
29TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD2021 VALENCIA, SPAIN)

aMazeChallenge: An interactive multiplayer game
for learning to code

Nicos Kasenides
University of Central Lancashire—Cyprus Campus (UCLan Cyprus)
Larnaca, Cyprus nkasenides@uclan.ac.uk

Nearchos Paspallis
University of Central Lancashire—Cyprus Campus (UCLan Cyprus)
Larnaca, Cyprus npaspallis@uclan.ac.uk

Abstract

The accelerating growth of technology in the last decades has led to an ever-increasing demand
for computing professionals. At the same time, the number of computing graduates around the
world grows at a slower pace, resulting to a bottleneck in the supply for industry vacancies. One
of the many reasons for this is a common notion that programming is a tedious and daunting
task that is relatively unrewarding. Despite that, extracurricular events such as Hour of Code and
Code Week have been successful in attracting more young people to computing, and educational
programming games hosted during these events have become very popular. In this paper, we
report our experience with developing a multiplayer educational game called aMazeChallenge
which aims to teach programming to students in a gameful environment. In our game, players
must program an avatar to escape a virtual maze arena using simple instructions in a block-
based programming language. aMazeChallenge utilizes public cloud infrastructure to enable
code execution at the backend while players can participate using an Android client. Through
aMazeChallenge, our objective is to engage students in a fun, competitive environment where
they can learn the basic concepts of programming. Our preliminary results show that students
enjoyed playing aMazeChallenge and that the game increased their awareness of programming
concepts as well as of the significance of computing.

Keywords: computer science education, computational thinking, gamification

1. Introduction
The infiltration of technology in our everyday lives has led to the rapid expansion of the digital
realm. Since the invention of the personal computer in the 1970s, technology has experienced
unprecedented growth. In turn, this has increased the demand for computing professionals —
such as software engineers, software architects and analysts. Unfortunately, the supply of such
professionals is falling short of the demand at an increasing rate due to various factors. Even as
we bear witness to the prosperity brought forth by the understanding and evolution of comput-
erized systems, many secondary education students do not consider a degree in this field. For
example, figures from the National Science Foundation in the United States indicate that there
are about 125,000 job openings related to Computing and only about 40,000 graduates to fill
these positions [18]. This illustrates the large gap that exists between the demand and supply
of computing graduates. In our digital age, this shortage of software specialists has created an
ever-widening gap which must be addressed if we are to keep advancing our technology.

In recent years, the focus of the computing community has been to emphasize the importance
of programming, mainly to younger audiences, through limited-time extracurricular events. Two
such examples are the Hour of Code [14, 21] in the United States and the Code Week [11, 16] in
Europe. Such events have been successful partly because their educational value is intertwined



KASENIDES AND PASPALLIS AMAZECHALLENGE: AN INTERACTIVE MULTIPLAYER GAME FOR LEARNING TO CODE. . .

with entertainment – something the traditional teaching methods do not always prioritize. While
the success of these events is undoubted, their impact is limited by the fact that they are designed
to be held during off-times —such as on weekends or after the normal teaching hours— and for
limited periods. To complement the positive impact of these events, other student engagement
options are often utilized, many of which are related to educational games.

Educational programming games, such as CodeCombat [1] and CodeMonkey [3] are fun
environments where students of various ages can learn to code while playing. Such games
rarely require any prior experience in programming and can thus be relevant to a wide range
of audiences, in both primary and secondary education. With motivation being an important
factor affecting the decision of students to learn programming [12], games must be entertaining
enough to retain their interest to play and learn. Games like CodeMonkey and CodeCombat have
traditionally been focused on single-player gameplay, asking students to solve progressively
more difficult challenges or puzzles by defining code.

Other games, such as Robocode [10, 19] utilize multiplayer gameplay, either in the form of
co-operative or competitive setups. We are motivated by the success of such games, which tend
to be quite immersive. However, competitive multiplayer games like Robocode require signifi-
cant prior programming knowledge which is a drawback when it comes to attracting new learn-
ers. Instead, we aimed to create a competitive multiplayer online game which allows players
to learn the basics of programming quickly and then compete in a virtual environment, without
requiring any prior programming knowledge.

In this paper, we report our experience with developing an educational game with which stu-
dents can learn programming in an entertaining way, hopefully leading them to take an interest
in further study in computing. We present aMazeChallenge [2], an interactive multiplayer online
game for learning to code by playing. In its simplest form, aMazeChallenge is a maze-solving
game in which players program their avatars to escape a virtual maze using simple instructions
written in the block-based programming language Blockly [9].

The objective is to engage students in a fun, competitive environment where they can learn
the basic components of a program. We describe the technology and underlying software sys-
tem used to realize aMazeChallenge — our approach utilizes Google’s App Engine to provide
cloud-based backend services that make in-game actions such as player movements possible.
The game’s front-end is implemented as an Android application, which allows players to see
how their avatar moves in the game and to write their maze-solving code using Blockly [9].
Furthermore, we describe additional features, such as code compilation, verification and pro-
cessing, tutorials, personalization, and a custom designer tool for defining new levels.

We assess the effectiveness of aMazeChallenge using feedback collected from high school
students who participated in a demonstration session. Our preliminary results help us assess
whether or not our approach has potential to have a positive impact on a student’s view of
programming and affect their technical skills and mindset. From these results, we see that
students enjoyed playing our game and became more aware of programming. Finally, we discuss
the potential uses of similar technology to enable other types of educational games.

The rest of this paper is organized as follows: Section 2 outlines the objectives of this
project, especially from an educational standpoint. Then, Section 3 describes our approach, the
technology we used and our implementation strategy. In Section 4 we discuss our preliminary
evaluation and results and we share our experiences. We explore related works in Section 5.
Finally, we close with conclusions in Section 6.



ISD2021 SPAIN

2. Objectives
At the highest level, using aMazeChallenge we aim to challenge misconceptions by youth that
programming is a dull and daunting task. Thus a main objective is to show that programming
can be fun and entertaining, while still being rewarding. In terms of teaching programming
concepts through aMazeChallenge, our objectives are for the players to develop skills to:

• Read and understand existing code. It is almost impossible even for experienced pro-
grammers to write code without reading and understanding examples first. We target this
objective by creating a smooth transition between real-life actions to code statements (e.g.,
moving forward, turning left or right, etc.) during the tutorials.

• Improve or fix existing code. As the players’ skills progress, they should be able to
identify syntactic and semantic errors in code and be able fix them. We target this using
a training mode, in which players are asked to incrementally improve their code to solve
more complex levels.

• Write code from scratch. As the learners advance, they should become confident about
their programming skills and able to define their own code from scratch. Our code editor
allows players to write code without any minimal limitations.

• Improve code efficiency and clarity. Although not as important for beginners, being able
to write clean and efficient code is a significant skill in software development. aMazeChal-
lenge rewards players who create more efficient code, because these players are ultimately
able to solve levels faster and thus beat other players.

By practicing the above skills, players develop critical thinking and problem-solving skills
that are applicable in multiple domains. An important step in the learning process is to make
players realize that they are —perhaps subconsciously— using several problem-solving tech-
niques for everyday tasks. Furthermore, existing knowledge from other STEM subjects that are
more prominent in secondary education may help the learning process.

An additional objective with aMazeChallenge was to create a gameful environment that fea-
tures engaging graphics, relevant sound effects, and interesting game-play, as these are important
in attracting young audiences to the game.

3. Methodology
In this section we describe our approach in terms of game features, as well as the software
architecture of the aMazeChallenge.

3.1. Game rules and mechanics

aMazeChallenge is a turn-based, multiplayer online maze-solving game in which players com-
pete against each other with the goal of exiting the maze. The first player to escape the maze
wins the round. The game features highly dynamic levels with various types of objects and each
player controls an in-game avatar which they can program to escape the maze and thus complete
the challenge.

The players can program the avatar by utilizing specific functions —in the form of Blockly
elements— which enable their avatar to move and navigate the maze. The available actions
of a robot are ‘moveForward’, ‘turnClockwise’ and ‘turnCounterClockwise’. Meanwhile, the
game arena randomly spawns several items that benefit or harm a player’s avatar. Such items
include: a) coins which give the player points, b) fruits, which regenerate health, c) traps, which
slow down the player or cause them to miss some turns, etc. These items add an element
of randomness and make the game more interesting, guiding players to define code to either



KASENIDES AND PASPALLIS AMAZECHALLENGE: AN INTERACTIVE MULTIPLAYER GAME FOR LEARNING TO CODE. . .

retrieve or avoid these objects. Furthermore, they encourage the players to utilize decision-
making constructs to decide whether or not they want to approach or avoid certain types of
objects.

The mazes are divided into cells, spread on a two-dimensional grid. We use two-dimensional
arrays to store the state of each maze challenge, with the minimum size of mazes being 5x5 and
the maximum being 30x30. To achieve the behavior needed for a maze, each cell in the grid has
a separate state which indicates which of its sides has walls. Cells can have walls in their top,
bottom, left and right sides. We implement this using a hexadecimal digit for each cell — for
example, the digit E translates to 1110 in binary, which means that the top, bottom and left sides
of the cell have walls, while the right side is left open. When a player attempts to move towards
the walled side of a cell, their move is automatically rejected and their turn is lost. To avoid this,
players can utilize other assistive blocks, such as ‘canMoveForward’, ‘canMoveLeft’, ‘look’,
‘getDirection’, to explore their surroundings before making an action. By default, all mazes are
outlined with a wall to keep the players from falling off the grid.

Fig. 1. A screenshot of the aMazeChallenge app: this view shows a maze which includes reward
and penalty items (left side), and the Blockly-based code editor (right side).

Players can gather points by collecting various types of coins and gifts which are spawned as
in-game items. In addition, each avatar has a health status which can be increased by collecting
fruits or decreased when stepping into bombs. Furthermore, other objects such as speedhacks or
traps can affect the player’s ability to move — speed-hacks increase the number of moves per
turn to two for a small period while traps cause the player to miss several turns. The game can
also spawn several bombs, which decrease the health of players who are in their vicinity when
they explode. Bombs go through a sequence of stages before exploding, giving the players time
to detect and avoid them. The number and type of objects generated by the game depend on



ISD2021 SPAIN

its difficulty. For example, Easy difficulty spawns mostly beneficial (also known as Reward)
objects, while Hard difficulty spawns mostly damaging (also known as Penalty) objects. In
between the two, Medium generates a balanced mix of reward/penalty objects. When a player’s
health status becomes zero, they are automatically ejected from the game but they can still start
over by submitting new code.

If two players manage to complete the maze with the same number of turns, e.g., because
they used identical algorithms, they are ranked by points and then by health in descending order.
The first player to submit plays first and the rest of the players take turns. Each player’s code is
executed once per turn and the game cycles through all of the players to execute their moves until
all players have managed to exit the maze or have been eliminated. Figure 1 shows screenshots
from the game’s maze view and code editor, used to define the player’s maze-solving logic.

3.2. Programming

To allow players to program their avatars, we utilize Blockly [9], a visual programming language
developed by Google. Blockly has been utilized as an introductory programming language in
a plethora of educational games. Block-based programming has become popular, primarily as
part of Scratch [20], which is widely used in primary and secondary computing education [15].

We have created a Blockly library which includes commands for specific aMazeChallenge
actions such as: “moveForward”, “turnClockwise”, “look”, “getDirection”, etc. We also define
several custom data types to allow players to check their surroundings and navigate through the
maze. For example, we define a “Direction” class, which can take the values “North”, “South”,
“East” and “West”. Players can thus receive useful information about their avatar’s direction
using the “getDirection” command, which returns a “Direction” type. Similarly, we define an
“Item” type, which indicates the type of each of the in-game item — for example “RewardItem”,
“PenaltyItem” or “NoItem”. Using the “look” command, players can determine whether or not
there are in-game items in their vicinity and what they are. Additionally, we assist players with
several other library functions such as “compass”, which returns the direction the exit is relative
to the player and “onMove”, which enable the player to determine the direction they would be
facing after making a certain move.

In terms of code structure, players are required to write their code within two functions,
named “Initialize” and “Run”. The initialization function is executed once at the start of the
player’s first turn and allows them to initialize variables or set up data structures. On the other
hand, the “Run” function is executed in every turn and returns the type of move the player’s code
has resulted to. Statements and blocks defined outside these two function blocks are ignored.
In addition to our custom aMazeChallenge blocks, we enable several default blocks provided
by Blockly which offer standard programming constructs — variable declarations, expressions,
conditionals, loops, etc.

Right before submitting player code for execution, the system performs several static checks
to ensure that the code is valid. For example, we check: a) that the player has inserted their code
inside the two required functions, b) whether or not the player has added any code blocks, c) if
the run function returns an in-game action and, d) for any syntactically correct but invalid code,
especially in cases where the code may go into an infinite loop. By default, the system deals
with long-running code by interrupting their execution if they do not terminate after one second
of execution time. When such mistakes are detected, an error message will appear in the editor,
warning the players to handle these errors before proceeding.

3.3. Code execution

As discussed, aMazeChallenge utilizes Blockly to allow players to program their avatars. To
run such code, it must first be converted to code that the client (Android-based) and the server



KASENIDES AND PASPALLIS AMAZECHALLENGE: AN INTERACTIVE MULTIPLAYER GAME FOR LEARNING TO CODE. . .

(App-Engine-based) can execute.
The Blockly library contains several code generators for various programming languages

including JavaScript, PHP, Python, etc. These generators convert user code given as blocks to
code expressed in these languages. Each block contains a code definition, which defines how
it will be converted into code for a specific programming language. For aMazeChallenge, we
opted for JavaScript, which acts as an intermediary language which can be executed in Java-
based code – which is itself supported by our frontend and backend systems.

The code execution chain involves the following steps: First, we translate Blockly code
into JavaScript. The end-result is further processed to a specific format for aMazeChallenge.
During this step we can look for and identify mistakes made by the players and warn them
before proceeding further. Additionally, we add code to handle data persistence across rounds
– effectively maintaining the player’s session. The processed JavaScript code is then sent to
the server as plain text and stored. When it is that player’s turn to play, the server retrieves the
corresponding code and executes it. Our server runs on a Java runtime and we utilize a Java-
based JavaScript interpreter/engine called Rhino [4], provided by Mozilla. Using Rhino, we can
run specific JavaScript functions, such as the player’s defined Initialize and Run functions and
get their returned values – in this case, we are mainly interested in the value returned by the Run
function, which determines the move to be made. These functions are interpreted by Rhino and
converted into their respective Java statements, which can be executed by our server’s runtime
environment. Lastly, to support global variables which can persist through player turns we have
implemented a custom system for exchanging values of attributes between JavaScript and Java
code. The pipeline of processes used for code compilation and execution is summarized in the
pipeline shown in Figure 2.

Fig. 2. The pipeline of processes used to generate, process and run code written by the players.

3.4. In-game features

Since aMazeChallenge is an educational game designed to introduce its players to programming
fundamentals, we have created a Learning section which features a tutorial that introduces the
player to a) the game and its rules, b) basic programming principles and, c) programming their



ISD2021 SPAIN

avatar to make in-game moves.
Upon completing the tutorial, players can personalize their avatar by selecting a custom im-

age, avatar color and set their name and email. We collect this information so that we can track
each player’s progress in multiplayer mode. Then, players can proceed to write or edit code or
load several code samples to see how maze-solvers can be written. For instance, we provide ex-
amples which utilize the left-wall-following and right-wall-following algorithms, random mov-
ing and one utilizing the compass function. In addition, players can also save their own code and
load it at a later time. When the player exits the code editor, the code is automatically checked
for syntax and logic errors before being compiled.

The aMazeChallenge app also features a training mode, allowing players to test their code
locally on their device, before uploading it to the online server. We include several training
scenarios for the players which get progressively more difficult. For instance, the first maze
asks the players to walk in a straight line to complete the challenge — which means they only
have to utilize the moveForward command. The second maze asks the player to walk straight
and then make a turn at the corner to complete the challenge, thus requiring basic decision
making to determine what to do in case they run into a wall. Subsequent training challenges
become progressively more difficult and require the use of more complex code structures to
solve.

After completing the above steps, players can compete with each other online by joining a
challenge and then uploading their maze-solving code. The players’ code is then executed by the
server sequentially, as described in Subsection 3.1 until all of the players have exited the maze
or the challenge expires. When a player finishes an online game, they are asked to complete a
questionnaire that is used to gather user feedback for the game.

Lastly, we enable players and game administrators to experiment with different types of
mazes to make aMazeChallenge more interesting. We utilize a maze generator both as a stand-
alone application and as an in-game feature to allow game administrators to create mazes for
online gameplay and players to create custom mazes for training. Our maze generator allows
us to create a large variety of maze types, such as a) single-solution mazes, b) multiple-solution
mazes, c) sparsely-walled mazes, and d) empty mazes. Finally, the maze generator allows mazes
with custom parameters such as game size and starting/finish positions in the generated maze,
the difficulty, as well as the background color, wall color, and audio.

3.5. Architecture

Our approach is based on the client-server model, which allows for a distributed game to remain
secure by carrying in-game operations on the server [17].

In this case, the client is an Android app that visualizes the state of the game by displaying
the maze and the players’ avatars in it. In addition, the client also allows the player to utilize
Blockly with which they can write their code and identify common problems. When finished,
players can join a game on the server, upload their code and watch it execute live, once the
competition starts. To achieve this functionality, the client interfaces with the server via an
HTTP-based API. This includes relevant commands, as shown in Table 1.

The server receives the HTTP requests and decodes the commands and data coming from
the clients e.g., to join a game or make an in-game move. For this we utilize an API based on
Web standards which exposes this functionality to the client devices. To realize the gameplay,
the server receives the players’ code, performs static code analysis, compiles it, runs it and then
updates the state of the game accordingly. To update their own view of the game’s state, the
clients use a polling technique by requesting the current game state from the server once every
second.

Game data, such as the game’s state, player information and sessions are stored persistently
on a cloud-based database, which is a separate component of the architecture. The server queries



KASENIDES AND PASPALLIS AMAZECHALLENGE: AN INTERACTIVE MULTIPLAYER GAME FOR LEARNING TO CODE. . .

Table 1. API endpoints implemented by aMazeChallenge.

Endpoint Functionality
/challenges Retrieve a list of available challenges.
/join Join an online challenge.
/submit-code Used to submit player-defined code.
/game-state Gets the state of the joined challenge.
/submit-questionnaire Submits a questionnaire response.
/admin/add-challenge Create a new challenge.

the database when required, receives information and then encodes it in a specific format before
sending it back to the client devices. In addition, when an action is made by the player, the server
performs write operations on the database accordingly, e.g. to update their submitted code.

3.6. Infrastructure

We use cloud-based infrastructure to power our server-side. This enables us to: a) eliminate
the need for server setup and maintenance, and b) create a scalable system that can support
a large number of concurrent players. Specifically, aMazeChallenge is designed to utilize the
Google Cloud Platform. We host our backend API on Google’s App Engine, a Platform-as-a-
Service product which allows our project’s runtime to scale. The App Engine allows us to easily
deploy our API using Java Servlets without having to manage any infrastructure such as servers,
domain settings, etc. This simplifies the development process significantly. To persist game
data, we utilize Google’s Cloud Datastore, a NoSQL type of database with low latency and with
support for high scalability. This enables us to scale to larger maze sizes or to a large number
of players as needed, while still maintaining good performance. Lastly, App Engine and the
Cloud Datastore are related products. The Cloud Datastore can be easily queried from within
App Engine applications, which simplifies the development process.

4. Discussion
We tested and evaluated aMazeChallenge at an event organized at UCLan Cyprus, which was
attended by 43 high school students. The average age of the students was 13.95 years old, with
the minimum being 13 and the maximum being 16. Gender-wise, most (74%) of the participants
were male, whereas only 26% were female. For the vast majority of students (83.7%), this was
their first experience with programming. The students participated in a brief training which
featured an introduction to what programming is and how it is relevant to many everyday tasks.
During the training, the students were also presented with basic programming constructs such
as variables, conditionals and loops and how these are related to different scenarios in a game.

The students were asked to answer two questionnaires — one before using aMazeChallenge
and one after playing. The questionnaires included questions regarding their views about pro-
gramming and how they rated their skills in programming and mathematics. In addition, they
were presented with several programming questions that were based on the concepts taught dur-
ing the mini-lecture. During the evaluation, the students were instructed to download the app,
briefly explore the learning section and personalize their avatar. A special session was set up
with a moderately difficult maze onto which the participants joined after writing their code in the
editor. Upon joining the session, the students were able to see their avatar move within the maze
according to the code they defined. After playing, the students answered several questions to
rate aMazeChallenge and state which of its features they enjoyed the most. Our goal was to use
these two sets of questionnaires to gather insight on if —and by how much— aMazeChallenge



ISD2021 SPAIN

affected the perception of the participants about programming. In addition, we aimed to evaluate
the entertainment aspect of our game by gathering feedback from the students on whether they
enjoyed the game and what they enjoyed the most.

Our preliminary results show that the participants felt relatively confident about their ability
to learn programming. Asked to self-rate their abilities, participants responded with an average
of 50%, with 0% being not competent at all and 100% being extremely competent. For female
participants, this average was slightly higher, at 58%, and for male participants slightly less,
averaging at 42%. In addition, students were asked to specify their reasons for taking an interest
in programming. While 21% responded that they had no interest in programming, 40% said that
they “Love Programming”, 35% said that they were “Curious" about programming and 23%
said that they were interested because it is linked to high employability. The rest of the partici-
pants (16%) said that they were already familiar with or good in programming. When asked if
they would follow a programming career in the future, 46% of the participants responded with
either “Likely” or “Very likely”, while 9% responded “Not likely” and 12% with “Not likely at
all”. Female participants appear less likely to consider a computer science career than their male
counterparts even though they feel more confident about learning programming. Around 57%
of them said it was either very likely or likely to do so, whereas male participants appeared to be
more interested (79%). According to the participants, the most enjoyable feature of aMazeChal-
lenge was its graphics at 29%, followed by playing with others at 23% and being able to practice
alone at 17%.

On the other hand some of the replies indicated that both aMazeChallenge and perhaps the
evaluation approach needed further refinement and additional measurements. For example, a
large group of participants (35%) answered that their programming skills were “Unchanged”
or that they were “Confused” afterwards. 28% of the participants responded that their skills
had increased after playing the game. We view this positively since we believe that the students
were made aware of their true skills during the game session. Even though students faced several
difficulties trying to understand how the game works and how programming can be used in a
game, we believe that according to their responses, they are still likely to follow a programming
career in the future. Of course aMazeChallenge is not their only exposure to programming and
its benefits. While it cannot take full credit for this, we do hope that it has helped a number of
students to give serious consideration to a programming career.

Whichever the impact of our game on the perception of students about programming, we
have confirmed that the app we have developed works and can be utilized to power both educa-
tional and other types of online games. We have managed to successfully run aMazeChallenge
on public cloud infrastructure at the Platform-as-a-Service (PaaS) layer. This gives the poten-
tial to multiplayer games like aMazeChallenge to be played by large numbers of players and
feature more interesting and dynamic environments. We have also shown that custom runtimes
can be created to run block-based code written by novice programmers. Using existing libraries
and manual adjustments to the code, we were able to pass Block-based code through several
stages and programming languages and ultimately execute it on our backend runtime. This
makes it possible to create a plethora of game types that can be used in an educational context,
with the potential of being Massively Multiplayer Online Games (MMOGs). Utilizing this type
of games may be beneficial due to possible enhancements in educational experience over con-
ventional games [7]. These usually manifest as social aspects either through collaborative or
competitive gameplay, rendering them a promising future research direction.

5. Related work
Researchers and educators have utilized a variety of educational games to increase student en-
gagement and motivation in general, and in programming specifically. In this section, we discuss
related works.



KASENIDES AND PASPALLIS AMAZECHALLENGE: AN INTERACTIVE MULTIPLAYER GAME FOR LEARNING TO CODE. . .

IBM’s Robocode [10, 19, 5] is one of many examples of educational programming games.
Robocode is a game of tanks that must be programmed by their players to fight and defeat
other tanks in a battle arena. Players can program their tanks using a robot API that exposes
the possible functions of the robots. There are several tutorials provided online and the players
can program the robots in two environments: Java and .NET. Robocode makes it possible to
test robots in a training environment and to simulate various battle scenarios. Most importantly,
players can play and compete against each other in a common arena. A survey conducted
among 83 participants showed that 80% of them believed that their programming skills had
increased after playing Robocode. It should be noted that as one of the more advanced examples
of educational programming games, this focuses also on developing student skills in Artificial
Intelligence.

The authors of [22] argue that “the 21st century sees a new group of younger and emerging
generations who grow up with and are exposed to different devices”. This exposure to tech-
nology makes students more perceptive to similar approaches in education. Because of this, the
authors attempt to demonstrate that children who play games can benefit in terms of understand-
ing programming concepts – such as sequences, iteration and decision making. They investigate
the effectiveness of digital games using a game called “Program Pacman” over several work-
shops, during which the students had to program Pac-Man. Overall, the level of confidence of
the students rose, as they reported feeling more confident with their programming skills.

Others have used similar approaches to “improve recruiting and retention in computer sci-
ence through [...] game-based learning environments” [6]. Game2Learn [6] is a research lab
that specializes in educational programming games and leverages them to counter the negative
experiences of students related to computer science. The authors propose that games should be
further utilized in computing curriculum and suggest that “iconic” (or visual) programming lan-
guages should be used. Lastly, the authors support that educational games should promote the
use of writing correct code by featuring scenarios where the players must fix their code to fight
off virtual bugs or monsters. Experimental results from multiple games created by Game2Learn
have shown that game-based programming can be fun, engaging and satisfying for students.

More recently, other related games have appeared featuring the theme of escaping from a
maze. Algotaurus [13] is an educational programming game in which the players control robots
that exist in a “microworld” using a “mini-language”. The objective is to escape a procedurally-
generated labyrinth/maze by programming the robot with an algorithm. The authors argue that
such games have the advantages of being self-taught once the basics of programming are in-
troduced to the players — thus making them suitable for introductory workshops. Through
experimentation, students learn how to write and execute code to see its effects. The authors
describe their experience using Algotaurus to teach introductory programming to several audi-
ences of varying ages. They found that several students found the tasks interesting as they would
often skip breaks in order to continue and finish in-game tasks. Despite that, such approaches
have limitations as several of the students felt frustrated after not being able to complete some
tasks.

To eliminate negative experiences and make games as entertaining as possible, other stud-
ies have focused on the conceptualization and design of serious games. iPlus [8] is a design
methodology which adds a pedagogical component to serious games. Using a meta-model, it
allows a deeper understanding of the underlying concepts used to design serious games and en-
ables their development using a formal modeling language. Furthermore, iPlus identifies crucial
elements that must be taken into consideration when designing serious games, such as narra-
tives, game rules and mechanics, gameplay, and more. The authors argue that these techniques
lead to “excellent engagement from end-users”.



ISD2021 SPAIN

6. Conclusion
Educational programming games often receive a mixed response from both students and educa-
tors. This is perhaps because they try to satisfy requirements stemming from both the education
and entertainment sectors, which are not always aligned. Ideally, neither of the two should be
sacrificed but, admittedly, it can be hard to find the right balance between the two. The success
of such games possibly lies in creating a truly entertaining game that can captivate students while
still being able to teach the necessary material. With new technology available, researchers may
be able to develop a wider range of game types and game ideas. This will likely increase our
chances of creating a successful game and thus have a bigger impact on students.

In our paper, we have shown that our approach has merit as it was built on top of a public
cloud platform and enabled an online multiplayer game in a relatively short period of time
and with minimal resources. Our approach details methods with which players can participate
in programming games by learning and then writing code in a visual programming language
which can be executed on the back-end after a series of processing steps. We reported our
experience from a limited-scale, local event which was attended by several high school students.
Feedback from the participants showed that aMazeChallenge made them feel more confident in
their ability to program and showed that the majority of them were considering to follow a career
in a computing-related subject.

In the future, we aim to expand our methods and tools to enable the development of a wider
variety of game types. We also plan to expand aMazeChallenge to feature more levels and
enable players to host smaller ad-hoc games where friends can play against each other. Finally,
we aim to further evaluate our approach by organizing more training sessions and collecting
further input.

References
1. Codecombat - coding games to learn python and javascript. https://codecombat.com,

2019. Last accessed: 2021-04-09.
2. aMazeChallenge - App on Google Play. https://play.google.com/store/apps/details?

id=org.inspirecenter.amazechallenge, 2020. Last accessed: 2021-04-09.
3. Coding for kids - game-based programming. https://www.codemonkey.com, 2019. Last

accessed: 2021-04-09.
4. Rhino - mozilla MDN webdocs. https://developer.mozilla.org/en-US/docs/Mozilla/

Projects/Rhino, 2019. Last accessed: 2021-04-09.
5. Robocode. https://robocode.sourceforge.io, 2021. Last accessed: 2021-04-09.
6. T. Barnes, H. Richter, A. Chaffin, A. Godwin, E. Powell, T. Ralph, P. Matthews, and

H. Jordan. Game2learn: A study of games as tools for learning introductory program-
ming concepts. Proceedings of the ACM SIGCSE, 7, 2007.

7. P. Bawa, S. Lee Watson, and W. Watson. Motivation is a game: Massively multiplayer
online games as agents of motivation in higher education. Computers & Education,
123:174–194, 2018.

8. M. Carrión, M. Santorum, J. Aguilar, and M. Peréz. iPlus methodology for requirements
elicitation for serious games. XXII Ibero-American Conference on Software Engineer-
ing, CIbSE 2019, pages 434–447, 2019.

9. Google. Blockly - google developers. https://developers.google.com/blockly, 2021.
Last accessed: 2021-04-09.

10. K. Hartness. Robocode: using games to teach artificial intelligence. Journal of Com-
puting Sciences in Colleges, 19(4):287–291, 2004.

11. T. Kilamo, A. Nieminen, J. Lautamäki, T. Aho, J. Koskinen, J. Palviainen, and
T. Mikkonen. Knowledge transfer in collaborative teams: experiences from a two-



KASENIDES AND PASPALLIS AMAZECHALLENGE: AN INTERACTIVE MULTIPLAYER GAME FOR LEARNING TO CODE. . .

week code camp. In Companion Proceedings of the 36th International Conference on
Software Engineering, pages 264–271. ACM, 2014.

12. E. Klopfer, S. Osterweil, K. Salen, et al. Moving learning games forward. Cambridge,
MA: The Education Arcade, 2009.

13. A. Krajcsi, C. Csapodi, and E. Stettner. Algotaurus: an educational computer program-
ming game for beginners. Interactive Learning Environments, pages 1–14, 2019.

14. J. Liu, H. Wimmer, and R. Rada. " hour of code”: Can it change students’ attitudes
toward programming? Journal of Information Technology Education: Innovations in
Practice, 15:53, 2016.

15. M. M. McGill and A. Decker. Tools, languages, and environments used in primary
and secondary computing education. In Proceedings of the 2020 ACM Conference on
Innovation and Technology in Computer Science Education, ITiCSE ’20, page 103–109,
New York, NY, USA, 2020. Association for Computing Machinery.

16. J. Moreno-León and G. Robles. The europe code week (codeeu) initiative shaping
the skills of future engineers. In 2015 IEEE global engineering education conference
(EDUCON), pages 561–566. IEEE, 2015.

17. V. Nae, A. Iosup, and R. Prodan. Dynamic resource provisioning in massively
multiplayer online games. IEEE Transactions on Parallel and Distributed Systems,
22(3):380–395, 2011.

18. National Science Foundation. Computer science degrees awarded. https://www.nsf.gov/
statistics/nsf13327/pdf/tab33.pdf, 2020. Last accessed: 2021-04-09.

19. J. O’Kelly and J. P. Gibson. Robocode & problem-based learning: a non-prescriptive
approach to teaching programming. In ACM SIGCSE Bulletin, volume 38, pages 217–
221. ACM, 2006.

20. M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond, K. Brennan,
A. Millner, E. Rosenbaum, J. Silver, B. Silverman, and Y. Kafai. Scratch: Programming
for all. Commun. ACM, 52:60–67, Nov. 2009.

21. C. Wilson. Hour of code—a record year for computer science. ACM Inroads, 6(1):22–
22, 2015.

22. W. S. Yue and W. L. Wan. The effectiveness of digital game for introductory program-
ming concepts. In 10th International Conference for Internet Technology and Secured
Transactions (ICITST), pages 421–425. IEEE, 2015.


