
29TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD2021 VALENCIA, SPAIN)

Extracting knowledge from software artefacts to assist software
project stakeholders

Miriam Gil
Departament d’Informàtica, Universitat de València
Burjassot, Spain miriam.gil@uv.es

Victoria Torres
PROS Research Center, Universitat Politècnica de València
València, Spain vtorres@pros.upv.es

Manoli Albert
PROS Research Center, Universitat Politècnica de València
València, Spain malbert@pros.upv.es

Vicente Pelechano
PROS Research Center, Universitat Politècnica de València
València, Spain pele@pros.upv.es

Abstract
Software development methods should foster the exploitation of artefacts from existing
code bases in order to improve software development productivity. These artefacts are
commonly stored in repositories from which extracting knowledge is very difficult for
several reasons, i.e., the stored data is represented in a wide variety of formats or is not
usually linked properly to all the related artefacts. In this work, we address the challenge
of extracting knowledge from different artefacts that can be produced within a software
project. To this end, we present a Persistent Knowledge Monitor (PKM) for handling
several kinds of knowledge and information related to a software project. The PKM bases
on the JSON format to structure and store the different artefacts. By using a common
representation format, we are able to extract knowledge more easily. Also, we provide a
query language for searching and reasoning on the stored data.

Keywords: Software development methods, knowledge base, knowledge extraction,
knowledge retrieval, software artefacts

1. Introduction
Software development methods (hereafter SDM) are commonly designed to support
stakeholders along the whole software lifecycle, i.e., from creation to delivery. SDM
provide a common framework for software companies and organizations to deliver
software in a structured and methodological way. However, to improve software
development productivity, SDM should foster the reuse of code and software artefacts from
existing code bases [9]. There is an important amount of information that can be extracted
from artefacts developed in a software project. This information can be used to better
understand the own project.

Extracting knowledge from current repositories is difficult for many reasons. For
example, the stored data from the different artefacts (i.e., source code, models, tests,
requirements, etc.) are represented in a wide variety of formats (e.g., xml, xmi, json, java,
c, etc.), are not usually linked properly to all the related artefacts to describe jointly a
specific part of the system (e.g., chunks of source code related to the dynamic behaviour
of an object described in a state diagram), and are represented in different abstraction levels
(e.g., source code, UML class diagrams, and requirements are usually represented at low,

GIL ET AL. EXTRACTING KNOWLEDGE FROM SOFTWARE ARTEFACTS…

medium and high abstraction levels respectively). Therefore, processing data turns into a
very complex and cumbersome process.

Existing research has mainly been focused on the use of topic models1, association
rules, and heuristics to mine source code repositories for application to traceability,
extraction of tactics (a means of satisfying a quality-attribute-response measure by
manipulating some aspect of a quality attribute mode), and monitoring changes in source
code [5]. The mining of code repositories from the standpoint of knowledge extraction can
help project stakeholders to improve their activities during software development. Project
stakeholders need to cope with a massive amount of knowledge throughout the typical life
cycle of modern projects. This knowledge includes expertise related to the software
development phases (e.g., implementation) using a wide variety of methods and tools,
including development methodologies (e.g., waterfall, agile), software tools (e.g., Eclipse),
programming languages (e.g., Java, SQL), and deployment strategies (e.g., Docker,
Jenkins). However, there is no explicit integration of these various types of knowledge
with software development projects so that project stakeholders can avoid having to search
over and over for similar and recurrent solutions to tasks and reuse this knowledge.

With the aim of mitigating the project stakeholders’ effort to integrate into a software
project, in this work we address the challenge of extracting knowledge from different
artefacts that can be produced within a software development project. To this end, we
present a Persistent Knowledge Monitor (PKM) for handling (i.e., storing, retrieving,
merging and checking for consistency) several kinds of knowledge and information related
to a software project. The PKM bases on the JSON format to structure and store the
different artefacts that are produced during the development project. By using a common
representation format to describe the artefacts developed in a software project, we are able
to extract knowledge more easily. In order to obtain knowledge from the PKM, we provide
a query language for searching and reasoning on the stored data or knowledge. With this
approach, we expect an improvement from the management and transformation of informal
data into material (herein called ‘knowledge’) that can be assimilated by any party involved
in a development process. This work is being developed within the DECODER H2020
project (https://www.decoder-project.eu/) whose major objective is to provide powerful
tools for project stakeholders to get thorough understanding of a given piece of software.

The remainder of the paper is structured as follows. Section 2 introduces an overview
over existing work in the software development research field. Section 3 provides an
overview over the PKM metamodel, describing its main components and the relationships
among them. Section 4 presents the query language proposed in this work to extract
knowledge of the PKM. Section 5 presents the experiment performed to evaluate the query
language. Finally, Section 6 presents the conclusions.

2. State of the Art
Although knowledge is of great value within a software development project, SDM are not
traditionally centered on it but instead of processes. More traditional approaches, like the
Waterfall model or the V-model, facilitate knowledge sharing primarily through
documentation. More modern development methodologies, following the agile
mainstream, suggest that most of the written documentation can be replaced by enhanced
informal communications among team members internally and between the team and the
customers with a stronger emphasis on tacit knowledge rather than explicit knowledge [4].
In [3] the authors compare Agile and Tayloristic methods as approaches for Knowledge
Sharing. This work points out the main drawbacks of the Tayloristic approach, which are
that it does not address issues of how well users internalize explicit knowledge and the
sharing of tacit knowledge that is not externalized. Also, the authors identify as relevant
praxis in Agile methods the emphasis on people, communities of practice, communication,
while collaboration excels in facilitating the practice of sharing tacit knowledge at a team
level. DevOps [5], which is currently one of the most modern software development

1 Statistical models that provide a means to automatically index, search, cluster, and structure unstructured and unlabeled
documents.

ISD2021 SPAIN

approaches, leverages improved continuity and efficiency. Thus, the development phases
are integrated much more tightly than in the standard linear or V-shaped processes,
allowing knowledge to flow rapidly between phases. DevOps did not address
representation formalism integration though.

In the literature, we can find different metamodels targeted to represent the knowledge
that can be extracted from software artefacts. These include the Knowledge Discovery
Meta-model (KDM) [15] and Abstract Syntax Tree Metamodeling (ASTM) [2]
(specifications developed by the OMG ADM task force [1]), FAMIX [20], the Pattern and
Abstract-level Description Language (PADL) [7], or the OASIS Static Analysis Results
Interchange Format (SARIF) [19]. All these metamodels put their focus on artefacts such
as source code, models, and specifications to extract knowledge from the software project.
However, in addition to these artefacts, there are other less formal sources that are not
usually considered and that can be processed and analyzed to get some extra knowledge
about the software project being maintained or improved. These include forum discussions,
issue tracker items, etc. In the PKM, we consider other less formal sources of knowledge
that are poorly structured, incomplete, and sometimes incorrect. After a process of
knowledge extraction, this information will be stored in the PKM.

To create and share knowledge throughout the different phases that are part of a
software development process, different kinds of techniques to extract, process and store
it are required. These techniques have been studied in different works in the literature. The
extraction of meaningful data from software requirements is a tough problem that intends
to formalise as best as possible knowledge that is informal and disparate. Several
approaches have been developed with mitigated success. These approaches were possible
thanks to recent research on innovative functions which range from de-obfuscating code
[11], automatic bug fixing [8], natural language querying of API [17] comment generation
of code [22] and even to code generation [16]. In this work we use an intermediate approach
between manual knowledge elicitation and complete automation (as in the ARSENAL
project [6]) since we consider that raw knowledge extracted from informal requirements is
likely imprecise, incomplete and error prone, so the developer’s intervention is needed.
Therefore, this intermediate approach consists in extracting data automatically in a first
step, and then, in allowing all manual corrections and refinements required to formalize
the results progressively into valid formal specifications (e.g., ACSL/ACSL++/JML).

The problem of aggregating multiple types of knowledge within a project can be
overcome with techniques for aggregating and disseminating knowledge, which are mostly
based on GIT or SVN repositories. Nevertheless, these are inactive and do not provide
much help to the developer when he/she requires knowledge about specific parts.
Repositories do only manage source code, scripts and some documentation but no
specifications nor models. In this work we based on the definition of a new Knowledge
Base for handling (i.e., storing, retrieving, merging and checking for consistency) different
kinds of knowledge and information related to a software project.

3. PKM Metamodel
Some software projects may produce artefacts that include informal data such as informal
specifications, internal documentation, or even comments in the source code. The
generation of formal documentation and code summarization provides useful information
for users who have created that piece of code and have to return to it at some point as well
as future maintainers. Filtering the content of informal data is a major hurdle, as this kind
of data is poorly structured, incomplete, and sometimes incorrect. The extraction process
is tedious as filtering needs some understanding of the language, its grammar, its semantics,
and the context. For instance, documentation on GUI needs some understanding of
widgets, buttons, call-backs, etc. Extracted information becomes useful when it can be
formalized, either as models, specifications, or assertions on the code. This knowledge will
be poured into the PKM for project stakeholders to use it whenever they deem it necessary
during developments, for instance during corrective maintenance, in order to understand
quickly what the current code does.

The PKM provides the representation of a general and specific knowledge about the
artefacts of a software project. In order to manage the complexity of the PKM, it is defined

GIL ET AL. EXTRACTING KNOWLEDGE FROM SOFTWARE ARTEFACTS…

by a collection of metamodels according to the categories of the artefacts and a core
package that defines the general knowledge of them. A first version of this PKM
metamodel was introduced in [21]. The different metamodels are represented in different
packages and includes:

• Core package that defines the core part of the PKM representing the software
project, the SDM, the different artefacts of a project and its related concepts.

• Abstract specification package that defines the metamodel elements of the formal
specification describing, by means of pre, post and invariants, the behaviour of an
associated source code. This abstract specification can be automatically generated
or manually written by means of annotations (e.g., in ACSL, ACSL++, JML, etc.).

• Source code package that defines the part of the metamodel that refers to the
artefacts that list human-readable instructions written by a programmer with the
objective of being executed in a computing device.

• Report package that defines the part of the metamodel that represents the artefacts
containing a structured content in natural language, related to some particular
chunk of source code or of a global nature.

• Model package that defines the part of the metamodel that represents abstract
representations of a specific aspect from a given domain (e.g., a UML class model
describes the structure – concepts, properties of the concepts, relationships between
concepts- of a specific domain).

• Configuration package that defines the metamodel that represents artefacts
describing, in plain text, the parameters that define or execute a specific software
program.

• Structured data package that defines the metamodel that represents artefacts that
store data structures and that are usually used as interchange format.

• Extracted information package that defines the metamodel that represents
information produced by static source code analysis, by optimization passes of
compilers, by natural language processing or by machine learning techniques.

Fig 1 shows the PKM Core Package. A software project is composed by different
artefacts created by different tools throughout the development process. Artefacts are
digital products or documents created in a development phase. Artefacts can be presented
in different formats (plain text, key-value structures, markup documents), and levels of
abstraction (high, medium, and low). Moreover, artefacts can be related to other artefacts
with the same (or similar) semantic intention (e.g., a java file may be related to a UML
diagram describing a class).

To deal with the heterogeneity of the data and knowledge stored in the PKM, this
repository is implemented as a document-oriented database in MongoDB [10] where
artefacts are transformed into JSON documents defined according to a specific JSON
schema. A JSON Schema [12] specifies a JSON-based format to define the structure of
JSON data for validation, documentation, and interaction control. The data used in the
project is structured into complex documents, grouped into collections. Documents are linked
together by means of internal fields such as file names, function names or identifiers. In this
way, we provide a common language where the data and knowledge are structured into
complex documents that are grouped into different collections (e.g., source code,
annotations, documentation, tests, etc.). The complete JSON schemas are available in a
gitlab repository2.

In order to feed the PKM with the different artefacts of a project, we have developed a
set of parsers for transforming the artefacts into JSON documents. For example, we have
developed a Java Parser3 to process all the java source code files contained in a Java project.
Each java source code file is separately processed and translated into three different json
documents: a first one describing the abstract syntactic structure of the source code (i.e.,
its AST), a second one describing, in a structured way, the comments included in the source
code file, and a third one describing again, in a structured way, the annotations included in
the source code file (e.g., JML annotations specifying preconditions, postconditions, and

2 https://gitlab.ow2.org/decoder/pkm-api/-/tree/master/schemas/pkm-metamodels
3 https://gitlab.ow2.org/decoder/pkm-api/-/tree/master/javaparser

ISD2021 SPAIN

invariants for the implemented source code). For C and C++ source code, Frama-C4 and
Frama-Clang5 respectively have been extended to generate the three json files in the same
way that our Java parser does for java code. Also, model-to-model transformations have
been defined to support the translation between UML models into JSON documents.

Fig 1. PKM Core Metamodel Package

Furthermore, the PKM keeps a traceability matrix that maps and traces the different

artefacts stored in the PKM. This matrix is based on a tool that computes the similarity
relationship between two given artefacts of a software project. In order to query the
traceability matrix, a service has been defined that returns the degree of similarity of two
artefacts of the same project. Finally, the PKM can be seen as an extension for Git
repositories that provide semantic traceability between the stored project artefact. In this
sense we plan to develop a service in charge of synchronizing the PKM content with the
related git servers. To this end, the PKM will provide a representation of the tracked Git
repositories that will be referenced by the stored JSON documents.

3.1. The PKM in the lifecycle of a software project

All the knowledge generated and gathered in the PKM will be used along the different
stages of the software lifecycle to improve and assist stakeholders in their respective tasks.
Fig 2 provides an overview over the different roles identified in DECODER and that can be
involved in any software project as well as their interaction with the PKM. According to
this figure, developers feed the PKM with the bulk code and documentation of the use
cases where they are involved. Then, reviewers ask the PKM to generate partial source
code formal annotations (in ACSL, ACSL++, or JML) from the documentation and the
use-cases. These annotations contain invariants and behaviors implicitly connected to the
artefacts that they derive from defining a new abstraction level (e.g., abstract state
machines) of the code. However, these annotations are often incomplete to succeed a
formal proof and reviewers have to correct and complete them before source code can be
formally verified by means of tools such as Frama-C or openJML.

4 https://gitlab.ow2.org/decoder/pkm-api/-/tree/master/frama-c
5 https://gitlab.ow2.org/decoder/pkm-api/-/tree/master/frama-clang

GIL ET AL. EXTRACTING KNOWLEDGE FROM SOFTWARE ARTEFACTS…

Finally, based on the traceability matrix, maintainers prepare the next reviewing work
and take decisions on how to resolve inconsistencies found in the different artefacts that
conform the software project.

Fig 2. Interaction between the PKM and the stakeholders to generate/consume knowledge

4. Extracting knowledge from the PKM
This section introduces the way to extract data from the PKM by using a query language
that can be useful for the three aforementioned roles participating in a software project. All
of them can require information from the project that cannot be easily obtained.

Most software project repositories enable the retrieval of information based on
syntactic information contained in data, just by typing the keyword or phrase into a query
form. Nevertheless, we aim to not only find keywords but to find structural information
contained in the different artefacts of the PKM and also concepts related to the software
project and the methodology followed. For example, a software developer that has been
recently involved in a project may require to discover which are the Java libraries used by
other software developers or which is the code practice used for implementing loops.
Therefore, the software developer is not interested in artefacts where the keyword ‘library’
appears or the term ‘loop’ appears; he/she is interested in searching for structural elements
that are contained in some artefacts of the software project. The structure of the PKM
allows software developers to make this kind of queries and obtain precise results. The
proposed query language is oriented to facilitate the retrieval of this data.
4.1. Requirements of the query language

To define the query language, we first determine which may be the needs of the project
stakeholders involved in a software project:

• Project stakeholders need to make queries, so, the language just require a selection
sentence.

• The query is related to data that may be required by project stakeholders in a
software project. We base on the PKM metamodel to determine which can be this
data. The metaclasses, attributes and relationships of this metamodel are candidates
to be retrieved as information. Also, as DECODER has defined a schema for the
different artefacts that can be produced in a software project, (e.g., source code,
documentation, UML models, comments, annotations, etc.), this enables the
retrieval of specific elements of each artefact, such as elements of the AST for the
source code, elements of the UML models, comments, etc. Taking into account the
set of metamodels/schemas that make up the DECODER ecosystem, examples of
data to be extracted from the PKM may be: libraries used in the project, tools that
have been applied, development phases that have been followed, roles participating

ISD2021 SPAIN

in the project, people involved in the project, different kind of artefacts that have
been created, structures of the source code (e.g., loops, conditions, comments),
structures of different diagrams (e.g., derived classes in a class diagram or
conditions in a sequence diagram). Therefore, the selection request sentence
requires a clause to determine the elements of the metamodel from which
instances have to be searched and retrieved.

• Project stakeholders could be interested in bounding the searching to the instances
that fulfill a specific condition. For example, a participant could be interested in
programming languages that belong to a specific paradigm, structured data that
conforms a specific format, or roles that play a specific person. Therefore, the
language requires a clause to determine a condition that must fulfil the
instances to be selected and retrieved.

• The PKM stores elements grouped in collections that have been defined according
to the different artefacts in a software project. This leads to different sources in the
database. The existing collections are the following: PKMCore (all the information
related to the PKM core metamodel), SourceCode (all pre-processed source code
(C, C++ and Java)), RawSourceCode (the unprocessed files with the source code,
whose processed version is in the previous collection), Annotations (the
annotations of the Sourcecode), Comments (all the informal comments attached to
the source code (list of strings)), ClassDiagram, StateMachineModels,
UseCaseDiagram, Documentation (all the informal documentation associated to
the project), Logs (all the log files of the project, produced along different activities
on the other collections), TraceabilityMatrix (hyper-links between documents in
the other collections, to implement the traceability matrix), TestResults (the results
of testing tools). The data to be selected and retrieved could be bounded to a
specific source. Therefore, the query language requires a clause for specifying
from wherein the element should be extracted.

• The query should return instances of the elements of the metamodel satisfying
the specified condition.

4.2. Query language

In order to make queries in the PKM, we used the MongoDB query language [13]. MongoDB
provides the find function to retrieve documents from a MongoDB database.

Nevertheless, the find sentences are strongly dependent on the structure of the JSON
files, which should be transparent for users of our query language. To allow technological
independent queries, we wrapped the MongoDB query language with a high-level
language that allows making queries that are near to the users’ needs. This language splits
a selection sentence into three main parts, which refer to the scope of the query (Source),
to the type of element being retrieved by the query (Concept), and the condition to be
satisfied by the retrieved instances (Condition). To illustrate these parts, we make use of
the following scenario: let us consider a software development project to manage bank
customers and their accounts. Consider now that a developer modifies the attribute
accountNum of the BankAccount class. After this modification, the developer wants to
make sure that this change does not introduce any inconsistency with the artefacts related
to it, e.g., requirements, documentation, UML models (class and use case), etc. To this end,
the developer may query the PKM to identify which are these related artefacts and which
parts need to be checked. Let us consider that the developer wants to query the operations
specified in the UML class diagrams that are affected by the modification of such attribute.
The query to be constructed in this case would be the following:

1. CONCEPT operations
2. SOURCE ClassDiagram
3. RELATED TO compilationUnit
4. IS “accountNum”
5. SOURCE SourceCode

Next, we use this query to explain in more detail the three main parts of the query

language and to show how to retrieve the interesting knowledge from the PKM.

GIL ET AL. EXTRACTING KNOWLEDGE FROM SOFTWARE ARTEFACTS…

Source. It determines the PKM collections from where to do the search, i.e., it delimits the
scope of the search to perform. If this value is not specified, it means that the user wants
to query all the collections of the PKM. The selection sentence is constructed with the
keyword SOURCE followed by the name of the collection. The collections that can be used
to narrow the query are the ones presented in Section 4.1. Thus, the source part of the query
in order to search on the ClassDiagram collection is the one showed in line 2.

Concept to be searched. It determines the types of elements that are going to be retrieved
by the query from the collection determined in the SOURCE part. It can refer to any
element that is part of the set of metamodels that make up the DECODER ecosystem, i.e.,
it can refer to a metaclass (e.g., SourceCode, ForStatement, Tool, Person, Loop, etc.), to
an attribute of a metaclass (e.g., the filetype attribute of the SourceCode metaclass), or to
a relationship between metaclasses (e.g., the referencedLibrary reflexive relationship of
the SourceCode metaclass). The selection sentence is constructed with the keyword
CONCEPT to determine the elements to be searched. Following with the scenario, to
retrieve the methods defined in the class diagrams stored in the ClassDiagram collection,
we may add to the SOURCE statement defined previously, the CONCEPT statement
specifying the metaclass “operations” as shown in line 1.

Condition that has to be fulfilled. It determines the condition that has to be fulfilled by the
retrieved instances. This condition can be defined from the non-explicit relationships that
exist between different artefacts (e.g., source code and a UML class model) due to the
similarity of their content and that can be extracted from the traceability matrix (Condition
from non-explicit relationships) or from the explicit relationships that are defined in the
metamodel (Condition from explicit relationships).
- Condition from non-explicit relationships: This type of condition will be used when

we are interested in retrieving an artefact whose content is highly similar to the content
of another one. This condition is defined as a nested query (see lines 3-5) where we
should specify the related artefact by using the RELATED TO keyword (see line 3).
This kind of condition is possible since the PKM keeps, in a traceability matrix, links
and cross-references between the artefacts of the PKM.

- Condition from explicit relationships: This type of condition will be used when we are
interested in retrieving elements from the metamodel that have (or are related to) an
element (metaclass, attribute or relationship) whose value matches with the value
specified in the condition. This condition can be applied in both queries, i.e., the main
one and the nested one. In both cases, this element can be defined by the own element
specified in the CONCEPT/RELATED TO part of the corresponding query or by the
elements that are reachable through the existing relationships. Besides, we can specify
whether we are looking for an exact match (by using the IS keyword) or for a partial
match (by using the AS keyword) and then indicating the literal to be searched.
According to the proposed scenario, and as shown in line 4, we should use the IS
keyword since we know the exact literal we are looking for. However, if this would
not be the case, we could also use the AS keyword followed by, for example, the
“account” literal. In this case, this literal would be used as a substring in the final
search, retrieving as a result all the related elements that contain such substring (e.g.,
lockAccount, numOfAccounts, etc.).
As a result, the constructed query would return the class operations that have a

relationship with any source code that either contains the literal “accountNum” or is related
with any element that contains the literal “accountNum”.

To actually query the PKM we should translate this query into a query in the
MongoDB query language. This MongoDB query sentence performs a search over the
PKM. The translation is made based on several templates shown in Table 1.

Table 1. Templates used to transform queries to MongoDB query

1 CONCEPT concept,
SOURCE source

db.getCollection('source').find({},{concept:1})
If the source is not specified, a query for each collection is generated.

2 CONCEPT concept
IS “feature”
SOURCE source

db.getCollection('source').find({$or:
[{concept.field1:”feature”},
{concept.field2:”feature”}…]},{concept:1})

ISD2021 SPAIN

Where field1, field2 are the different fields of the specified concept and its
related concepts.

3 CONCEPT concept
AS “feature”
SOURCE source

db.getCollection('source').find({$or:
[{concept.field1:{$regex:/feature/}},
{concept.field2:{$regex:/feature/}}…]},{concept:1})
Where field1, field2 are the different fields of the specified concept and its
related concepts.

4 CONCEPT concept
SOURCE source
 RELATED TO concept2
 AS “feature”
 SOURCE source2

A first query obtains the id of the artefacts associated to concept2:
db.getCollection('source2').find({$or:
[{concept2.field1:{$regex: /feature/}},
{concept2.field2:{$regex: /feature/}}…]},{_id:1})
A second query obtains all the ids associated to the artefacts of the collection
‘source’:
db.getCollection('source').find({},{_id:1})

Then, the Traceability Matrix service is invoked to obtain the degree of
relationship between the artefacts:
curl -X POST https:// ow2-
decoder.xsalto.net/decoder/traceability/ -h
{key:LOGIN_KEY} -d {artifact1:ARTEFACT_1_ID,
artifact2:ARTEFACT_2_ID}

This service returns a JSON object that specifies the degree of relationship
between two artefacts with the following format:
{artifact1:ARTEFACT_ID,artifact2:ARTEFACT_ID,
relationshipDegree:REL_DEGREE}

Finally, we select only those artefacts with a high degree of relationship and
performs the following query:
db.getCollection('source').find({$or:[{_id:ARTEFACT
_ID},{_id:ARTEFACT_ID}...]},{concept:1})
where ARTEFACT_ID are the different IDs of the artefacts with a higher
degree of relationship

5. Case study evaluation
This case study presents an evaluation to analyse the usability of the query language to
extract knowledge from the data stored in the PKM. To do so, we arranged an experiment
in which participants played the role of software developers involved in a Java project
which is stored in the PKM. To achieve this, we populated the PKM with data from the
Java project so participants can query it to extract knowledge out of it. The population task
was performed using the set of tools developed in DECODER to process and store different
types of artefacts (e.g., source code, UML models, documents, etc.) as JSON documents
according to the schemas defined in the DECODER project.

The case study evaluation was conducted following the research methodology practices
provided by Runeson and Höst [18], which describe how to conduct and report case studies
and recommend how to design and plan the case studies before performing them. In this
section we summarize the experiment and the results obtained, but the complete description
of the experiment can be found in a technical report6.
5.1. Design of the case study

The provided case study is a Java project whose main goal is to manage customers and
their accounts (a.k.a Banking App). Within this context, participants are asked to join the
Banking App project team to include some new functionality and also to verify the Java
source code developed in the project. However, prior to this task, and to have a better
understanding over the Banking project, participants are asked to query the PKM to extract
knowledge related to the given task.

A total of 15 subjects between 24 and 39 years old participated in the experiment (four
female and eleven male). They were students of the Master's Degree in Informatics
Engineering and were recruited through personal invitation.

In order to analyse the usability, we based on to the standard ISO 9241-11 (1999) which
states that the main affected variables concerning usability requirements are (1)
effectiveness and (2) user acceptance. While the effectiveness was measured as the grade
of task completion reached by the participants compared with a predefined master result,

6 http://tatami.webs.upv.es/decoder/isd/CaseStudy.pdf

GIL ET AL. EXTRACTING KNOWLEDGE FROM SOFTWARE ARTEFACTS…

user acceptance was measured by means of a TAM questionnaire. Thus, the instruments
that were used to carry out the experiment were:

• A demographic questionnaire.
• A task description that introduced the queries that the participants had to carry out

during the experiment7.
• A TAM questionnaire to evaluate the perceived usefulness and perceived ease of

use of the proposed query language.
• A rubric to evaluate the effectiveness of the query language by means of different

grades according to the task completion.
5.2. Execution of the case study

To perform the experiment, we arranged a one-day workshop with two sessions of three
and four hours long respectively. In the first session, participants were proposed to fill in a
demographic questionnaire to capture their background and were trained in our query
language and also the PKM. In the second session, participants were introduced to the
banking java project. From this starting point, participants played the role of developers
and have to add functionality for enabling the modification of the customer information.
In order to achieve this, the participants were asked to define, using the query language,
four queries that extract knowledge that could help them to add this new functionality. The
queries were the following (we show here the solution of the query to exemplify the query
language):

• Q1: Whether the already developed source code was verified by someone else, and
if so, the results obtained after this verification.

CONCEPT openJMLReport
SOURCE TestResults

RELATED TO compilationUnit
AS “BankAccount”
SOURCE sourceCode

• Q2: Whether there is any tool available to validate the implemented java source
code. And if so, which one?

CONCEPT Tool
SOURCE PKMCore

RELATED TO DevelopmentPhase
AS “validation”
SOURCE PKMCore

• Q3: Which UML class diagram is affected when I implement this new functionality
in the Java source code?

CONCEPT UMLClassDiagram
SOURCE ClassDiagram

RELATED TO compilationUnit
AS “BankAccount”
SOURCE SourceCode

• Q4: Who was in charge of defining/reviewing the JML specifications of the already
developed Java source code?

CONCEPT Person
FEATURED “reviewer”
SOURCE PKMCore

RELATED TO compilationUnit
AS “BankAccount”
SOURCE SourceCode

After performing the queries, each participant had to fill in the TAM questionnaire.
Throughout this session, we observed participants and took notes on their behaviour. After
the task, we filled in the rubric to evaluate effectiveness for each participant and query.

7 The task description document can be downloaded from: http://tatami.webs.upv.es/decoder/isd/taskDescription.pdf

ISD2021 SPAIN

5.3. Analysis of results

Next, we present and analyse the results obtained from the above-introduced experiment
regarding effectiveness and user acceptance.
Effectiveness. We measured the effectiveness as the grade of task completion in such a
way a query was complete and correct. The grades of the rubric were: suitable query (10
points), suitable but not complete query (7 points), not appropriate query (4 points), or not
capable to build the query (0 points). To facilitate this evaluation a master query was used
as a reference point. After performing the evaluation, we obtained an average mark of 6.72
over 10. Although this note indicates that the language can still be improved, it also
indicates that the proposed query language is effective enough to extract the knowledge
that is required at some point of the development process. Note also that all the participants
had some experience in JSON and SQL, and this had a negative impact on the use of the
proposed query language. Specifically, we detected the following problems:

• Participants had problems to define conditions due to their background in SQL.
Specifically, they tried to build the condition statement similarly to they would do
it in a SQL WHERE clause.

• Participants had difficulties to specify the CONCEPT statement at the beginning
because they were not familiar with the JSON schemas used in the PKM.

• Participants had troubles to decide when to use non-explicit or explicit condition.
• Participants had difficulties in understanding how to specify the conditions in the

non-explicit relationships because they tend to compare it with the JOIN operator
in SQL.

User Acceptance. According to the TAM results, the designed task was ranked with values
that illustrate that participants perceived the query language as not so easy to use as
expected. Users thought that with the query language they do not complete queries more
quickly than with other query languages but it could enhance their productivity, making
their job easier. For that reason, they found the query language to be useful in their job.

In general, they did not find the query language easy to learn. This was reflected during
the experiment, where participants asked a lot of questions about the language. Also, they
rated the query language as not much flexible to interact with. However, they found easy
to become skilful when they use the query language because once learned, it is simple to
use. Finally, participants mentioned that the use of the query language could be easier if
they have had a supporting and assistance tool for query construction.

6. Conclusions
In this paper, we have introduced the PKM metamodel, a metamodel designed to represent
knowledge from the different artefacts that are part of a software system/project. Such
metamodel allows detailing for each type of artefact contained in a software project its
content, the tools used to edit and manage it, the persons involved in the artefact
management process, the stages in which these participate within a specific development
process or methodology and finally the history of changes which artefacts have been
exposed to along their life. The metamodel has been designed in blocks or packages to
make it extensible whenever it is required. This metamodel, once populated, is used to
derive new knowledge that can be used and exploited to better understand the different
artefacts (source code, documentation, models, etc.) that form a software project.
Moreover, this knowledge is useful for the different actors involved during the life span of
a software, especially new persons, to keep project information as accessible and
unambiguous as possible. This living repository can be queried and enriched by the actors
involved in the project, in order to maintain consistency and keep the most updated and
precise information about it.

By having all the knowledge of the project structured in the PKM, project stakeholders
can make queries that aim not only to find keywords but to find structural elements that
appear in the components of the artefacts that are part of a software project. We have
introduced a query language that allows making queries with an enclosed syntax. This is
just the first approach to a language for extracting knowledge of the PKM. Further work
will be dedicated to extending the language to make more advanced queries and to validate

GIL ET AL. EXTRACTING KNOWLEDGE FROM SOFTWARE ARTEFACTS…

it in different software projects. Finally, we aim to develop a GUI to assist and guide project
stakeholders in constructing the queries.

Acknowledgements
This work has been developed with the financial support of the European Union's

Horizon 2020 research and innovation programme under grant agreement No. 824231 and
the Spanish State Research Agency under the project TIN2017-84094-R and co-financed
with ERDF.

References
1. ADM initiative website. http://adm.omg.org. Accessed 5 July 2019
2. Architecture-Driven Modernization: Abstract Syntax Tree Metamodel (ASTM), OMG

document formal/2011-01-05, OMG, Jan. 2011. [Online]. Available:
http://www.omg.org/spec/ASTM

3. Chau, T., Maurer, F., Melnik, G.: Knowledge sharing: agile methods vs. Tayloristic
methods. WET ICE 2003. Proceedings. Twelfth IEEE International Workshops on
Enabling Technologies: Infrastructure for Collaborative Enterprises, 2003, pp. 302-307.

4. Cockburn, A., Highsmith, J.: Agile Software Development: The People Factor. IEEE
Computer, 34(11), 131-133 (2001)

5. Ebert, C., Gallardo, G., Hernantes, J., Serrano, N.: DevOps. IEEE Software, 33(3), 94-100
(2016)

6. Ghosh, S., Elenius, D., Li, W., Lincoln, P., Shankar, N., Steiner, W.: ARSENAL:
Automatic Requirements Specification Extraction from Natural Language. In:
arXiv:1403.3142 [cs.CL] (2016).

7. Guéhéneuc, Y.G.: “Ptidej: promoting patterns with patterns”, in 1st ECOOP Workshop on
Building Systems using Patterns, pp. 1-9. Springer, Heidelberg (2005)

8. Home | Pliny: Big Code Analytics (2018), http://pliny.rice.edu/. Accessed March 10, 2021
9. Ibraheem Y.Y. Ahmaro, Abdallah M. Abualkishik and Mohd Zaliman Mohd Yusoff, 2014.

Taxonomy, Definition, Approaches, Benefits, Reusability Levels, Factors and Adaption of
Software Reusability: A Review of the Research Literature. Journal of Applied Sciences,
14: 2396-2421.

10. Inc MongoDB. 2014. Mongodb. URL https://www.mongodb.com/. Accessed April 01,
2021.

11. JS NICE: Statistical renaming, Type inference and Deobfuscation (2018), http://jsnice.org/.
Accessed March 10, 2021

12. JSON Schema and Hyper-Schema, json-schema.org. Accessed February 15, 2021.
13. MongoDB CRUD Operations, https://docs.mongodb.com/manual/tutorial/query-

documents/. Accessed March 10, 2021
14. Nembhard, Fitzroy & Carvalho, Marco & Eskridge, Thomas. (2018). Extracting

Knowledge from Open Source Projects to Improve Program Security. 1-7.
15. Object Management Group, Inc. (2012) Knowledge Discovery Meta-model (KDM).

[Online]. Available: http://www.omg.org/technology/ kdm/index.htm
16. Pengcheng, Y., Graham, N.: A Syntactic Neural Model for General-Purpose Code

Generation. arXiv:1704.01696 (2017)
17. Richardson, K., Kuhn, J.: Function Assistant: A Tool for NL Querying of APIs,

Proceedings of EMNLP 2017, Jun. 2017
18. Runeson, P., & Höst, M. (2009). Guidelines for conducting and reporting case study

research in software engineering. Empirical software engineering, 14(2), 131–164
19. Static Analysis Results Interchange Format (SARIF) website. https://www.oasis-

open.org/committees/sarif. Accessed March 10, 2021
20. Tichelaar, S., Ducasse, S., Demeyer, S.: "FAMIX and XMI," Proceedings Seventh

Working Conference on Reverse Engineering, Brisbane, Queensland, Australia, 2000, pp.
296-298. doi: 10.1109/WCRE.2000.891485

21. Torres V., Gil M., Pelechano V. (2019) Software Knowledge Representation to Understand
Software Systems. In: PROFES 2019, pp: 137-144, vol 11915. Springer, Cham.

22. Wang, X., Yifan, P.: Comment Generation for Source Code: State of the Art, Challenges
and Opportunities. arXiv:1802.02971 (2018)

