Social and Cultural Issues in Institutionalisation of ERP Systems

Research-in-Progress

Azadeh Pishdad
University of South Australia
azadeh.pishdad@mymail.unisa.edu.au

Abrar Haider
University of South Australia
abrar.haider@unisa.edu.au

ABSTRACT

ERP systems are highly integrated and complex systems. These systems have become a core technology in many businesses since the past two decades; however, the implemented systems do not always bring about the planned results and still many ERP implementations fail to achieve the desired benefits. This is mainly because of the way these organisations have implemented ERP and the way this technology has been institutionalised within the organisations. ERP institutionalisation, however, occurs when its usage becomes stable, routinized and embedded within the organisation’s work processes and value chain activities. Many research has been studied the success/ failure factors associated with ERP implementation which is valuable for advanced understanding of ERP implementation success, however, alone it is not sufficient for explaining social and cultural issues in institutionalisation of ERP systems. This research, thus, aims to fill this gap by offering a preliminary framework which studies the socio-cultural drivers influencing various stages of assimilation process within organisations. Towards the next stage of this research, the authors will engage different Australian organisations who use ERP systems in their organisations to investigate socio-cultural aspects which managers should consider through initiation, adoption and routinization of ERP usage. The refined version of this framework, obtained after qualitative analysis of gathered data, may be mastered as a decision making tool by business manager to guide the organisation through various stages of ERP assimilation and institutionalisation.

Keywords

Enterprise resource planning (ERP), technology institutionalisation, institutional theory, socio-technical theory, social/cultural issues.

INTRODUCTION

Enterprise resource planning (ERP) systems not only help the organisation transform organisational processes through automation and integration (Markus and Tanis 2000), these systems also enable advanced features like business intelligence and helping integration of business value chain that improves competitiveness of the organisation (Holland and Light 1999; Ugrin 2009; Seddon et al. 2010). Since 1990s many organisations have been started to adopt and implement ERP systems, however, the implemented systems do not always bring about the results they had planned before (Xue et al. 2004; Gargeya and Brady 2005). This mainly caused as the result of the way they have been assimilated and institutionalised ERP system within the organisation. ERP assimilation identified as the process of acquisition and deployment of ERP system. After ERP is fully assimilated and once its usage becomes routinized and embedded within the organisation’s work processes and value chain activities, it leads to successful institutionalisation (Bajwa et al. 2004; Kouki et al. 2007; Ngai et al. 2008; Maheshwari et al. 2010). Institutionalisation of ERP technologies is a recent phenomenon and this field is far for being mature. Once the organisation is making optimal advantage of ERP, its use will be taken for granted by the organisational stakeholders to contribute to the value of the organisation. This taken-for-grantedness to provide value in day to day operations results in institutionalisation of the ERP system (Kouki et al. 2006; Ugrin 2009; Lytyinen et al. 2009; Maheshwari et al. 2010).

For any implementation of ERP, organisations must consider three dimensions i.e., technical, organisation, and people dimension. However, literature suggests organisations seldom consider the socio-cultural drivers affecting this process. Moreover, the costs related to ERP implementation mainly embrace three areas, i.e., software, hardware, and personnel. The software and hardware costs are often easily quantifiable in comparison to personnel or the human resources cost. At the same time, the personnel training and change management cost is by far the largest and most expensive area that has been
given the least amount of consideration in organisations. As a general tendency when ERP is being implemented, organisations mainly focus on technical aspects of it and do not give due importance to culture and social issues, especially when ERP system goes-live in the organisation (Davenport 2000; Xue et al. 2004; Kouki et al. 2007; Chang et al. 2008; Ke and Wei 2008; Kwahk and Ahn 2009; Maheshwari et al. 2010).

Implementation of ERP system, thus, is not one off endorsement of technology; instead it should engage in the process of ERP institutionalisation to maintain its legitimacy, social and cultural fitness on an ongoing basis. This research aims to look at socio-cultural challenges in ERP implementation process through the lens of technology institutionalisation perspective. According to the institutional theory, there are various sub-institutions operating in a broader environment of organisation, such as organisational culture, social structure, and competitive environment. The organisation thrives on the mutual interactions of these sub institutions and establishes its legitimacy (Powel and DiMaggio 1991; Zsidisin et al. 2005; Delmestri 2007; Greenwood 2008; Mignerat and Rivard 2009; Baptista 2009; Currie 2011). This research is still in progress; therefore, this paper describes the preliminary research framework that aims to answer ‘What are the social and cultural CSFs for institutionalisation of ERP systems?’. A thorough review of information system (IS) literature has highlighted eight major social/ cultural critical success factors (CSFs). These factors facilitate the institutionalisation of ERP system within organisations. The instrument developed for doing this research is based on these CSFs as well as well-defined IS theories i.e., institutional theory, socio-technical theory and social shaping of technology. Towards the next step of this research, the authors will engage different Australian organisations who use ERP systems in their organisations to investigate socio-cultural aspects which managers should consider through initiation, adoption and routinization of ERP usage. More CSFs may be emerged after entering to case study organisations and analyzing their data. The refined version of this framework, obtained after qualitative analysis of gathered data, may be mastered as a decision making tool by business manager to guide the organisation through various stages of ERP institutionalisation.

The rest of this article is organized as follows. The next section reviews literature on different perspective in technology assimilation and institutionalisation as well as theoretical underpinning of this research followed by describing the research framework suggested for doing this research. The paper, then, describes the proposed research methodology. The following section describes CSFs for ERP assimilation derived from in-depth literature review. The last section summarizes conclusions and present the future research plans.

PERSPECTIVES IN TECHNOLOGY ASSIMILATION AND INSTITUTIONALISATION

Technology institutionalisation involves a full understanding of technological innovations so that it becomes ingrained into organisations work processes (Baptista 2009; Maheshwari et al. 2010). The assimilation and diffusion of information technology in organisations has been of great interest to researchers on information systems for about two decades. However, the assimilation of complex technologies is never easy, and a myriad of institutional, social, and political forces blend together to influence how potential adopters make sense out of the technology and, accordingly, assimilate its use (Purvis et al. 2001). Assimilation is defined as the extent to which the use of technology permeates organisational work processes and activities and becomes routinized in the activities of those projects and processes (Ranganathan et al. 2004). This process extends from initial awareness to full institutionalisation within the organisation (see for example, Cooper and Zmud 1990; Fichman and Kemerer 1997; Bajwa et al. 2004). Most of the researchers more or less agree to thses stages. For example, Cooper and Zmud (1990) delineated six stages of technology implementation model consisting of initiation, adoption, adaptation, acceptance, routinization and infusion; and later Gallivan (2001) divide these six stages into two categories, initiation and adoption as the early stages of assimilation and the rest as the later stages; Fichman and Kemerer (1997) offer a six stage assimilation of technology development process innovations, including awareness, interest, evaluation, commitment, limited deployment, and general deployment; Rai et al. (2009) investigate the assimilation of electronic procurement innovations on the basis of these six stages; and Zhu et al. (2006) suggest three core element of technology assimilation process as initiation, adoption, and routinization.

From the above discussion, it is apparent that various authors have elucidated the process of technology implementation, assimilation and institutionalisation in different ways [as illustrated in table 1]. Although the use of terms is diversified, the explanation of meaning and definition remains similar, thus, some words are not really differentiated in terms of concept, but mere terminologies. For example the word ‘infusion’ used by Cooper and Zmud (1990) and the word ‘routinization’ by Zhu et al. (2006) and ‘general deployment’ by Fichman and Kemerer (1997) bring about the same meaning, i.e. the full use and understanding of technology by the whole workforce in an organisation. This research, however, concurs with Zhu et al. (2006) who suggest initiation, adoption, and routinization as the core elements of IT assimilation process. These three steps embody the pre-implementation, implementation, and post-implementation stages of ERP assimilation which offer a more comprehensive foundation.
THEORETICAL UNDERPINNING OF THE RESEARCH

The literature on IS implementation is supported by a significant theoretical background. The theory of social shaping of technology (Mackenzie and Wajcman 2001; Law 2004) explores the effects of social, organisational, and cultural factors on the content of technology and the processes involved in introduction of technology to an organisation. It views technology as a socially constructed product shaped by the social and cultural environment of its creation and use (Haines and Goodhue 2003; Xue et al. 2004). Technological and social contexts cannot, thus, be treated as separate phenomena; rather the definition of technology must become embedded within the social arrangements (Somers and Nelson 2004; Chang et al. 2008; Kwahk and Ahn 2009).

Institutional Theory

Institutional theory has been applied to various dimensions of technology management paradigm (See for example, Powel and DiMaggio 1991; Scott 2001; Zsidisin et al. 2005; Greenwood 2008; Mignerat and Rivard 2009; Currie 2011). Activities involved in development and use of technologies in general and ERP systems in particular are subject to the mutual interaction of social, cultural, organisational, technical, and other institutional factors. These factors could be from external sources such as competitors, suppliers, customers, and regulatory agencies as well as by norms, rules, and logics embedded within the organisational environment. Organisations respond to these forces by conforming to technology mandates, or by modifying their business practices to absorb technology within their technical as well as organisational infrastructure. In doing so, organisations address the opportunity of social approval and/or legitimacy within the industry as well as target market. Individuals as well as groups within the organisation have a profound role in achieving this social approval and legitimacy, for organisations are viewed as independent variables influenced not only by direct consequences of individuals’ attributes and stakeholders motives, but also by cognitive and cultural explanations which are continuously reproduced through the socialization process (Powel and DiMaggio 1991; Scott 2001 Teo et al. 2003; Baptista 2009; Currie 2011).

Institutionalisation of technology is focused on macro as well as micro level (Zucker 1987; Scott 2001). At the macro level, external and environmental characteristics are considered as the main conductors of institutionalised behaviour. Coercive, normative, and mimetic are three isomorphic mechanisms through which organisations shape, maintain, and transform their social rules, ideals, and practices by aligning themselves with the environmental conditions (Scott 2001). At the micro-level, institutionalised behaviour is reproduced as a result of institutionalisation. This behaviour is constructed socially and
becomes stabilized over time. However, with time, the social background which led to the emergence of that behaviour will be forgotten, as a result of discontinuous and incremental change process (Greenwood et al. 2002; Dacin et al. 2002; Baptista 2009). The source of this change is as much external (with regards to the macro level environmental changes) as it is internal (with regards to the organisational adaptation to the macro level external changes as well as the internal adjustments). The role of institutional theory is, therefore, more profound in institutional isomorphism. Technology institutionalisation, on the other hand, requires organisational and cultural homogeneity to achieve institutional isomorphism. Organisations, therefore, need an internal environment that is conducive to gaining structural and cultural affinity, responsiveness, and authority; in order to achieve external or environmental isomorphism.

Socio-Technical Theory

Information systems are social systems and their use and acceptance in the organisation is fashioned by the human interpretation of technology. Assimilation and performance of technology can, therefore, only be attained if the social and technical subsystems are brought together and treated as interdependent aspects of a work system (Clegg 2000). In other words, organisations must find the fit between their technical and social sub institutions in order to build an integrated harmonized organisation. Nevertheless, every organisation as an open system and its information systems (socio-technical systems) are affected by the way it evolves, adapts, and changes its behavior. Any technology implementation, therefore, must seek out the impact each piece of technology has on the other, and in doing so the organisation must aim to achieve superior results by ensuring that all the technologies and their subsystems are working in harmony (Mumford 2003). The technical subsystem, however, consists of devices, tools and techniques which are required for transforming inputs into outputs in a way which enhances the economic performance of the organisation. The social subsystem comprises employees and their knowledge, skills, attitudes, and values, and culture and authority structures that exist in the organisation. It, therefore, has to harmonize itself with its stakeholders, customers, suppliers, and business partners, and the rules and regulations that govern the relations of the organisation to society at large (Orlikowski and Barley 2001; Mumford 2003). Tolbert and Zucker (1999) defines three stages of technology institutionalisation, i.e., habitualization (the production of shared social meanings), objectification (facts become independent as a reality experienced in common with others), and sedimentation (objectified facts become part of routine behaviour). Traditionally, socio technical theory has often been coupled with institutional based trust theory constituting two key theoretical constructs, i.e., background expectation and constitutive expectation (Schutz 1962; Garfinkel 1967; Zucker 1987). According to background expectation perspective, human perception of events and objects is similar and shared among all individual within a social setting. Garfinkel (1967) conceptualizes constitutive expectation as norms and procedural rules which construct cognitive guidance system to assure whether the organisation and its individuals play their role correctly and in a desirable way and their behaviour is acceptable and reasonable. Thus, through establishing rules and governance for the gradual embedding of technology within the organisational social fabric and expected formal functioning, technology use is formalized and consequently institutionalised within the organisation. Guiding technology implementation and assimilation processes through socio-technical considerations, therefore, requires understanding the interrelationship within and between organisational technical, organisational, economic, and cultural sub systems.

RESEARCH FRAMEWORK

From the comprehensive literature review, the authors come up with the research framework demonstrated in figure 1. The main question of this research is ‘What are the social and cultural CSFs for institutionalisation of ERP systems?’ The most inner layer of this framework is ERP assimilation process. This research follows the three-stage innovation assimilation process (initiation, adoption, and routinization) proposed by Zhu et al. (2006). In the initiation stage, the ERP needs and problems are identified and prioritized. This is followed by the assessment of organisation’s technical and nontechnical environment for suitability of an ERP solution, which facilitates in alignment of technology with organisational information requirements, existing technological infrastructure and organisational environment, and helps with change management. It is noteworthy that more than one-third of all business capital spending is dedicated to technology; therefore, choosing the best technological solution is among the most critical decisions in the process of ERP assimilation. The focus at this stage, however, is on how to introduce ERP to improve organisational performance (Rogers 2003).

After an ERP is implemented, it has to be accepted, adapted, and routinized in the organisational life by the organisational stakeholders, therefore, a comprehensive change management that encompasses technical, organisational, and human aspects should be available on an ongoing basis (Dacin et al. 2002; Greenwood et al. 2002; Maheshwari et al. 2010). It is, therefore, important to emphasise ‘unlearning’, whereby the organisation shuns the existing age-old practices and embrace change to accept new practices. The process of ‘unlearning’ is not just focused on individuals and incorporates group as well as organisational behaviour.
According to Rogers (2003), there are different categories of people with different levels of motivation to accept technology within the organisation. As illustrated in figure 2, the higher proportion of users lies in the early and late majority area. The success of assimilation of technology, therefore, depends upon how sooner individuals in the early majority and late majority accept technology and provide the same level of productivity as innovators and early adopters.

Most organisations fail because of what Fichman and Kemerer (1999) term as an ‘assimilation gap’, which is the lag between widespread use of ERP system and the adoption decision. This lag occurs because of the insufficient knowledge of the organisation and its members to leverage the system. As a result, the implemented ERP system is not aligned with the organisational environment, so it fails to assimilate completely throughout the organisation. As a way to bridge up this gap, routinization emerges as the last stage of assimilation process by which ERP system is widely used as the integral part of the organisation. During this stage the effects of uncontrolled problems in previous stages appear, since the users start the exploration and evaluation of the system (Kouki et al. 2006; Ifinedo et al. 2010).

The second layer of the research framework is socio-cultural CSFs in institutionalising ERP systems. At this stage, organisation needs to ascertain how technology is shaped with the social, organisational, and cultural contexts of the organisation. Assimilation is not an isolated process; rather it is embedded in the social and organisational context, and is dependent on the perceptions of the technology stakeholders of the organisation. Hence, the success and failure of ERP assimilation process is interpreted and evaluated by objectives, goals and intentions of those social groups who socially construct technology through ERP assimilation process. At this stage, the interactions between technical, organisational, social, cultural, and competitive aspects become institutionalised within the organisation and its sub-institutions provide for the success factors of ERP assimilation process.
Competitive context is the third layer of the suggested research framework. In this day and age, technology works as the binding factor that shapes organisations and gives them their existing form and legitimacy through the interaction of various sub-institutions. This legitimacy defines the parameters that help organisations concurrently evolve their structures, culture, and systems. Emphasis of organisations, therefore, should not be on implementation of technology alone; instead they should engage in the process of technology institutionalisation to maintain their legitimacy, power, social and economic fitness on an ongoing basis. Organisations, therefore, aim to align themselves with the environmental competitive context through their social rules, ideals, and practices. The interpretation of intention to adopt ERP and the prevailing context of the organisation, therefore, is affected by its perception of the other competitive sub-institutions.

RESEARCH METHODOLOGY

Methodologically, this research follows a qualitative interpretive approach with an illustrative case study method. It will be governed by the eight step framework proposed by Eisenhardt (1989). These steps include getting started, selecting cases, crafting instruments and protocols, entering the field, analyzing data, shaping hypotheses, enfolding literature, and reaching closure. The data will be collected through on-site interviews of eight to eight participants in each site. These participants include enterprise/ solution architect, business development manager, IT manager, business analyst, project manager, portfolio manager, and etc. In addition, secondary sources of data have also been used in this research, which include review of ERP implementation documentation, observation of execution of workflow, and day to day routine usage of ERP system. Through this triangulation of data sources, the collected interview data was transcribed, fed into NVivo software, and analyzed using the same software. This software is useful in organizing data according to different themes emerging from the data collected that allows testing theories, and in directing the study to generate new theories. Consequently, within case thematic analysis was done on the basis of various themes emerging from the collected data. These themes relate to the way each organisation has implemented technology, the issues that they came across, the cultural, social, and organisational issues that they came across, and the way technology is aligned with the strategic business considerations. These themes were analyzed through the lens of ERP institutionalisation framework described earlier in the paper.

IDENTIFICATION OF CRITICAL SUCCESS FACTORS FROM THE LITERATURE

ERP system is embedded in the complex social contexts, which heavily influence ERP institutionalisation. The use of ERP system is shaped, designed, constructed, and modified by the interests, values, and assumptions of a wide variety of communities of developers, investors, users, and other actors involved in it (Haines and Goodhue 2003; Xue et al. 2004). In line with this issue, the theory of social shaping of technology (Mackenzie and Wajcman 1985; Law 2004) explores the effects of social, organisational, and cultural factors on the content of technology and the processes involved in introduction of technology to an organisation. It views technology as a socially constructed product shaped by the social and cultural environment of its creation and use. Technological and social contexts cannot, thus, be treated as separate phenomena; rather the definition of technology must become embedded within the social arrangements (Venters 2010). Orlikowski (1992) argues technology is physically adopted and socially constructed by actors in a given social context and affected by their actions. His structural model of technology comprises three components, i.e., human agents (such as decision makers, users, and technology designers), technology (any artefacts mediating task execution in the workplace), and institutional properties of organisations that constitutes organisational dimensions as well as environmental pressures.

A thorough review of IS literature lead the authors to find eight major success factors which are affecting various stages of ERP assimilation and institutionalisation. These factors along with supporting references and their key points are summarized in table 2. Through the next step of this research, these CSFs are also will be evaluated.

<table>
<thead>
<tr>
<th>Pressure</th>
<th>Key Points</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education and Training</td>
<td>• Contributions the largest quantifiable benefit. Increase user understanding, satisfaction, and buy-in</td>
<td>Ptak and Schragenheim 2003; Bradford and Florin 2003; Gargeya and Brady 2005; Jones et al. 2008</td>
</tr>
<tr>
<td></td>
<td>• Educational exposure: Information dissemination to organisational subordinates to have their agreement or collaboration</td>
<td></td>
</tr>
<tr>
<td>Organisational Change Management</td>
<td>• Flexible and proper change management strategies should be in place for achieving success</td>
<td>Strebel 1992; Holland and Light 1999; Avgerou 2000; Aladwani 2001; Dacin et al. 2002; Greenwood et al. 2002; Umble et al. 2003; Ngaiet al. 2008; Seddon et al. 2010</td>
</tr>
<tr>
<td></td>
<td>• The effective balancing of forces in favour of a change over forces of resistance should be considered via change management process</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Changes lead to realignment of organisational control to sustain the effectiveness of the reengineering efforts which influences organisational structures, policies, processes, and people</td>
<td></td>
</tr>
</tbody>
</table>
• Worker’s resistance is a common social problem among ERP adopting organisations. Change will never occur, if people are not ready or willing to accept it.
• People need to perceive that the system is designed and improved to facilitate their job needs.
• Perceiving the system as being complex, intrusive and threatening, many users fear to look inept to use the system. However, ones the system has mastered; the users begin to get creative with it and will see its advantage on their work.

• Culture signals areas of strong consensus wherein values, assumptions, and behaviours are shared.
• Disability to deal with the levels of cultural change result in failure.
• Knowledge gap is one of the main reasons for cultural misfits. It is the result of different and specific knowledge of various key parties i.e., business people, IT people, and the ERP vendor.
• Selecting vendors with significant industry knowledge and budgeting them to spend time educating key users about the system are two strategies for filling this gap.

Zucker 1977; Soh et al. 2000; Aladwani 2001; Greenwood et al. 2002; Umble et al. 2003; Gargeya and Brady 2005; Ngai et al. 2008; Chang et al. (2008); Bourgault and Pellerin (2009)

• Defines as the user’s potential to apply technology to its fullest possible extent so as to maximize performance of specific job tasks.
• Lack of user’s competency keeps them dependent on the IT personnel while doing their normal job.
• The business knowledge people should be expert in transferring the needs of business to IT people and ERP vendors and continuously refining and adjusting the system to the evolving business needs.

• Much of the learning process comes from hand-on use under normal operating conditions and further user involvement in ERP usage.
• Encourage exchanging of information experienced by system usage.
• When users believe their voice is being valued, they become more confident that the system is made for them and are eager to use it.

• Defines as the extent of direct/ indirect management support and commitment to the continuous use of ERP system throughout all the phases of the ERP institutionalisation.
• It is not just limited throughout project implementation phase; rather, at the end of the project, management should encourage system usage, commitment of use and continuous maintenance and upgrades.

Aladwani 2001; Bradford and Florin 2003; Umble et al. 2003; Somers and Nelson 2004; Liang et al. 2007; Ngai et al. 2008

• Considered as socio-cultural environmental drives.
• Vendor support helps in transferring knowledge about the use of system, understanding of the business processes in the organisation, recognizing best practices, continuous improvements and upgrades.
• Some problems with IT consulting services: Quick turnover, lack of open communication, consultant’s unwillingness to take end-to-end responsibility for coordinating all parties, & discontinuity of services.

Markus et al. 2000; Mabert 2003; Haines and Goodhue 2003; Somers and Nelson 2004; Xue et al. 2004; Kouki et al. 2006; Ngai et al. 2008; Chang et al. (2008); Seddon et al. 2010

Table 2. Critical Socio-Cultural Success Drivers of ERP Assimilation (Literature Review)

DISCUSSION AND CONCLUSIONS

Institutionalisation of technology is not a linear process, one that is independent of any organisational, cultural, technical causes and effects. In the normal progression of events, firstly the technology is implemented. Then, it is assimilated in the organisation and once its usage becomes routinized and embedded within the organisation’s work processes and value chain
activities, it leads to successful institutionalisation. However, the term ‘successful’ is highly debatable, circumstantial, and contextual. The success of institutionalisation cannot be interpreted objectively, so that its definition can applied across the board. The success of institutionalisation is defined by the context within which the organisation is operating. In other word, institutionalisation of technology in an organisation in a particular way is different from the way the same technology has been institutionalised by another organisation in another way. This is because institutionalisation of technology is not an independent process, but it is dependent on other sub institutions within the organisation. Therefore, successful institutionalisation of technology can only be interpreted within particular economic, competitive, social, organisational, and cultural circumstances.

Organisational culture changes dramatically by implementing ERP system and institutionalising its usage within organisation, and many organisations have found themselves hard pressed to accomplish this successfully. Organisations should review their organisational culture, the social structure and attributes, and the readiness of management and employees to change throughout all stages of ERP institutionalisation to improve their chances of successful, fully assimilated ERP system. Many top management view ERP as simply a software system and the implementation of ERP as primarily a technological challenge, however, ERP may fundamentally change the way in which the organisation operates.

This research provides insight into ERP institutionalisation by considering well-known IS implementation theories as well as socio-cultural factors which would encourage (or hinder) ERP implementation, assimilation and institutionalisation. The main question of this research is ‘What are the social and cultural CSFs for institutionalisation of ERP systems?’ A thorough review of IS literature has highlighted eight CSFs influencing social and cultural environment of the organisation, i.e., organisational change management (reducing social pressure), organisational culture (cultural persistence), active user involvement (emphasizes on perceived benefits), education and training, vendor support and consultant effectiveness, and management support. The suggested research framework provides a more comprehensive view on how the managers should perform to enhance the chance of ERP assimilation and institutionalisation success. It attempts to help better understanding of influential socio-cultural factors which could aid managers to foresee potential outcomes before the actual implementation took place, therefore, make them able to set the right strategic plans to achieve success.

Towards the next stage of this research, the authors will engage four to five Australian organisations who use ERP systems in their organisations. These organisations represent different types of ERP implementation and assimilation arrangements, where these organisations either buy customized ERP solutions from a foreign vendor or local vendors, or opt for a complete implementation. In addition, organisations with various levels of ERP implementation would be selected, for example, ERP with merely integrated back-end processes and/or seamless back-end and front-end packages. The authors also try to investigate organisations with different years of experience in ERP implementation such as less than 2 years, between 2-5 years, and more than 5 years. In this way, more granular understanding and assessment of ERP assimilation and institutionalisation according to characteristics of ERP project would be discovered. The gathered data will further studied through within-case as well as cross-case analysis to find emerging relationships between variables.

REFERENCES

