
Association for Information Systems
AIS Electronic Library (AISeL)

All Sprouts Content Sprouts

4-24-2010

Design-task Linkages in Digital Innovation:
Software Platforms at Globalcarcorp
Lena Andreasson
Viktoria Institute, lena.andreasson@viktoria.se

Ola Henfridsson
Viktoria Institute, ola.henfridsson@wbs.ac.uk

Lisen Selander
Viktoria Institute, Lisen.Selander@viktoria.se

Follow this and additional works at: http://aisel.aisnet.org/sprouts_all

This material is brought to you by the Sprouts at AIS Electronic Library (AISeL). It has been accepted for inclusion in All Sprouts Content by an
authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

Recommended Citation
Andreasson, Lena; Henfridsson, Ola; and Selander, Lisen, " Design-task Linkages in Digital Innovation: Software Platforms at
Globalcarcorp" (2010). All Sprouts Content. 347.
http://aisel.aisnet.org/sprouts_all/347

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fsprouts_all%2F347&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sprouts_all?utm_source=aisel.aisnet.org%2Fsprouts_all%2F347&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sprouts?utm_source=aisel.aisnet.org%2Fsprouts_all%2F347&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sprouts_all?utm_source=aisel.aisnet.org%2Fsprouts_all%2F347&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sprouts_all/347?utm_source=aisel.aisnet.org%2Fsprouts_all%2F347&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Working Papers on Information Systems ISSN 1535-6078

DESIGN-TASK LINKAGES IN DIGITAL INNOVATION:
SOFTWARE PLATFORMS AT GLOBALCARCORP

Lena Andreasson
Viktoria Institute, Sweden

Ola Henfridsson
Viktoria Institute, Sweden

Lisen Selander
Viktoria Institute, Sweden

Abstract
The adoption of software platforms in product design can be challenging for manufacturing
firms. In particular, embedded linkages between the organization design (task) and product
design (design) may counteract attempts to induce more agile and flexible innovation
processes. Yet, little research has investigated the influence of software platforms on
design-task linkages in digital innovation. This paper addresses this research problem by
examining the use of software platforms for instrument cluster design at a global automaker.
Drawing on innovation theory, we identify and explicate two types of tensions emerging
when digitizing physical products. Related to temporality and design hierarchy, these
tensions form the basis for a set of implications for the literatures on platforms and digital
innovation.

Keywords: digital innovation, software platform, organization design, product design, case
study, automotive industry

Permanent URL: http://sprouts.aisnet.org/10-25

Copyright: Creative Commons Attribution-Noncommercial-No Derivative Works License

Reference: Andreasson, L., Henfridsson, O., Selander, L. (2010). "DESIGN-TASK
LINKAGES IN DIGITAL INNOVATION: SOFTWARE PLATFORMS AT
GLOBALCARCORP ," Viktoria Institute, Sweden . Sprouts: Working Papers on
Information Systems, 10(25). http://sprouts.aisnet.org/10-25

 Sprouts - http://sprouts.aisnet.org/10-25

http://creativecommons.org/licenses/by-nc-nd/3.0/

Introduction

The increasing digital content of physical products is radically challenging the
innovation processes of established firms (Lenfle & Midler, 2009). On one hand, it multiplies
the space of digital options available for augmenting existing offers and launching radically
new ones (Jonsson et al., 2008; Yoo et al., 2008). On the other hand, seizing emergent digital
options is difficult because established product innovation practices may not involve the
necessary IT capabilities or organizational agility (Henfridsson et al., 2009; Sambamurthy et
al., 2003).

In the innovation literature, significant attention has been paid to the tension between
options provided by new technology and institutionalized practices established over long
periods of incremental innovation (Anderson & Tushman, 1990; Hargadon & Douglas, 2001).
In particular, the notion of dominant design has been coined to capture how innovation
practices typically congeal over time as a template for product innovation within an industry
(Teece, 1986; Murmann & Frenken, 2006; Suarez, 2004). Dominant designs help firms
organizing their innovation processes so that they capitalize on their intellectual, relational,
and technical resources. In particular, established firms orchestrate a reciprocal relationship
between organization design and product design. Baldwin and Clark (2000) refer to this
relationship as the fundamental isomorphism between task structure and design structure.

While tight linkages between design and task is important to exploit a dominant
design, such coupling lowers a firm’s capability to respond to technological discontinuities
(Anderson & Tushman, 1990; Baldwin & Clark, 2000). The integration of digital technologies
in physical products represents such a discontinuity for manufacturing firms (Yoo,
Forthcoming). While existing processes embed an innovation logic fine-tuned for a tangible,
hardware-based business, embedding software into existing product architectures introduces
an alien innovation logic (Svahn et al., 2009) that requires new architectural knowledge
(Andersson et al., 2008; Henderson & Clark, 1990). A pressing issue is therefore how to
handle these parallel logics by building appropriate linkages between the design structure and
task structure of innovation processes.

We investigated this pressing issue by conducting case study research of a global
automaker’s, GlobalCarCorp, adoption of a software platform for differentiating in-car user
interfaces across brands and regions. The adoption of this software platform simultaneously
provided new digital options and challenged the established design-task linkages. While
platforms for managing differentiation through product families are commonplace at
manufacturing firms such as GlobalCarCorp (Cooper et al., 2001; Karlsson & Sköld, 2007;
Robertson & Ulrich, 1998) the adoption of platforms for managing software families
(Clements & Northrop, 2001; Pohl et al., 2005) is a recent phenomenon. In our case study
research at the global automaker, we found a disconnect between traditional platform
practices and those evoked by using the new software platform. The research question
addressed in this paper is: how does the adoption of software platforms affect established
design-task linkages in the innovation of physical products with increasing digital content?

The remainder of the paper is structured as follows. Section two reviews the existing
platform literatures on product families and software product lines. Section three outlines a
theoretical framework with which to understand task-design linkages in digital innovation.
While section four presents the research methodology, section five outlines the findings of our
case study. Analyzing the case, section six outlines implications for theory and practice, and
concludes the paper.	

	

 Sprouts - http://sprouts.aisnet.org/10-25

Related Literature

Halman et al. (2003, p.150) depict a platform as “the common basis of all individual
products within a product family”. It provides a set of generic resources with which to
generate derivative products (Pohl et al., 2005). Platforms increase the speed and agility of the
development process (Yang & Jiang, 2006), promote diversification (Kim & Kogut, 1996),
and facilitate brand differentiation (Sköld & Karlsson, 2007). The adoption of platforms in
product innovation is both a question of devising new organizing principles (Cusumano &
Gawer, 2002) and adopting new principles for systems development and design (Lyytinen et
al., 1998). In this regard, platforms concern both the task structure and the design structure of
innovation design (cf. Baldwin & Clark, 2000; Smolander et al., 2008).

For the purposes of this paper, we review two streams of platform literature. We first
review the extant body of knowledge on product families in the innovation and technology
management literature (see e.g., Halman et al., 2003; Krishnan & Gupta, 2001). We then
examine platform thinking for developing software families (Clements & Northrop, 2001;
Pohl et al., 2005).

Product Platform Research
Product platforms are important to accomplish differentiation (Aaker, 2003;

MacMillan & McGrath, 1997; Pine II, 1993; Robertson & Ulrich, 1998). Conceptualized as
product family, product platform, or product line research (Halman et al., 2003; Robertson &
Ulrich, 1998), this literature addresses the problem of offering a differentiated product
without increasing cost and development time proportionally. For instance, new approaches
for designing product platforms (see e.g., Chen & Wang, 2008; Muffatto & Roveda, 2000);
and understanding multi-branded product families (Sköld & Karlsson, 2007) have been
developed. Much of the product platform research has been conducted in the automotive
industry, where the combination of scale advantages and variety in the product portfolio is
important.

The role of platforms in developing product families is to provide a common
architecture. The common architecture can be used to implement differentiation attributes to
maintain or increase the market share and keep customer attention (Aaker, 2003). It allows for
the delivery of well-adapted products while maintaining a high degree of commonality of
components (Lundbäck & Karlsson, 2005). In this regard, mass-scale advantages can be
combined with customization (Pine II, 1993).

Software Platform Research
Even though Parnas (1976; 1978) introduced the idea of software families as early as

in the seventies, the bulk of literature on this topic has appeared during the last ten years
(Clements & Northrop, 2001; Meyer & Seliger, 1998; Pohl et al., 2005). Reflecting its
software engineering origin, the literature on software platforms and software product lines is
design-oriented in its emphasis on platform development for creating and managing software
families. As outlined by Clements and Northrop (2001, p. 5) “a software product line is a set
of software-intensive systems sharing a common, managed set of features that satisfy the
specific needs of a particular market segment or mission and that are developed from a
common set of core assets in a prescribed way”.

The emphasis on identifying commonalities within the software family and the options
of variability makes software product line engineering geared towards software-based
differentiation. The creation of variation through software product lines is enabled by tailoring
components of a common platform through preplanned variation mechanisms. Variation
mechanisms include assembling and adding new components (Northrop, 2002). Using a

 Sprouts - http://sprouts.aisnet.org/10-25

common platform, costly development of new tools and models for each product change is
virtually avoided. Thus, firms adopting software platforms and software product line
engineering are promised to achieve product differentiation in a more cost-effective way.
Indeed, it is argued that the use of software platforms for creating software families not only
results in lower costs, shorter lead times, and increased variety, but also in higher quality of
software products belonging to the same family (Ereño et al., 2006).

Transcending the Disciplinary Boundaries
The increasing digital content of physical products makes software platforms and

families increasingly relevant for manufacturers of physical products such as airplanes,
automobiles, and consumer devices. As Lenfle and Midler (2009, p. 156) note, however, “this
does not mean that physical goods disappear from our universe but that they are more and
more associated with complex services”. In other words, the adoption of software platforms to
increase variation and differentiation cannot be done at the expense of traditional product
platform thinking.

A software platform initiative typically constitutes a major design effort that might
transform established development practices while providing opportunities for new ways of
organizing (Jones, 2003). In other words, the problem facing firms engaged in digital
innovation is that product platforms and software platforms must be handled simultaneously.
Given the existence of a dominant design (Murmann & Frenken, 2006; Teece, 1986)
manifested in product platforms, this problem will involve leveraging software platforms
within and across established design-task linkages. Next section introduces our theoretical
framework and the notion of design-task linkages.

Theoretical Framework

Our theoretical framework draws on literature that examines the relationship between
organization design and product design in innovation (Baldwin & Clark, 2000; Henderson &
Clark, 1990; Sosa et al., 2004). The alignment of these entities in the innovation process is
important to enable effective product development (Henderson & Clark, 1990). In fact,
Baldwin and Clark (2000) even refer to this relationship as the “fundamental isomorphism”.
In doing so, they not only underline the reciprocal relationship between the organization
design and product design but also the inherent difficulty to change either of them.

The organization of an innovation process can be described as a set of tasks needed to
be performed to realize a design (Baldwin & Clark, 2000). The task structure implies
organizational elements that link the organization design to the product design. Examples of
such elements are communication channels, information filters, and problem-solving
strategies (Henderson & Clark, 1990). Communication channels represent the formal and
informal ways by which different groups of people interact and transfer knowledge within the
organization (Baldwin & Clark, 2000; Sosa et al. 2004). In such communication,
organizations develop shared information filters for distinguishing relevant information from
irrelevant information, working as a type of attention-structures (Henfridsson, 2000; March &
Olsen, 1976). Finally, organizations develop problem-solving strategies for handling routine
problems in a standardized way.

Henderson and Clark (1990) demonstrate that the task structure used by a firm
typically embed the architectural knowledge of the product. In this regard, communication
channels, information filters, and problem-solving strategies work as the glue, or linkages,
between tasks and the product design. Encompassing its architecture and functions, the
product design structure is a description of the innovation (Baldwin & Clark, 2000). In this
regard, it represents not only the technical blueprint of the innovation but also defines the

 Sprouts - http://sprouts.aisnet.org/10-25

adaptability of the design to changing circumstances and markets. Typically, physical
products embed a hierarchical structure (Alexander, 1964; Clark, 1985; Murmann & Frenken,
2006), enabling flexibility because of its implementation of independence between
decomposed elements of the innovation (Ulrich, 1995; Baldwin & Clark, 1997; Sanchez &
Mahoney, 1997).

Given the theoretical background above, we refer to design-task linkages as the
institutional arrangements enacted by designers that align the set of tasks performed to
realize an innovation and its design architecture. Following Henderson and Clark (1990), we
refer to institutional arrangements as communication channels, information filters, and
problem-solving strategies. As Sosa et al. (2004) argue, however, it would be naïve to expect
a perfect match between task and product in complex product development. This paper is
based on the assumption that the introduction of digital content in a physical artifact, such as a
car subsystem, will disturb the linkages between task and design in the innovation process.
The established linkages build on a dominant design conveying a hardware and product
platform focus, while the new and emerging linkages need to handle the parallel logics of
hardware and software (Svahn et al., 2009).

Research methodology

Research Setting and Design
In order to address the research question of how the adoption of software platforms

affects established design-task linkages in the innovation of products with increasing digital
content, we conducted case study research at one of the world’s largest automakers,
GlobalCarCorp. We selected GlobalCarCorp because they had recently adopted a new
software platform for designing a family of user interfaces for car instrument clusters.
Because GlobalCarCorp hosts many car brands that are sold globally, the automaker had
strong incentives to identify and develop product platforms for making differentiation across
brands and regions economically feasible.

Designed as case study research (Eisenhardt, 1989), our 20-month study was initiated
in 2007 and focused on the process by which differentiation of instrument clusters was
accomplished at GlobalCarCorp. Exemplifying process research rather than variance research,
the intention was to identify and predict “patterned regularities over time” (Markus & Robey,
1988). This emphasis guided our data collection and analysis towards the decision, events,
and activities (Langley, 1999) related to the adoption of the software platform
(SoftClusterPlatform) at GlobalCarCorp.

While there existed a number of different roles related to HMI (Human Machine
Interface) development at GlobalCarCorp, the roles can be divided into two main categories;
HMI engineers (such as ergonomists and interaction designers) and design engineers (such as
product design engineers, marketers, and functional unit engineers). With the implementation
of the SoftClusterPlatform however, the HMI development group expanded to include yet
another category; software engineers. Prior to the SoftClusterPlatform, the HMI engineers’
main responsibility were to develop specifications for suppliers. Meanwhile, the design
engineers focused on graphical design, marketing strategies, and development of functional
units (e.g., FM tuners and navigation). Design engineers also provided the HMI engineers
with necessary information for specification development. However, as indicated, the
relationship between these groups changed considerably with the implementation of the
SoftClusterPlatform and the decision of in-housing software development. This will be further
elaborated in the following sections.

 Sprouts - http://sprouts.aisnet.org/10-25

Data Collection
Concurring with the typical case study, our data collection included multiple data

sources such as participant observation, semi-structured interviews, workshops, and
documents review. Figure 1 depicts the time line of the data collection.

First, the first author of this paper spent considerable time at GlobalCarCorp with the
intention of developing a thorough understanding of design-task linkages. During a six-month
period (October 2007- May 2008), she even had a desk at the research site, attending meetings
and interacting with employees at GlobalCarCorp on a weekly basis. The first author’s
presence at GlobalCarCorp enabled informal conversations with respondents during coffee
breaks, lunches, and meetings. Such conversation added depth to the data material and
enabled a fine-grained understanding of the software platform initiative at GlobalCarCorp. A
total of about 80 contacts were documented during this participant observation.

Figure 1: Time line of data collection

Second, we conducted, recorded, and transcribed 38 semi-structured interviews. The
average length of the interviews was 64 minutes with a standard deviation of 24 minutes.
Respondents ranged from managers to developers (see Table 1), covering expertise in areas
such as ergonomics (HMI engineers), product design engineers (design engineers) and
software development (SW engineers).

Category Role Number of interviews

HMI engineers HMI managers

Ergonomists

Interaction designers

4

4

5

Design engineers Product design engineers

Marketing

Functional unit responsible

2

1

1

SW engineers SW managers

SW engineers

6

15

Table 1: Overview of interviews; HMI development group

Third, two workshops were organized to validate the empirical findings over time.
They allowed us to refine our understanding of the case and complement facts. In addition,
consistent with the notion of engaged scholarship (Van de Ven, 2007), this was an

 Sprouts - http://sprouts.aisnet.org/10-25

opportunity for GlobalCarCorp practitioners to reflect upon their practice in view of our
findings and recommendations.

Finally, documents review included assessments of system specifications and concept
descriptions. Such assessment was important for, e.g., tracking the specific details of the
software platform investigated.

Data Analysis
The data analysis was supported by a qualitative data analysis software package

(ATLAS.ti). The initial analysis involved open coding, that is, naming and taking segments of
data apart (Charmaz, 2006; Strauss & Corbin, 1998). This open coding process generated
hundreds of codes, which shaped the entire empirical frame from which we built our analysis.

The open coding procedure was followed by focused coding, searching for emergent
core categories in the material (Charmaz, 2006; Miles & Huberman, 1994). This involved a
linking and consolidating process in which we examined the relationship between codes,
crystallizing the experiences and interpretations of the software platform initiative at
GlobalCarCorp. All in all, the focused coding resulted in five coding families; architecture,
communication, software development process, differentiation and organization. These
coding families established a strong analytical ground from which to work with the data.

After discussing the coding scheme within the research team, we examined the
empirical findings against the literature, understanding the coding families from a theoretical
perspective. Drawing on innovation literature, linkages between design and task structures
were deemed to be a suitable lens to use for exploring the disconnect between the traditional
platform practices and the new software platform initiative at GlobalCarCorp.

The SoftClusterPlatform at GlobalCarCorp

In 2005, one subdivision of GlobalCarCorp received global responsibility for R&D on
instrument clusters. This responsibility was awarded in a transition period of instrument
cluster design. The use of digital displays in the instrument cluster enabled more flexible ways
of presenting information to the driver. Digital displays enable presentation of a variety of
driver information such as tire pressure, radio frequency, driving speed, and navigation
information (see Figure 2).

Figure 2: Instrument cluster with reconfigurable digital display

This change in technological basis introduced a range of options for digital
differentiation. GlobalCarCorp decided to exploit this potential by initiating a software
platform initiative. Given its traditional hardware basis, however, the software platform
initiative challenged the established linkages between task and design structures. In particular,
it slowly changed the skills and capabilities required for excelling in innovation, since
instrument clusters were increasingly dependent on embedded digital technology. In addition,

 Sprouts - http://sprouts.aisnet.org/10-25

the global responsibility was transforming the scope of the instrument cluster group. A
software manager described:

A decision was taken that we [GlobalCarCorp] should own all strategically important software. […] the first
step was to take control over the HMI software, this was followed by a need to control the application software
as well. For us, this meant that we were in a need of change.

Previously, the HMI development group designed clusters for a single car brand
within GlobalCarCorp’s multitude of brands. Now, they were confronted with the challenging
task to handle a portfolio of different clusters across brands, car models, customer segments
and regions. This was found to be a comprehensive task:

We are supposed to work as a central coordinator. In other words, we get information from different sources
that we need to structure and determine which requirements to address. It’s like ’I can fulfill your requirements
but I can’t fulfill his requirements at the same time‘ […] One cannot implement and support both requirements
[…] If you are lucky someone takes the decision of what to prioritize for you, but it’s a process that needs some
sort of structure.

One of the major barriers to handle the newly awarded responsibility was the
traditionally slow pace of the product development process, and the difficulty of finding ways
to communicate within the global organization. Serving multiple brands and models, the
escalating number of change requests from departments across the globe was increasingly
pressing. The HMI development group was supposed to coordinate all (world wide) incoming
requirements.

It’s all about costs. There used to be at least three different organizations within GlobalCarCorp that developed
these systems and architectures based on their own perceptions on what they think is good or bad. This drives
costs so now they want us to join as one.

Initiating this transformation, GlobalCarCorp pursued an economy of scale strategy
with the intention to gain scale advantages on the hardware side, while accomplishing
differentiation across brands, models, and regions through software. Initiating the work with
in-housing the software development process, GlobalCarCorp identified five product families
to organize and manage instrument cluster variants for over 80 car models, amounting to
approximately 3.8 million cars each year until 2012. In particular, the new strategy involved
novel software architecture for increasing flexibility and new ways of structuring current
design processes, as noted by one of the software engineers:

The idea was to become more flexible and be able to implement and modify the HMI software very late in the
development process. Management did put lot of weight on flexibility and on enabling new ways for
differentiation between brands.

This need of increased flexibility was guided by organizing clusters into different
families. Each cluster family was divided into different levels: base, mid, and high,
representing levels of appearance and features. Given the global responsibility and the
multitude of clusters, the complexity of handling software variants became considerable.

Previous Design and Task Linkages at GlobalCarCorp
Prior to the software platform initiative, different groups of HMI engineers, located

worldwide, were responsible for the instrument cluster. Based on input from design
departments and functional managers, they developed HMI requirements and specifications,

 Sprouts - http://sprouts.aisnet.org/10-25

corresponding to the overall cluster design, that later would be implemented by the selected
instrument cluster supplier (see Figure 3).

Figure 3: GlobalCarCorp’s old task structure for instrument cluster design

This task structure had been institutionalized over years of HMI development at
GlobalCarCorp. The supplier was responsible for implementing and delivering the integrated
cluster, including both hardware and software. Once implemented, GlobalCarCorp tested and
evaluated the cluster. Changes, updates, and new requirements were collected and submitted
to the supplier as change requests. In effect, the iterative element between the supplier and
GlobalCarCorp was comprehensive, sometimes even tedious. As illustrated by the words of a
HMI engineer:

The easiest way to describe our former development process was that we verbally described what we wanted to
accomplish. […] We did a lot of flowcharts and power points, that type of visual documentation.[…] and then
we went to the supplier and interacted with them, asking each other questions like ”how should we solve this”
and “this situation is unique, we have to make an adjustment”. After that we updated the specification with the
information that the supplier needed. It was an interactive process between us and the supplier.	

Moreover, each iteration included tasks, such as, specifying, testing, and improving
the final cluster design. This process was not only time-consuming and expensive due to
much iteration between GlobalCarCorp and the supplier; it was unique, although similar, for
each brand within GlobalCarCorp.

Differences in requirements interpretation between GlobalCarCorp engineers and the
supplier often resulted in a gap between the final implementation and GlobalCarCorp’s
original intention. These misunderstandings between suppliers and GlobalCarCorp were
frustrating, not least because new requirements emerged over time as well. Such requirements

 Sprouts - http://sprouts.aisnet.org/10-25

typically included seemingly minor issues such as the change of a word, bitmap, or a color.
An HMI engineer described the requirement process:

We felt as if we were in the hands of the suppliers. Even a minor change such as a spelling mistake, a change of
color or appearance demanded several iterations [with the supplier] and cost a lot of money.

In fact, as another engineer noted, late change requests were anticipated by the
supplier, essentially working as an important component in their business model. So, in 2005,
with the idea of the new software platform, GlobalCarCorp attempted to change the old
cluster task structure by in-housing the HMI software development process. As a response to
the problems documented above, GlobalCarCorp hired two software firms to help them
develop a software platform that would facilitate flexible generation of variants within a
cluster family. We refer to this platform as the SoftClusterPlatform, referring to its intention
to speed up and facilitate the handling of change requests through software.

The SoftClusterPlatform
The SoftClusterPlatform consisted of four main components; a database, a

communication protocol, a HMI engine and an editor that facilitated design, development and
deployment of digital user interfaces for instrument clusters (see Figure 3).

First, the XML-based database allowed for differentiation of software embedded in
instrument clusters. It was developed to help mapping existing and forthcoming product
families by pre-defined software components and templates. The database contained all the
logic and appearance needed for a graphical interface, for example priority handling,
animations, and visual effects, as well as text strings for different languages.

Second, the communication protocol allowed for a more flexible way of managing
functional units such as the tuner, phonebook, and thermometer, as well as units related to the
condition of the car. Moreover, dynamic data such as the set radio frequency from the tuner or
current incoming call from phonebook could be handled. Essentially, the protocol was
designed to decouple the functional units from the HMI software.

Third, using the editor, a software engineer could differentiate the common cluster
display through changes to the XML-files controlling static data such as font, language,
colors, layout, and graphics. The editor facilitated specification of an entire graphical interface
with all its elements along with converting the database to a binary format for the HMI engine
to use.

Finally, the HMI engine interpreted the database and received dynamic information
from the functional units. As illustrated in Figure 4, static data from the database, dynamic
data from functional units, and user inputs employed the HMI engine to generate the graphical
user interface on a display.

 Sprouts - http://sprouts.aisnet.org/10-25

 Figure 4. The SoftClusterPlatform.

So, unlike the previous cluster development process, the SoftClusterPlatform would
enable the development of one basic software module for all types of displays in a specific
cluster family. As an example, the SoftClusterPlatform handled text strings (notations and
characters) in multiple languages. At this time, GlobalCarCorp implemented, updated,
evaluated, and maintained 23 languages simply for the instrument cluster.

With the possibility to reuse and inherit patterns stored in databases along with a
flexible way to handle new functional units, new graphical interfaces could be developed in
an agile manner. One of the HMI engineers commented on the advantages of the platform:

The advantage of the editor [which is the component most visible to the people developing the HMI software] is
that we can test, visualize and evaluate so many more possibilities. If I have an idea I can go to Peter or Mike
and explain my idea and after a couple of minutes they show me the solution and ask “Is this what you were
thinking of?” […] It can be visualized directly with the editor.

Traditionally, the process of implementing new interfaces was mediated through
sketches using PowerPoint or Visio. With the SoftClusterPlatform, however, this process
would be more structured and the cycle of implementation and evaluating new graphical
interface proposals would be shortened.

Using the Platform
Before implementing the SoftClusterPlatform, each brand-specific cluster had a

responsible manager. With the new initiative, however, the governance of the clusters was
attributed to the HMI development group with a single HMI manager responsible for the
SoftClusterPlatform. Developing this platform, however, little focus was put on transforming
the task structure to harvest the anticipated benefits of the platform. This problem became
increasingly clear to the software engineers:

It appears as if the organization cannot deal with this. It feels as if we have this “jet engine” assembled on a
bicycle.

 Sprouts - http://sprouts.aisnet.org/10-25

Given that the supplier previously did the software implementation, GlobalCarCorp’s
design group was dominated by cognitive ergonomics and interaction design competences,
rather than software expertise. Using the SoftClusterPlatform, programming skills in general
and XML competence in particular was required. However, the organization was reluctant to
change and conform to the new situation. In particular, the traditional way of developing
instrument clusters, with significant focus on hardware components and their design structure
and coupled task structure, virtually remained at the automaker (see Figure 5).

	

 Figure 5 The emergent task structure for instrument cluster design

One example of this prevalence of institutionalized practices was the lack of standard
operating procedures for gathering and communicating software requirements from
GlobalCarCorp stakeholders. One of the group managers for software development observed:

We have never succeeded in uniting the people making the software with them doing prototypes and the people
doing cliniques [tests and evaluations]. Such a process never existed; we haven’t succeeded in getting that
together at GlobalCarCorp. It is too much focus on the platform. We should have focused more on the process
and organization than on the platform.

In this regard, software engineers were required to work proactively to gather relevant
information. In order to meet deadlines and overall productivity pressure, software engineers
typically had to make decisions outside their obligations. Essentially, they had to develop
informal ways of gathering requirements, typically drawing on requests from people they
already knew or were referred to by other employees. As one software engineer explained:

 Sprouts - http://sprouts.aisnet.org/10-25

I suppose that the lack of processes and general strategies for this [requirement process] is a result of the
previous processes. Back then you collected all documented requirements and simply sent it to the supplier
producing the cluster. All you said was ‘do this and come back when you’re done’. Everything was done outside
of the organization by the supplier. […]Today the whole requirement process is vague, many of the requirements
come to you as post-it notes or by e-mail. It causes confusion, you know ‘too many cooks spoil the broth’.

Ideally, the requirement gathering process would involve input from people working
on marketing, interaction design, and functional units (e.g., radio, antenna, or navigation).
However, without any generic process in place, software engineers often faced conflicting
requirements and had to rely on individual judgment. As illustrated by a software engineer:

We often need to run around and find people with whom to discuss what to implement. Then we get a pretty good
picture of how the function, and its HMI [graphical interface], should look like, what kind of details and where
they belong and things like that […] but there is no process, no formal way of doing it.

Before adopting the SoftClusterPlatform, the tasks of the HMI engineer were
separated from other modules of the instrument cluster. In fact, many decisions were made by
the supplier, including the important tasks of pooling and integrating requirements. With the
SoftClusterPlatform, integrating requirements were in the hands of software engineers. This
was a difficult transformation:

We have this platform, like a tool box, and we can do anything that the toolbox allows us to do […] but if the
company does not know what’s in the toolbox, then we have a huge problem. This is something that we need to
improve on an organizational level, the design and implementation tasks need to be much more coordinated […]
it’s all about communication channels.

The new task and design structures required work groups to interact to build and
renew knowledge that previously rested with the supplier. While the newly employed
software engineers faced the results of the new platform, other stakeholders at GlobalCarCorp
were largely unaware of the requirement process. As a result, they held on to the old task and
design structures, established before introducing the software platform initiative.

Discussion and Implications

We set out to analyze how the adoption of software platforms affects design-task
linkages in the innovation of physical products with increasing digital content. With this focus
in mind, we conducted case study research of a software platform initiative at GlobalCarCorp.
In what follows, we first use Henderson and Clark’s (1990) innovation theory to zoom in on
problem-solving strategies, communication channels, and information filters for tracing
changes in design-task linkages when the SoftClusterPlatform was adopted at GlobalCarCorp.
This analysis is then used for generating insights about tensions between the physical and the
digital in product innovation. Lastly, we outline implications for research and practice.

Design-Task linkages at GlobalCarCorp
Problem-Solving Strategies. Organizations develop problem-solving strategies to

tackle problems in its immediate environment. As linkages between product design and
organization design, such strategies offer solutions to routine problems and is reflected in the
organization’s architectural knowledge (Henderson & Clark, 1990).

At GlobalCarCorp, years of experience of working with instrument cluster design had
established a set of solutions to routine problems that were challenged by the adoption of the
SoftClusterPlatform. In particular, problems-solving strategies associated with the traditional

 Sprouts - http://sprouts.aisnet.org/10-25

set-up between GlobalCarCorp and suppliers did not resonate well with the virtues of the new
platform. Considering that the suppliers used to deliver the cluster as a package consisting of
both hardware and software, GlobalCarCorp’s decision to take command over the software
side of the cluster made some of the previous strategies obsolete. For instance, the
requirements gathering process assumed the former set-up with suppliers. This was reflected
in the difficulties for the newly appointed software engineers to gather change requests.

With the SoftClusterPlatform, GlobalCarCorp had the technical resources for
accomplishing agile prototyping and update opportunities, problems frequently experienced
when communicating with suppliers. However, the specific software knowledge rested with
the suppliers, which made it difficult to draw on these resources in an efficient way.
Essentially, GlobalCarCorp lacked routine solutions to everyday design problems related to
the emergent task structure. This was particularly clear in the case of software updates (one of
the promised benefits with the platform), which, in practice, failed to exploit the capability of
the SoftClusterPlatform. Even with the recruitment of software engineers, the remainder of
the organization continued to rely on established problem solving strategies. As a result,
requirements gathering and change requests were handled ad hoc on a case-by-case basis,
creating a stressful and dysfunctional work environment. The unmatched interactions (Sosa et
al., 2004) between the software engineers and the rest of the organization indicated design-
task misalignments at GlobalCarCorp.

Communication Channels. Communication channels represent the formal and
informal ways by which different groups interact, and transfer knowledge, within the
organization (Sosa et al., 2004; Baldwin & Clark, 2000; Henderson & Clark, 1990). As such,
communication channels provide an indication of people’s knowledge of how different
product components are interconnected (Henderson & Clark, 1990; Sosa et al., 2004).

The communication channels at GlobalCarCorp reflected the HMI development
groups, including design tasks and HMI engineering. This high degree of group
specialization, associating people with a specific range of tasks, was greatly institutionalized
at GlobalCarCorp. Although allowing concurrent design, it imposed barriers to cross-team
interaction. Prior to the SoftClusterPlatform, the different HMI development groups
communicated directly with suppliers. By-passing the supplier, GlobalCarCorp engineers
perceived a capability gap at the interface between hardware and software.

The SoftClusterPlatform imposed cross team interactions, changing both internal and
external communication channels at GlobalCarCorp. The network nature of the software
platform triggered attempts to find new communication channels across teams. For instance,
the software engineers, who implemented the HMI software, communicated interactively with
ergonomics, HMI engineers, and different functional groups. Additionally, realizing the
potential of the software platform, software engineers struggled with having other groups
communicating with them on a regular basis about possible new designs.

Information Filters. Organizations develop information filters for identifying the
most important information for certain tasks (Henderson & Clark, 1990). Over time, such
filters become an important organizational element enabling efficient product development.

Traditionally, the differentiation of instrument clusters was in the hand of brand-
specific groups at GlobalCarCorp. Over the years, these groups developed a number of
practices that helped them distinguish relevant input from irrelevant input in the design
process. For instance, they drew on a set of design principles that would distinguish their
brand from other brands in the same product family. Such differentiation was typically
accomplished through associating car brands with different visual expressions. Examples of
such expressions in the cluster display would be particular uses of fonts and colors.

With the SoftClusterPlatform initiative, this differentiation was not only centralized to
the investigated subdivision of GlobalCarCorp but also involved a new type of organizational

 Sprouts - http://sprouts.aisnet.org/10-25

role: the software engineers. The actual deployment of visual expressions was now done by
software engineers, rather than by HMI engineers in cooperation with the supplier. As a
result, the traditional information filters, involving certain explicit and implicit design
principles, were challenged.

This challenge was manifested in the difficulties that software engineers experienced
when attempting to prioritize between different requirements. Without the long experience of
the traditional HMI engineers, they were much reliant on other stakeholders when
implementing cluster designs. They were unable to accomplish swift filtering of requirements,
especially when requirements were in conflict with each other. In addition, they typically
needed to be very active in collecting necessary information for implementing a requirement.
Other stakeholders still operated with previous task structures in mind, meaning that the
software engineers sometimes felt by-passed.

Despite serving as gatekeepers (Sosa et al., 2004; Tushman, 1977) software engineers’
little experience from instrument cluster design and HMI engineering did not have a basis for
filtering information. As a result, software engineers were frustrated about the seemingly ad-
hoc basis of their work.

Digital-Physical tensions
So, how does the adoption of software platforms affect established design-task

linkages in the innovation of physical products with increasing digital content? Our study at
GlobalCarCorp suggests that increasing digital content in physical artifacts is a challenge that
cuts across the organization. GlobalCarCorp’s disintegration of the instrument cluster as a
hardware component and the software used for driver information and visual expression
offered new flexibility. The newly recruited software engineers could now potentially address
change requests swiftly, traditionally handled through close supplier interaction with long
lead times and high costs. The redefined supplier relationship created new roles (e.g., software
engineer) and redefined roles (e.g., HMI engineer) at the automaker. Indeed, the software
platform initiative rendered some important implications associated with the fundamental
isomorphism between design structure and task structure (Baldwin and Clark 2000).

 We propose two specific digital-physical tensions that influence linkages between
organization design and product design. First, the digitization of physical artifacts is
characterized by an inherent temporal tension between the processes linked to manufacturing
and the processes linked to software design. As Fine (1998) succinctly points out, industries
operate at different clockspeeds. The automotive industry is slower than the average industry,
compensating massive investments in new car lines with product lifecycles of four years or
longer. At the other end of the continuum, the software industry is characterized by a
considerably faster rhythm, where the lack of physical constraints makes new product releases
commonplace and frequent. In the digitized instrument cluster, these two industries met,
creating dissonance with the traditional automotive way of working. The SoftClusterPlatform
was an attempt to handle this dissonance but the anticipated benefits were not gained because
of its disturbance of established problem-solving strategies, information filters, and
communication channels.

Second, the increasing digital content of physical artifacts involves a design hierarchy
tension. As documented in the product innovation literature (Clark 1985, Murmann and
Frenken 2006), physical products imply a hierarchical structure where the product-lead firm
(e.g., the automaker) controls the design and its different layers of suppliers. In practice, this
hierarchical structure largely influences the everyday work of automotive engineers relying on
clear-cut relationships with suppliers, expected to deliver according to requirements and
change requests. In contrast, software is characterized by a networked structure, where
software patterns can be reused as solutions in different contexts without any imposed

 Sprouts - http://sprouts.aisnet.org/10-25

hierarchical order. Blending these two logics in the same design will inevitably create
dissonance in established design-task linkages at industrial age companies such automakers.

Implications
Our analysis proposes two tensions – temporality tension and design hierarchy tension

– that emerge when digitizing physical artifacts. Reflecting the inherent difference between
the physical and the digital, these tensions are manifested in the linkages between the
organization design and product design. Our examination of problem-solving strategies,
communication channels, and information filters (Henderson and Clark 1990) at
GlobalCarCorp shows that the established way of linking the task structure and the instrument
cluster was severely challenged.

We argue that the management of the co-existing digital-physical logics requires
careful attention to design-task linkages. Although our study was conducted in the automotive
industry, this is also true for other industries where physical products are digitized (cf.
Benner, 2010; Trispas, 2009). Looking at the two different streams of platform literature,
little, if any, attention is paid to digital innovation and the tensions following the co-existence
of product and software platforms. The perspective developed throughout this paper provides
insights that are new to both platform literatures.

First, the literature on product families (Halman et al., 2003; Karlsson & Sköld, 2007;
Robertson & Ulrich, 1998) pays scant attention to the increasing digitization of physical
products. As a result, it does not recognize either temporality tensions or design hierarchy
tensions. Originating in industries with long product life cycles, this stream of research cannot
cater for variety produced through software, characterized by a higher clockspeed than
physical products. It assumes that product families are long-term investments, where platform
thinking primarily aims at making a product platform endure to achieve the mass-scale
advantages required to harvest massive investments in technical development and production.
Similarly, the software platform literature (Clements & Northrop, 2001; Pohl et al., 2005)
focuses on the variety created through digital technology. However, it tends to disregard how
software platform deployment is embedded in a surrounding task structure, dominated by a
manufacturing paradigm.

Our research suggests that the increasing digital content of physical products paves the
way for a new emerging stream of research. Accommodating findings in the product
innovation and software engineering in a concerted effort may be useful in generating new
insights on this topic. Given that these literatures are currently divided along disciplinary lines
in their investigation of platforms, it may be argued that such accommodation is best done by
researchers who appreciate both organizational and technical issues. IS researchers are
therefore well-positioned to investigate the role of temporality and clockspeed, as well as
design hierarchy tensions, as these issues emerge as fundamental problems for firms that
orchestrate innovation in the digital age.

 Sprouts - http://sprouts.aisnet.org/10-25

References

Aaker D (2003) The power of the branded differentiator. Sloan Management Review, 83-87.
Alexander C (1964) Notes on the synthesis of form. Harvard University Press, Cambridge,

MA.
Anderson P and Tushman M (1990) Technological discontinuities and dominant designs: A

cyclical model of technological change. Administrative Science Quarterly 35(4), 604-
633.

Andersson M, Lindgren R and Henfridsson O (2008) Architectural knowledge in inter-
organizational IT innovation. Journal of Strategic Information Systems 17, 19-38.

Baldwin C and Clark K (1997) Managing in the age of modularity. Harvard Business Review
75(5), 84-93.

Baldwin C and Clark K (2000) Design rules: The power of modularity MIT Press,
Cambridge, MA.

Benner M (2010) Securities analysts and incumbent response to radical technological change:
Evidence from digital photography and internet telephony. Organization Science 21(1),
42-62.

Charmaz K (2006) Constructing grounded theory: A practical guide through qualitative
analysis. Sage Publications Ltd.

Chen C and Wang L (2008) Product platform design through clustering analysis and
information theoretical approach. International Journal of Production Research 46(15),
4259-4259.

Clark KB (1985) The interaction of design hierarchies and market concepts in technological
evolution. Research Policy 14(5), 235-251.

Clements P and Northrop L (2001) Software product lines: Practices and patterns. Addison-
Wesley Professional.

Cooper R, Edgett S and Kleinschmidt E (2001) Portfolio management for new product
development: Results of an industry practices study. R&D Management 31(4), 361-380.

Cusumano MA and Gawer A (2002) The elements of platform leadership. MIT Sloan
Management Review Spring, 51-58.

Eisenhardt KM (1989) Building theories from case study research. Academy of Management
Review 14(4), 532-550.

Ereño M, Landa U and Cortazar R (2006) Software product lines structuring based upon
market demands. SIGSOFT Software Engineering Notes 31(2), 13.

Halman JIM, Hofer AP and van Vuuren W (2003) Platform-driven development of product
families: Linking theory with practice. Journal of Product Innovation Management 20,
149-162.

Hargadon AB and Douglas Y (2001) When innovations meet institutions: Edison and the
design of the electric light. Administrative Science Quarterly 46, 476-501.

Henderson RM and Clark KB (1990) Architectural innovation: The reconfiguration of
existing product technologies and the failure of established firms. Administrative Science
Quarterly 35, 9-30.

Henfridsson O (2000) Ambiguity in IT-adaptation: Making sense of first class in a social
work setting. Information Systems Journal 10, 85-104.

Henfridsson O, Mathiassen L and Svahn F (2009) Reconfiguring modularity: Closing
capability gaps in digital innovation. Sprouts: Working Papers on Information Systems
9(22),

Jones C (2003) Variations in software development practices. IEEE Software 20(6), 22-27.

 Sprouts - http://sprouts.aisnet.org/10-25

Jonsson K, Westergren U and Holmström J (2008) Technologies for value creation: An
exploration of remote diagnostics systems in the manufacturing industry. Information
Systems Journal 18(3), 227-246.

Karlsson C and Sköld M (2007) Counteracting forces in multi-branded product platform
development. Creativity and Innovation Management 16(2), 133-141.

Kim D-J and Kogut B (1996) Technological platforms and diversification. Organization
Science 7(3), 283-301.

Krishnan V and Gupta S (2001) Appropriateness and impact of platform-based product
development. Management Science 47(1), 52-68.

Langley A (1999) Strategies for theorizing from process data. The Academy of Management
Review 24(4), 691-710.

Lenfle S and Midler C (2009) The launch of innovative product-related services: Lessons
from automotive telematics. Research Policy 38(1), 156-169.

Lundbäck M and Karlsson C (2005) Inter-firm product platform development in the
automotive industry. International Journal of Innovation Management 9(2), 155-181.

Lyytinen K, Rose G and Welke R (1998) The brave new world of development in the
internetwork computing architecture (internca): Or how distributed computing platforms
will change systems development. Information Systems Journal 8(3), 241-253.

MacMillan I and McGrath R (1997) Discovering new points of differentiation. Harvard
Business Review 75(4), 133-145.

March JG and Olsen JP (1976) Ambiguity and choice in organizations. Universitetsforlaget,
Bergen.

Markus ML and Robey D (1988) Information technology and organizational change: Causal
structure in theory and research. Management Science 34(5), 583-598.

Meyer MH and Seliger R (1998) Product platforms in software development. Sloan
Management Review 40(1), 61-74.

Miles MB and Huberman AM (1994) Qualitative data analysis. Sage, California.
Muffatto M and Roveda M (2000) Developing product platforms: Analysis of the

development process. Technovation 20(11), 617-630.
Murmann JP and Frenken K (2006) Toward a systematic framework for research on dominant

designs, technological innovations, and industrial change. Research Policy 35(7), 925-
952.

Northrop LM (2002) Sei's software product line tenets. IEEE Software 19(4), 32-40.
Parnas DL (1976) On the design and development of program families. IEEE Transactions on

Software Engineering SE-2(March), 1-9.
Parnas DL (1978) Designing software for ease of extension and contraction. Proceedings of

the 3rd International Conference on Software Engineering, IEEE Press, Atlanta, Georgia,
United States, pp 264-277.

Pine II JB (1993) Mass customization: The new frontier in business competition. Harvard
Business School Press, Boston, Massachusetts.

Pohl K, Böckle G and van der Linden F (2005) Software product line engineering:
Foundations, principles, and techniques. Springer-Verlag Berlin.

Robertson D and Ulrich K (1998) Planning for product platforms. Sloan Management Review
39(4), 19-31.

Sambamurthy V, Bharadwaj A and Grover V (2003) Shaping agility through digital options:
Reconceptualizing the role of information technology in contemporary firms. MIS
Quarterly 27(2), 237-263.

Sanchez R and Mahoney J (1997) Modularity, flexibility, and knowledge management in
product and organization design. Strategic Management Journal 17(Special issue:
Knowledge and the Firm), 63-76.

 Sprouts - http://sprouts.aisnet.org/10-25

Sköld M and Karlsson C (2007) Multibranded platform development: A corporate strategy
with multimanagerial challanges. The Journal of Product Innovation Managment 24,
554-566.

Smolander K, Rossi M and Purao S (2008) Software architectures: Blueprint, literature,
language or decision? European Journal of Information Systems 17(6), 575-588.

Sosa M, Eppinger S and Rowles C (2004) The misalignment of product architecture and
organizational structure in comlpex product development. Management Science 50(12),
1674-1689.

Strauss A and Corbin J (1998) Basics of qualitative research: Techniques and procedures for
developing grounded theory. SAGE, Thousands Oaks, CA.

Suarez FF (2004) Battles for technological dominance: An integrative framework. Research
Policy 33, 271-286.

Svahn F, Henfridsson O and Yoo Y (2009) A threesome dance of agency: Mangling the
sociomateriality of technological regimes in digital innovation. ICIS: Thirtieth
International Conference on Information Systems, Phoenix, AZ.

Teece D (1986) Profiting from technological innovation: Implications for integration,
collaboration, licensing and public policy. Research Policy 15, 285-305.

Trispas M (2009) Technology, identity, and inertia through the lens of "The digital
photography company". Organization Science 20(2), 441-460.

Tushman ML (1977) Special boundary roles in the innovation process. Administrative Science
Quarterly 22, 587-605.

Ulrich K (1995) The role of product architecture in the manufacturing firm. Research Policy
24(3), 419-440.

Van de Ven A (2007) Engaged scholarship: A guide for organizational and social research.
Oxford University Press.

Yang C and Jiang S (2006) Strategies for technology platforms. Research Technology
Management 49(3), 48-57.

Yoo Y (2010) Computing in everyday life: A call for research on experiential computing. MIS
Quarterly, 34(2), 213-231.

Yoo Y, Lyytinen K and Boland R (2008) Distributed innovation in classes of networks.
Proceedings of the 41st Hawaii International Conference on System Sciences, Hawaii.

 Sprouts - http://sprouts.aisnet.org/10-25

 Working Papers on Information Systems | ISSN 1535-6078

Editors:
Michel Avital, University of Amsterdam
Kevin Crowston, Syracuse University

Advisory Board:
Kalle Lyytinen, Case Western Reserve University
Roger Clarke, Australian National University
Sue Conger, University of Dallas
Marco De Marco, Universita’ Cattolica di Milano
Guy Fitzgerald, Brunel University
Rudy Hirschheim, Louisiana State University
Blake Ives, University of Houston
Sirkka Jarvenpaa, University of Texas at Austin
John King, University of Michigan
Rik Maes, University of Amsterdam
Dan Robey, Georgia State University
Frantz Rowe, University of Nantes
Detmar Straub, Georgia State University
Richard T. Watson, University of Georgia
Ron Weber, Monash University
Kwok Kee Wei, City University of Hong Kong

Sponsors:
Association for Information Systems (AIS)
AIM
itAIS
Addis Ababa University, Ethiopia
American University, USA
Case Western Reserve University, USA
City University of Hong Kong, China
Copenhagen Business School, Denmark
Hanken School of Economics, Finland
Helsinki School of Economics, Finland
Indiana University, USA
Katholieke Universiteit Leuven, Belgium
Lancaster University, UK
Leeds Metropolitan University, UK
National University of Ireland Galway, Ireland
New York University, USA
Pennsylvania State University, USA
Pepperdine University, USA
Syracuse University, USA
University of Amsterdam, Netherlands
University of Dallas, USA
University of Georgia, USA
University of Groningen, Netherlands
University of Limerick, Ireland
University of Oslo, Norway
University of San Francisco, USA
University of Washington, USA
Victoria University of Wellington, New Zealand
Viktoria Institute, Sweden

Editorial Board:
Margunn Aanestad, University of Oslo
Steven Alter, University of San Francisco
Egon Berghout, University of Groningen
Bo-Christer Bjork, Hanken School of Economics
Tony Bryant, Leeds Metropolitan University
Erran Carmel, American University
Kieran Conboy, National U. of Ireland Galway
Jan Damsgaard, Copenhagen Business School
Robert Davison, City University of Hong Kong
Guido Dedene, Katholieke Universiteit Leuven
Alan Dennis, Indiana University
Brian Fitzgerald, University of Limerick
Ole Hanseth, University of Oslo
Ola Henfridsson, Viktoria Institute
Sid Huff, Victoria University of Wellington
Ard Huizing, University of Amsterdam
Lucas Introna, Lancaster University
Panos Ipeirotis, New York University
Robert Mason, University of Washington
John Mooney, Pepperdine University
Steve Sawyer, Pennsylvania State University
Virpi Tuunainen, Helsinki School of Economics
Francesco Virili, Universita' degli Studi di Cassino

Managing Editor:
Bas Smit, University of Amsterdam

Office:
Sprouts
University of Amsterdam
Roetersstraat 11, Room E 2.74
1018 WB Amsterdam, Netherlands
Email: admin@sprouts.aisnet.org

	Association for Information Systems
	AIS Electronic Library (AISeL)
	4-24-2010

	Design-task Linkages in Digital Innovation: Software Platforms at Globalcarcorp
	Lena Andreasson
	Ola Henfridsson
	Lisen Selander
	Recommended Citation

	htmldoc256.html

