true for the maximum
number of decision trees from S is NP-hard. In such a situation, we should consider polynomial
time approximate algorithms for the optimization of general rules. We propose a heuristic H
which uses the algorithm A iteratively and constructs a general rule over S.

The proposed heuristic has polynomial time complexity. However, we have not any theoreti-
cal bounds on the accuracy of this heuristic. One of the main aims of the paper is to compare the
algorithm A and the heuristic H experimentally on artificially generated datasets and induced
from them decision trees with Gini index as a splitting criterion.

The rest of the paper is organized as follows. In Section 2, we consider main notions and in
Section 3 – the problem of optimization of inner rules. The problem of optimization of general
rules is discussed in Sections 4 and 5. Section 6 contains results of computer experiments and
Section 7 – conclusions.

2. Main Notions
Let ω = {0, 1, 2, . . .} be the set of nonnegative integers and F be a set of attributes with values
0 and 1. A decision rule r over F is an expression of the form

(f1 = δ1) ∧ · · · ∧ (fm = δm) → d,

where m ∈ ω, f1, . . . , fm are pairwise different attributes from F , δ1, . . . , δm ∈ {0, 1}, and
d ∈ ω. The left-hand side of this rule is the conjunction of elementary conditions of the form
fj = δj . We denote by C(r) the set of these conditions. The right-hand side of r is the number
d, which is interpreted as a decision. We denote it by D(r). We will say that two rules r1 and
r2 are incompatible if there exists an elementary condition f = δ such that f = δ belongs to
C(r1) and f = ¬δ belongs to C(r2), where ¬0 = 1 and ¬1 = 0.

A decision tree over F is a marked directed tree with the root in which

• Each terminal node is labeled with a number from ω that is interpreted as a decision.

• Each nonterminal node (we call such nodes working) is labeled with an attribute from F .
Each working node has two edges that leave this node and are labeled with the numbers 0
and 1, respectively.

• In each directed path from the root to a terminal node (we call such paths complete),
attributes attached to working nodes are pairwise different.

Let Γ be a decision tree. Then the number of its terminal nodes is equal to the number of its
working nodes plus 1. The number of complete paths is equal to the number of terminal nodes.
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Let ξ be a complete path in Γ with m working nodes in which the terminal node is labeled with
the decision d. We correspond to it a decision rule rule(ξ). If m = 0, then this rule is equal to
→ d. Let m ≥ 1, the working nodes of ξ be labeled with the attributes f1, . . . , fm, and edges
leaving these nodes be labeled with the numbers δ1, . . . , δm, respectively. Then the rule rule(ξ)
is equal to

(f1 = δ1) ∧ · · · ∧ (fm = δm) → d.

We denote by Ξ(Γ) the set of complete paths in Γ and by IR(Γ) we denote the set of decision
rules {rule(ξ) : ξ ∈ Ξ(Γ)} corresponding to complete paths in Γ. We will call the decision
rules from IR(Γ) inner decision rules over Γ.

Let S be a finite nonempty set of decision trees. Denote IR(S) =
⋃

Γ∈S IR(Γ), F (S)
– the set of attributes attached to working nodes of the decision trees from S, D(S) – the set
of decisions attached to terminal nodes of the decision trees from S, and GR(S) – the set of
decision rules over F (S) that have decisions from D(S) in their right-hand sides. Rules from
IR(S) will be called inner rules over S and rules from GR(S) will be called general rules over
S. It is clear that IR(S) ⊆ GR(S).

Let Γ be a decision tree from the set S and r be a decision rule from GR(S). We will say
that the rule r is true for Γ if there exists an inner decision rule r′ over Γ such that D(r′) = D(r)
and C(r′) ⊆ C(r).

Remark 1 If such an inner decision rule r′ over Γ exists, then each other inner decision rule
r′′ over Γ and the decision rule r are incompatible.

3. Optimization of Inner Decision Rules
In this section, we consider Inner Optimization Problem (IOP): for a given set of decision trees
S, it is required to find an inner decision rule over S, which is true for the maximum number of
decision trees from S.

Denote by T (S) the total number of nodes in the decision trees from S. The number of inner
rules in the set IR(S) is at most T (S). The number of elementary conditions in the left-hand
side of each rule from IR(S) is also at most T (S). One can show that the set IR(S) of inner
rules can be constructed in a polynomial time depending on T (S).

First, we describe an algorithm A0 that, for a given rule r ∈ IR(S) and a decision tree
Γ ∈ S, checks in a polynomial time depending on T (S) if the rule r is true for the decision
tree Γ.

Algorithm A0.

We sequentially compare the rule r with all rules from the set IR(Γ). If there exists a rule
r′ ∈ IR(Γ) such that D(r′) = D(r) and C(r′) ⊆ C(r), then the rule r is true for the decision
tree Γ. Otherwise, the rule r is not true for the decision tree Γ.

We now consider an algorithm A that solves the problem IOP in a polynomial time depend-
ing on T (S) if it is applied to the set IR(S). We describe the work of A on an arbitrary subset I
of the set IR(S). In this case, the algorithm A returns in a polynomial time depending on T (S)
a rule from I that is true for the maximum number of decision trees from S.

Algorithm A.

Using algorithm A0, for each rule r ∈ I and each decision tree Γ ∈ S, we check if the
rule r is true for the decision tree Γ. After that, we choose a rule from I , which is true for the
maximum number of decision trees from S.
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4. Optimization of General Decision Rules
In this section, we consider General Optimization Problem (GOP): for a given set of decision
trees S it is required to find a general decision rule over S, which is true for the maximum
number of decision trees from S. Let F (S) = {f1, . . . , fm}. It is easy to show that a solution
of GOP can be found among so-called complete decision rules over S, which are of the form

(f1 = δ1) ∧ · · · ∧ (fm = δm) → d,

where δ1, . . . , δm ∈ {0, 1} and d ∈ D(S).
We now prove that GOP is NP-hard. To this end, we describe a polynomial time reduction

of the NP-complete problem 3-SAT to GOP.
A 3-conjunctive normal form (3-CNF) is a Boolean formula of the form N(x1, . . . , xn) =

C1 ∧ · · · ∧ Ck in which each clause Cj , j = 1, . . . , k, is a disjunction of exactly three distinct
literals and each literal is either a variable from the set {x1, . . . , xn} or a negation of a variable
from this set. Each variable from the set {x1, . . . , xn} appears in at least one of the clauses
C1, . . . , Ck.

3-Satisfiability Problem (3-SAT): for a given 3-CNF N(x1, . . . , xn), it is required to recog-
nize if it is satisfiable, i.e, if there exists a tuple of values (a1, . . . , an) ∈ {0, 1}n of variables
x1, . . . , xn such that N(a1, . . . , an) = 1.

For a given 3-CNF
N(x1, . . . , xn) = C1 ∧ · · · ∧ Ck,

we construct a set SN = {Γ0,Γ1, . . . ,Γk} of decision trees corresponding to N . Let i ∈
{1, . . . , k} and Ci = xbi1t(i,1) ∨ xbi2t(i,2) ∨ xbi3t(i,3), where xt(i,1), xt(i,2), xt(i,3) ∈ {x1, . . . , xn},

bi1, bi2, bi3 ∈ {0, 1}, and x0 = ¬x and x1 = x. It is clear that, for b ∈ {0, 1}, xb = 1 if
and only if x = b. An auxiliary decision tree Γ0 and the decision tree Γi corresponding to the
clause Ci are depicted in Fig. 1.

Fig. 1. Decision trees Γ0 and Γi, i = 1, . . . , k

We now show that the 3-CNF N is satisfiable if and only if there exists a complete decision
rule over SN , which is true for each decision tree from SN .

Let there exist a tuple (a1, . . . , an) ∈ {0, 1}n such that N(a1, . . . , an) = 1. Then, for this
tuple and each i ∈ {1, . . . , k}, Ci = 1 and there exists pi ∈ {1, 2, 3} such that a

bipi
t(i,pi)

= 1, i.e.,
at(i,pi) = bipi . We consider the following complete decision rule over SN :

(x1 = a1) ∧ · · · ∧ (xn = an) → 0.

One can show that this decision rule is true for each decision tree from SN .
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Let there exist a complete decision rule r over SN , which is true for each decision tree from
SN . Then this rule has the decision 0 in the right-hand side. Let x1 = a1, . . . , xn = an be all
elementary conditions in the left-hand side of the rule r. Since this rule is true for each decision
tree from SN , for each i ∈ {1, . . . , k}, there exists pi ∈ {1, 2, 3} such that at(i,pi) = bipi , i.e.,
Ci = 1. Thus, N(a1, . . . , an) = 1.

We now describe a polynomial time reduction of 3-SAT to GOP. Let N be a 3-CNF. We
construct in a polynomial time depending on the number of literals in N the corresponding
set of decision trees SN and solve the problem GOP for SN . As a result, we obtain a general
decision rule r over SN , which is true for the maximum number of decision trees from SN . In
a polynomial time, we check for each decision tree Γ from SN if the rule r is true for Γ. If r
is true not for each decision tree from SN , then the 3-CNF N is not satisfiable. Otherwise, we
can extend r to a complete decision rule over SN , which is true for each decision tree from SN .
Therefore N is satisfiable.

5. Heuristic H for General Decision Rule Optimization
The algorithm A solves IOP in a polynomial time. However, the constructed rule can be true
only for very small fraction of decision trees from S. Let, for example, each tree from S contain
more than one node and sets of attributes attached to working nodes of decision trees from S be
pairwise disjoint. Then each inner decision rule over S is true for only one decision tree from
S. To improve this situation, we should use general decision rules over S. Since the problem
of optimization of such rules is NP-hard, we propose a heuristics H for general decision rule
optimization.

The proposed heuristic H uses an algorithm B, which is based on the algorithm A. This
heuristic has polynomial time complexity depending on T (S).

Heuristic H.

For each decision d ∈ D(S), we apply to the set of decision trees S the algorithm B de-
scribed later. After that, among the constructed rules we choose one that is true for the maximum
number of decision trees from S.

Algorithm B.

Step 0. Construct the set I0 that consists of all rules from IR(S) in which the right-hand side
is equal to d and the left-hand side is not empty. Construct the rule → d with empty left-hand
side and denote this rule r0.

Let step i, i ≥ 0, be completed, and a set of decision rules Ii and a decision rule ri be
constructed.

Step i + 1. Apply to the set Ii the algorithm A and, as a result, obtain a decision rule
ρi+1. Construct a decision rule ri+1 in which D(ri+1) = d and C(ri+1) = C(ri) ∪ C(ρi+1).
Remove from the set Ii all rules r such that r and ri+1 are incompatible and all rules r such that
C(r) ⊆ C(ri+1). Denote Ii+1 the set of obtained rules. If Ii+1 = ∅, then finish the work of the
algorithm B and return the rule ri+1. Otherwise, proceed to step i+ 2.

Remark 2 Using Remark 1, one can show that, for each step i of the algorithm B, if the rule ri
is true for a decision tree Γ from S, then Ii ∩ IR(Γ) = ∅.

6. Results of Experiments
In this section, we compare the algorithm A and the heuristic H experimentally on artificially
generated decision tables. Decision trees were constructed with stopping condition where all
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instances associated with the terminal nodes have the same value of decision attribute and using
Gini index as a splitting criterion. The experiments were performed using the Python language
and ChefBoost framework [8].

Let’s recall the main interpretation of the problem considered in the paper. We have n agents
that study similar problems and use attributes from the common set containing m attributes.
Each agent has its own decision table and returns a decision tree for this table. As a result, we
have a set S of n decision trees. We need to find rules that are true for the maximum number of
trees from S.

Two groups of experiments were performed. The main difference between them is in the
choice of conditional attributes in decision tables for each agent. In the first group, we choose
randomly 50% of attributes from the common set, in the second group - 100% of attributes
from the common set. Denote N = {10, 20, 30, 40, 50}, M1 = {10, 20, 30, 40, 50}, and M2 =
{5, 10, 15, 20, 25}.

We now describe the first group of experiments. Fix n ∈ N and m ∈ M1. Choose randomly
m/2 attributes from the set {f1, . . . , fm} and construct a decision table with m/2 columns
labeled with the chosen attributes and m pairwise different rows chosen randomly. Rows are
filled with numbers from the set {0, 1}. They are labeled with decisions chosen randomly from
the set {0, 1}. Using an algorithm based on Gini index, construct a decision tree for this decision
table. Repeat the described step n times (each time, a new decision table is constructed). As a
result, a set S1 of n decision trees is obtained. Repeat the whole procedure 10 times. As a result,
we obtain sets of decision trees S1, . . . , S10. For i = 1, . . . , 10, apply the algorithm A to Si. As
a result, we obtain a decision rule ri. Let ti be the number of trees from Si for which the rule ri
is true. For the fixed m and n, the quality of the algorithm A is the number

t1 + · · ·+ t10
10n

.

For the fixed m and n, the quality of the heuristic H is obtained in the similar way. We find the
quality of A and H for each n ∈ N and m ∈ M1. Figure 2 presents the described procedure for
the first and the second groups of experiments.

Fig. 2. Graphical presentation of the procedure of experiments

Table 1 presents results for the first group of experiments. At the intersection of row m ∈ M1

and column n ∈ N we have two numbers. The top one is the quality of A and the bottom one
is the quality of H for m and n. The column Avg contains average values of qualities A and
H for given m. The row Avg contains average values of qualities A and H for given n. At the
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intersection of the row Avg and the column Avg, we have average values of qualities A and H
for all m and n.

Table 1. The first group of experiments

n
Avg

10 20 30 40 50

m

10
0.36 0.28 0.26 0.24 0.24 0.28
0.82 0.75 0.69 0.69 0.66 0.72

20
0.26 0.15 0.12 0.11 0.10 0.15
0.95 0.82 0.74 0.71 0.67 0.78

30
0.19 0.12 0.09 0.07 0.07 0.11
0.96 0.84 0.79 0.75 0.69 0.81

40
0.19 0.10 0.07 0.06 0.05 0.09
0.99 0.92 0.82 0.78 0.74 0.85

50
0.14 0.10 0.07 0.05 0.04 0.08
0.99 0.94 0.84 0.82 0.77 0.87

Avg
0.23 0.15 0.12 0.11 0.10 0.14
0.94 0.85 0.78 0.75 0.71 0.80

We now describe the second group of experiments. It differs only in the way how the
decision tables are constructed. Fix n ∈ N and m ∈ M2. Construct a decision table with m
columns labeled with the attributes f1, . . . , fm and 2m pairwise different rows chosen randomly.
Rows are filled with numbers from the set {0, 1}. They are labeled with decisions chosen
randomly from the set {0, 1}. The remaining steps of the experiment procedure are the same as
in the first group of experiments. Table 2 presents results for the second group of experiments.
This table is structured like Table 1.

From the results presented in Tables 1 and 2 it follows that the heuristic H constructs rules
which are true for a greater number of decision trees than the rules constructed by the algo-
rithm A. Taking into account the percentage of attributes from a common set (50% in case of
the first group of experiments and 100% in case of the second group of experiments) it is possi-
ble to see that the algorithm A obtains on average better results in the case of Table 2. It follows
from the fact that it is difficult to find an inner rule that is true for two decision trees if these
trees use very different sets of attributes.

7. Conclusions
In this paper, we studied the problems of learning of inner and general decision rules that are
true for the maximum number of decision trees from a given set. We proposed a polynomial
time algorithm A for the first problem and proved that the second problem is NP-hard. We also
proposed a polynomial time heuristic H for the construction of general rules. The algorithm A
and the heuristic H were compared experimentally.

Decision rules are considered as popular and useful form of knowledge representation. They
are easy accessible from the point of view of understanding and interpretation of knowledge
represented by them. The novelty of the proposed way of induction of decision rules is its
application to distributed knowledge and the fact that for constructed sets of decision trees, not
all rules are taken into account but only those which are true for the maximum number of trees.
Such an approach allows us to discover major patterns hidden in the data, especially when we
work with data dispersed among different sources.

Among various applications for the proposed approach, we can distinguish a situation where
a company or a hospital has several branches and each of them uses its own knowledge base.



MOSHKOV ET AL. LEARNING DECISION RULES FROM SETS OF DECISION TREES

Table 2. The second group of experiments

n
Avg

10 20 30 40 50

m

5
0.71 0.67 0.66 0.65 0.63 0.66
0.78 0.67 0.66 0.65 0.63 0.68

10
0.39 0.29 0.29 0.28 0.30 0.31
0.85 0.73 0.65 0.66 0.62 0.70

15
0.26 0.18 0.16 0.13 0.13 0.17
0.86 0.73 0.69 0.67 0.65 0.72

20
0.21 0.15 0.10 0.10 0.09 0.13
0.92 0.79 0.69 0.68 0.66 0.75

25
0.20 0.11 0.09 0.07 0.07 0.11
0.92 0.87 0.71 0.69 0.65 0.77

Avg
0.35 0.28 0.26 0.25 0.25 0.28
0.87 0.76 0.68 0.67 0.64 0.72

Each branch represents the collected knowledge in the form of a decision tree. The main goal is
to obtain patterns that reflect the knowledge that is true for the most of the branches, or for the
company/hospital as a whole.

In the future, it will be interesting to compare the length of the rules constructed by the
algorithm A and by the heuristic H. We are also planning to consider the problem of learning
not only one rule (inner or general), which is true for the maximum number of decision trees
from the considered set, but a group of rules each of which is true for a number of trees close to
the maximum.
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