Architecture Oriented Design to Enhance the Testability of Smart Tourism City IoT System

Wei-ming Ma
Cheng Shiu University, k3666@gcloud.csu.edu.tw

William S. Chao
SBC Architecture International, architectchao@gmail.com

Follow this and additional works at: https://aisel.aisnet.org/pacis2022

Recommended Citation

https://aisel.aisnet.org/pacis2022/350

This material is brought to you by the Pacific Asia Conference on Information Systems (PACIS) at AIS Electronic Library (AISeL). It has been accepted for inclusion in PACIS 2022 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.
Architecture-Oriented Design to Enhance the Testability of Smart Tourism City IoT System

Wei-ming Ma
Information Management
Department, Cheng Shiu University
#840 Cheng-Ching Road, Kaohsiung
K3666@gcloud.csu.edu.tw

Willam S. Chao
SBC Architecture International@U.S.A.
architectchao@gmail.com

Abstract

Testability enhancement is a key factor in the successful Smart Tourism City IoT System (STCIS) systems development. Disciplined system layering, published interfaces, well-defined components, and well-defined behaviors are four main factors to enhance the testability of STCIS. Architecture-oriented design uses the structure-behavior coalescence (SBC) approach to formally design the integration of systems structure and systems behavior of a system. Architecture-oriented design contains three fundamental diagrams: a) framework diagram, b) component operation diagram, and c) interaction flow diagram. Architecture-oriented approach uses three fundamental diagrams: a) framework diagram, b) component operation diagram, and c) interaction flow diagram to accomplish the design of STCIS. Through framework diagram, architecture-oriented design of STCIS demonstrates tremendous effects of disciplined system layering. Through component operation diagram, architecture-oriented design of STCIS demonstrates large effects of well-defined components and published interfaces. Through interaction flow diagram, architecture-oriented design of STCIS demonstrates tremendous effects of well-defined behaviors. Structural equation modeling (SEM) refers to a diverse set of unrelated computer algorithms and statistical methods that fit networks of constructs to data. Finally, we use SEM to verify that architecture-oriented design is really be able to enhance the testability of STCIS.

Keywords: Smart Tourism City IoT System, testability, architecture-oriented design, structural equation modeling