Aligning Enterprise Systems Capabilities with Business Strategy: An extension of the Strategic Alignment Model (SAM) using Enterprise Architecture

Prithvi Bhattacharya
Higher Colleges of Technology
Prithvi.bhatt@gmail.com

Abstract

In the last decade, Enterprise Architecture (EA) has been proposed to have the potential to improve and support strategic alignment between business and IT. This paper reviews the literature on cross-domain strategic alignment, as well as on Enterprise Architecture, and presents a new model to depict strategic alignment between business and IT by augmenting the widely cited Strategic Alignment Model (SAM) with an Enterprise Architecture framework, The Open Group Architecture Framework (TOGAF). The contribution of this paper is that it intends to present a holistic, generic model by synthesizing the SAM with the constructs of TOGAF to present a more comprehensive technique of modelling strategic alignment of business and IT. Also, the model illustrates this using Enterprise Systems as the chosen IT platform. Subsequently, the proposed model will be tested using empirical data from case studies and the results will be presented in another paper.

Keywords

Enterprise Architecture, Strategic Alignment, Enterprise Systems.

Introduction

The strategic potential of IT has been a topic of great interest for several decades. One of the ways in which this potential can be realized is through the strategic alignment of IT with the business (Chan and Reich 2007; Sabherwal and Chan 2001; Reich and Benbasat 2000; Gerow et al., 2014). Indeed, strategic alignment has been consistently ranked as one of the top concerns for senior IT management in surveys by the Society for Information Management (Brancheau, Janz, and Wetherbe 1996; Gottschalk 2000; Luftman and Ben-Zvi 2010; Kappelman and Luftman 2013; Kappelman et al. 2014). Furthermore, it has been suggested by several studies that strategic alignment has the potential to substantially improve organizational performance (Kearns and Lederer 2004; Tallon and Kraemer 2003; Byrd, Lewis, Bryan 2006; Chan, Sabherwal, and Thatcher 2006; Gerow et al., 2014).

While researchers have enumerated the benefits of strategic alignment, there remains much work to be done on the mechanisms and processes through which alignment can be pursued (Chan and Reich 2007). In the last decade, Enterprise Architecture (EA) has been proposed as a guiding solution for firms’ IT investments - one that has the potential to improve and support strategic alignment (Wegmann 2002; Chen et al. 2005, Pereira and Sousa 2005; Ross, Weill, and Robertson 2006; Gregor, Hart and Martin 2007; Cuenca, Boza, and Ortiz 2011; Zarvic and Wieringa 2014). The purpose of this paper is to explain and illustrate how EA can be used by organizations in their pursuit of strategic alignment.

The primary intended contribution of this paper is to provide a theoretically-supported prescriptive mechanism through which strategic alignment can be made possible using an EA framework. While some studies endeavour to explain the mechanism of how EA can promote strategic alignment (Bleistein et al., 2006; Fritscher and Pigneur 2011), these studies are limited in one or more of the following three ways.
First, these models are developed for specific organizations, with no generalizable model presented that can be applied in other organizations. Second, these frameworks show uni-directional traceability, starting with business strategic objectives and explaining the implementation of them using IT capabilities. Traceability is not shown in the opposite direction. Such frameworks are thus built on an outdated perspective where IT lags behind and responds to organizations’ strategic and infrastructural initiatives. These frameworks fail to incorporate research on the co-evolution of business and IT strategies, where IT functions not only in a lagging role as it responds to business needs, but also where IT can function in a leading role as it opens up new strategic opportunities and infrastructural capabilities that can shape overall business strategy (Agarwal and Sambamurthy 2002; Chan and Reich 2007; Smaczny 2001; Benbya and McKelvey 2006).

Third, the majority of the studies fail to focus on the specific types of IT that can be used to improve strategic alignment. Can infrastructural technologies, for instance, promote strategic alignment? Or can the implementation of Enterprise Resource Planning (ERP) systems and their variants (collectively called Enterprise Systems) enable strategic alignment? The contribution of this paper is that we seek to address each of these limitations with a generalizable model to promote strategic alignment, one that explains traceability not only in the traditional direction from firms’ strategic objectives to IT capabilities, but also in the opposite direction, and one that identifies types of IT that can promote and enhance strategic alignment. In essence, we aim to answer the following question in this research:

“Can Enterprise Architecture help firms achieve and maintain cross-domain strategic alignment of business and IT? And if so, how?”

The remainder of this paper presents a literature review followed by a new framework combining the SAM and Enterprise Architecture, using illustrative examples.

Literature Review

Types of Alignment

The concept of Business-IT alignment is an area of utmost importance to practitioners and researchers. A comprehensive classification of business-IT strategic alignment, based on the Strategic Alignment Model of Henderson and Venkatraman (1993) describes six types of strategic alignment: intellectual alignment, operational alignment, business alignment, IT alignment, and two additional types of cross-domain alignment (Gerow, 2014, 2015). In this paper, we focus on this last sub-type of cross-domain alignment, that between business strategy and IT infrastructure and processes. This choice is made because this type of alignment is a key area of interest to academia and industry. While researchers have examined cross-domain alignment before, the majority of this work examines how IT infrastructure and processes are shaped in response to the overall business strategy (Weill and Broadbent 1998; Applegate et al. 2003; Grant 2003; Gregor, Hart and Martin 2007). We take a new perspective, examining cross-domain alignment not only in the traditional, business-strategy-first direction, but also in the opposite direction, where IT infrastructure and processes can shape business strategy, thus increasing alignment.

In the remainder of this paper, we will use the term ‘alignment’ to refer to alignment between business strategy and IT infrastructure and processes.

Aligning Business Strategy with IT Infrastructure and Processes

Researchers have studied the challenges that organizations face in attaining a high degree of cross-domain alignment between business strategy and IT infrastructure and processes. The key challenges include: that business strategy is often unknown and ambiguous or difficult to implement (Baets, 1992; Reich and Benbasat, 2000), that top management does not understand the importance of alignment or the contribution IT can make to the business (Henderson and Venkatraman 1993; Robey and Boudreau 1999; Campbell, 2005), and that the business environment is dynamic and rapidly changing (Henderson and Venkatraman, 1993; Van Der Zee and De Jong 1999). A number of implications have been observed as arising from these challenges. When business strategy is either unknown, ambiguous, or rigidly fixed, IT purchases are haphazard rather than purposeful, leading to inefficiency (Baets 1992). When there is a disconnect between the IT management team and the top management team (a group often without an IT representative) there is a lack of understanding of the strategic potential of IT (Robey and Boudreau 1999;
Aligning IT Capabilities with Business Strategy using EA

Campbell, 2005). And in environments characterized by dynamism and hyper-competition, it is a daunting task to align IT capabilities to the ever-changing business strategy (Van Der Zee and De Jong 1999).

In spite of this foregoing research, and in spite of the identification of challenges to cross-domain alignment, the mechanisms for aligning business strategy with IT infrastructure and processes remain under-investigated. Neither the aforementioned studies on finding important factors for alignment, nor the research that led to the Strategic Alignment Model (SAM) by Henderson and Venkatraman (1993), nor the MIT 1990s Framework, specify the mechanism or pathway through which a high degree of such alignment can be achieved. Restated, these studies leave a key issue unaddressed: the identification of a process to achieve cross-domain alignment between a firm’s overall business strategy and its IT infrastructure and processes.

Enterprise Architecture and Strategic Alignment

Enterprise Architecture (EA) is defined as “a coherent whole of principles, methods and models that are used in the design and realisation of the enterprise’s organisational structure, business processes, information systems, and infrastructure.” (Jonkers et al. 2006, p. 64). Architecture models, views, presentations, and analyses all help to bridge the communication gap between architects and stakeholders (Lankhorst 2013). EA is implemented using several standards and frameworks, including the Zachman’s Framework, The Open Group Architecture Framework (TOGAF), Four Domain Architecture, Reference Model for Open Distributed Processing (RM-ODP), OMG’s Model Driven Architecture (MDA), Department of Defence Architecture Framework (DoDAF), Generic Architecture Reference and Methodology (GERAM), and the Nolan Norton Framework (Lankhorst 2013). Given that EA is intended to shape the development of IS and IT infrastructure, as well as the formation of processes in light of a firm’s strategy, we observe that EA offers a potential guiding solution framework to help firms realize higher levels of cross-domain alignment.

For instance, the ‘SEAM’ paradigm was proposed as a systemic paradigm to improve existing EA frameworks and methodologies and to find explanations for the practical problems encountered by enterprise architects (Wegmann 2002). Elsewhere, the Business IT Alignment Method (BITAM) has been applied to reveal twelve steps for managing, detecting, and correcting misalignment (Chen et. al 2005). A requirements engineering framework that demonstrates how an organization’s IT requirements can be aligned with its business strategy has been presented and illustrated (Bleistein et al. 2006). Similarly, a firm’s physical business and IS/IT elements, along with their connective relationships, has been shown to enable strategic alignment (Gregor, Hart and Martin, 2007). Furthermore, a research study synthesizing business modelling and EA has used the TOGAF EA framework and the Business Model Canvas (BMC) technique to model alignment (Fritscher and Pigneur 2011). Ways to extend cross-domain strategic alignment beyond the organizational boundary to include its value chain partners have been discussed as well (Cuenca, Boza, and Ortiz 2011). Elsewhere, a study shows how both inter-organizational and intra-organizational strategic alignment can be achieved (Derzsi and Gordijn 2006). Hinkelmann et al (2016) proposed a new paradigm in the context of enterprise information systems for the continuous alignment of business and IT for the agile enterprise. Jansen (2017) explored how the alignment of an ‘Archimate-based’ enterprise architecture model can be monitored using Semantic Web Technology. In spite of this important work, each of the aforementioned studies are nevertheless limited in that their conclusions are specific to the organizations being studied, with few attempts made by the authors to generalize to a broader set of firms. To the best of our knowledge, no studies present a generic framework that can be applied to a broad range of organizations. The only exception is a recent study by Alaeddini (2017) that attempted to give a critical understanding of the effects of performing EA on different aspects of business-IT alignment maturity through a global survey.

Further, while an integrated EA approach has been presented by synthesizing four distinct EA frameworks (Zarvic and Wieringa 2014), and while an exploratory study among 162 EA professionals was used to identify meta-models for four specific types of strategic alignment situations (Saat, Franke, Lagerström and Ekstedt 2010;Niemi and Pekkola 2017), both of these studies show how to achieve alignment starting with business strategy and leading to IT capabilities. The same issue appears in a conceptualization of Enterprise Modeling and EA (Seigeroth 2011). None of these studies explain how alignment can be improved by working in the opposite direction from IT capabilities inform business strategy. Thus, another limitation of existing research is an assumption of unidirectional traceability from business strategy to IT
infrastructure and processes. This research stream can be enriched by examining ways in which IT can influence strategy and creating new strategic opportunities (Agarwal and Sambamurthy 2002; Chan and Reich 2007; Smaczny 2001; Benbya and McKelvey 2006). However, one study by Malyzhenkov and Inavova (2017) did attempt at providing a practical guidance for IT-business alignment as well as a strategic guidance for EA development by integrating traditional Strategic Alignment Model and The TOGAF framework.

Additionally, each of the aforementioned studies refer to IT in general and do not specify any particular kind of IT that was explored for strategic alignment. With the exception of a study by Grant (2003) that explored strategic alignment using Enterprise Systems, there is little known about the type of IT that has been used to shape strategic alignment. Given the wide range of IT from generic infrastructural tools to specialised business applications, it would be beneficial to know which type of IT is being referred to when aligning business strategy with IT infrastructure and processes. So again, it remains to be demonstrated the kind(s) of IT that can be used to promote cross-domain strategic alignment.

In summary, we observe that the current literature on the role of Enterprise Architecture in achieving cross-domain strategic alignment suffers from one or all of these limitations: a lack of generic alignment models applicable for a large number of organizations, a lack of models that show strategic alignment from IT capabilities to business strategy, and a lack of reference to the type of IT used for better alignment. The study we now describe represents an attempt to supplement existing research and address these limitations.

Towards a New Model for Cross Domain Strategic Alignment using Enterprise Architecture

In an attempt to address the limitations in the current literature, we now propose a theoretically-supported prescriptive model to explain how cross-domain strategic alignment can be pursued using the TOGAF Enterprise Architecture Framework. This framework is chosen because it is one of the most widely accepted EA frameworks and has been used in studies to link strategic goals and value proposition of an organization to organizational processes and technology (Chen et al., 2005, Bleistein et al., 2006, Derzsi and Gordijn, 2006, Tallon 2007). Our model is based on the Strategic Alignment Model (SAM) of Henderson and Venkataraman (1993), which suggests 4 constructs: Business Strategy, Business Infrastructure and Processes, IT Strategy and IT Infrastructure and Processes. We focus in this paper specifically on cross-domain alignment between Business Strategy and IT Infrastructure and Processes, placing the other two constructs and other types of alignment outside the scope of this research. The reason is that this cross-domain alignment and especially in the direction suggested, has been found to be most relevant for industry, yet under-studied in academia. Other types of alignment can be addressed by a future research and results thereof published in a subsequent paper.

We extend the SAM model by incorporating the concepts of a widely-used framework for Enterprise Architecture: TOGAF. TOGAF is a framework to guide the design and implementation of an enterprise architecture in an organization (togaf.org). The new model introduces several layers within and connecting the two constructs from the SAM ‘IT Infrastructure & Processes’ and ‘Business Strategy’. These are the following: technology layer, applications layer, business layer and motivation layer; these layers correspond to the TOGAF phases of ‘technology’, ‘information systems’, ‘business’, and ‘architecture vision’ respectively. The proposed model is shown in Figure 1 and the constructs of the model are explained in Table 1.

The table below defines each of the constructs of the above model.

<table>
<thead>
<tr>
<th>Construct/Sub-construct</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Strategy</td>
<td>How a business organization aims to achieve the ultimate ‘end’: maximizing the returns of the owners/shareholders of the business</td>
</tr>
<tr>
<td>Motivation Layer</td>
<td>The means through which the organization can achieve its ‘end’; Structured in a hierarchy of strategic orientations/drivers, goals, and objectives; drivers are decomposed to goals and goals are decomposed to objectives.</td>
</tr>
<tr>
<td>Drivers</td>
<td>Organizations can choose one or more of the six ‘strategic orientations’ or ‘drivers’ to achieve their mission. Drivers are these six strategic orientations:</td>
</tr>
</tbody>
</table>
Goals
The high level things that organizations aim, given their 'Driver':
- In Aggressiveness, the main goal is Market Penetration
- In Proactiveness, the main goals are Product Development, Market Development and Inorganic Growth.
- In Defensiveness, the main goal is Operational Efficiency
- In Futurity, the main goal is Diversification
- In Analysis, the main goal is Astute Strategic Decisions

Objectives
The more tangible things to ultimately attain the ‘Goals’. These include (but are not limited to):
- Market Penetration through: Price Reduction; Increase in promotion, Increase in Customer Satisfaction.
- Product Development through: Offering new products.
- Market Development through: Selling to different customer segments, Local and Global Expansion.
- Inorganic Growth through: Mergers and Acquisitions.
- Operational Efficiency through: Decrease in Direct and Indirect Costs
- Diversification through offering new products to new markets.
- Strategic Decisions through Internal and External Assessments

IT Infrastructure & Processes
The information technology capabilities an organization has in place

<table>
<thead>
<tr>
<th>Technology Layer</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>The IT platform that an organization has in place including different nodes or devices and software servers. For this study, we focus on Enterprise System only</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applications Layer</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consists of the Enterprise System, that are composed of in-built functional units called ‘modules’ like Financials, Human Resources, Sales and Distribution, Materials etc. The applications layer also shows the different application services that are offered by the application(s):</td>
<td></td>
</tr>
<tr>
<td>Integration Data and Systems</td>
<td></td>
</tr>
<tr>
<td>Optimized and Standardized Processes</td>
<td></td>
</tr>
<tr>
<td>Information and Analytics</td>
<td></td>
</tr>
<tr>
<td>Multi-Country Support</td>
<td></td>
</tr>
<tr>
<td>Standardized Organizational Structures</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Business Layer</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>The business capabilities connect the ‘Applications Layer’ to the ‘Motivation Layer’. These include (but are not limited to):</td>
<td></td>
</tr>
<tr>
<td>Campaign Management</td>
<td></td>
</tr>
<tr>
<td>Better Fulfilment of Orders/Requests</td>
<td></td>
</tr>
<tr>
<td>Lean Production</td>
<td></td>
</tr>
<tr>
<td>Automation of Supply Chain</td>
<td></td>
</tr>
<tr>
<td>Organizational Communication</td>
<td></td>
</tr>
<tr>
<td>Consolidated IT Infrastructure and external systems</td>
<td></td>
</tr>
<tr>
<td>Business Analytics</td>
<td></td>
</tr>
<tr>
<td>Compliance with legislations</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Definition of the Constructs of the Model
The purpose of this model is to show how cross-domain strategic alignment is achieved by linking the 'IT Infrastructure & Processes' to 'Business Strategy', by traversing the different layers, as shown in Figure 1.

On one hand, the 'IT Infrastructure and Processes contains the 'Technology Layer' that provides the technology (namely the Enterprise System). The technology layer describes the logical software and hardware capabilities, including IT infrastructure, middleware, networks, communications, processing, and standards. This layer, in turn, enables the technological capabilities depicted by the 'Applications Layer'. These are optimized and standardized processes, integrated data and systems, information and analytics, multi-country support and standardized organizational structures (Davenport 2004).

On the other hand, the 'Business Strategy' construct contains the 'Motivations Layer'. The Motivations Layer is structured as a hierarchy of levels, based on a combination of concepts proposed by Archimate and Business Motivation Model, and supported by several researchers like Beistein et al (2006), Feglar (2006), Quartel, Engelsman, Jonkers, & Van Sinderen, (2009), Fritscher and Pigneur (2011), and Clark, Barn, Oussena (2012). These levels are discussed as follows. The 'end' state of most business organizations is maximizing the benefits/returns of the owners/shareholders of the business, and measured by the Return on Equity (RoE), also called Return on Net Worth (RoNW) as suggested by Tully et al (1993), Hitt & Brynjollson (1996) Barua et al (1995). To achieve this ultimate 'end', different organizations employ different 'means' that form the first level: 'Drivers' or 'Strategic Orientations'. This can be comprehensively depicted by a widely cited framework called the Strategic Orientation of Business Enterprises (STROBE) by Venkatraman (1989) that propose six strategic orientations: Aggressiveness, Proactiveness, Defensiveness, Analysis, Futurity and Riskiness. However, the Riskiness orientation has more to do with individual traits of an employee, and also its essence is captured in the other orientations; so this is being excluded from our model. The second level shows how the different Strategic Orientations/Drivers mentioned in the above level can be translated in the form of different high level 'Goals'. These are based on the explanations given by Venkatraman (1989) and used in combination with the terms used in Ansoff’s (1957) widely used ‘Product-Market Strategy’. The third level shows how the different 'Goals' mentioned in the above level can be realized through more specific, achievable, measurable 'Objectives'. These again are based on the explanations given by Venkatraman (1989) and used in combination with the terms used in Ansoff’s (1957) widely used 'Product-Market Strategy'. The Strategic Orientations/Drivers, Goals and Objectives are defined in Table 1. Furthermore, the TOGAF EA architecture describes a business layer that exists between the Business Strategy and IT Infrastructure and Processes constructs: a layer that is key to understanding how business strategy is enacted in IT processes and infrastructure, and how IT processes and infrastructure can open up new strategic possibilities. The model proposes that linkage is achieved through the 'Business Layer' as an intermediary. The Business Layer facilitates cross domain strategic alignment by linking the (a) IT Infrastructure and Processes (shown in the Application Layer, as made available by the Technology Layer) and (b) the Business Strategy of the organizations, as attained through its objectives, goals, strategic orientations (shown in the Motivation Layer). This is postulated as below:
Proposition PA: The Applications Layer enables the Business Layer
Proposition PB: The Business Layer enables the Motivations Layer

Such linking can be done one at a time, item by item (as defined in Table 1) from each of the three layers. This is illustrated using an example proposition as below:

PA1: ES-enabled Optimized and standardized processes enables Campaign Management
PB1: Campaign Management enables Product Promotion

A Marketing Campaign is a coordinated series of steps that can include promotion of a product through different mediums (television, radio, print, online) using a variety of different types of advertisements, demonstrations, and other interactive activities. There exist dedicated modules for campaign management in Enterprise Systems from the leading vendors like SAP and Oracle. These modules come with built-in processes so that organizations can analyze, plan, execute, and measure marketing activities through all inbound and outbound interaction channels. They can implement inbound and outbound campaigns that are multi-channel and multi-wave, and they can develop and execute the best marketing strategy by using constraint-based optimization techniques to determine the best marketing mix (Goodhue et. al 2002; Rigby and Ledingham 2004; Bligh and Turk 2004). So, ES-enabled optimized and standardized processes leads to Campaign Management (PA1).

On the other hand, Product Promotion refers to raising customer awareness of a product or brand, generating sales, and creating brand loyalty. It is one of the four basic elements of the market mix, which includes the four P's: price, product, promotion, and place. It is well established in the marketing literature that marketing campaigns are a means used widely for product promotion (Mitchell 2002; Pracejus and Olsen 2004). The above-discussed 'Business Layer' capability of campaign management enabled by the 'Applications Layer' capability of optimized and standardized processes from the 'Technology Layer' of Enterprise Systems thus contributes to achieve the 'Motivation Layer- objective' of Product Promotion. So, ES-enabled optimized and standardized processes (Applications Layer) enables Campaign Management (Business Layer) -PA1, and that, in turn, enables Product Promotion (Motivation Layer) - PB1. Further, as shown in the figure, the ‘Motivation Layer- objective’ of Product Promotion, in turn, is expected to realize the ‘Motivation Layer- goal’ of Market Penetration, i.e., (a) existing customers in the market will buy more of the products and (b) more customers in the market will buy the products (Ansoff 1957). This is what is desired in the ‘Motivation Layer- driver’ of Aggressiveness business strategy. This is one (of the many) path(s) by which Strategic Alignment of Business and IT is achieved through Enterprise Systems.

Similarly, Enterprise Systems (Technology Layer) enables Information and Analytics (Application Layer) and leads to Business Analytics (Business Layer), that leads to Price Reduction (Motivation Layer-objective) that eventually leads to Market Penetration (Motivation Layer- goal), that in turn leads to fulfilling the Aggressiveness (Motivation Layer-driver) business strategy. So, ES-enabled Information and Analytics (Applications Layer) leads to Business Analytics -PA2; and that in turn leads to Price Reduction-PB2.

Again, Enterprise Systems (Technology Layer) enables Optimized Processes (Application Layer) leads to Better Fulfilment of Orders/ Requests (Business Layer), that leads to Customer Satisfaction (Motivation Layer-objective) that eventually leads to Market Penetration (Motivation Layer- goal), that in turn leads to fulfilling the Aggressiveness (Motivation Layer-driver) business strategy. This eventually leads to Market Development (Motivation Layer-goal), that in turn leads to fulfilling the Proactiveness (Motivation Layer-driver) business strategy. So, ES-enabled Optimized Processes (Applications Layer) lead to Better Fulfilment of Orders/ Requests (Business Layer) –PA3; and that in turn leads to Customer Satisfaction (Motivation Layer) - PB3. The intention is to uncover, using empirical data from case studies, many more such links that illustrate our propositions PA and PB, and explain each of them.

Conclusion

This paper presented a new, enhanced cross-domain strategic alignment model, based on the SAM. The contribution of this paper is that it augmented the existing SAM with the constructs of an Enterprise Architecture framework namely TOGAF to present a more comprehensive technique of modelling strategic alignment between business and IT. This new model attempts to define a clear, step-by-step mapping of how an IT investment can support, shape or realize the business strategy of an organization. It is a generic model that can be tailored to suit different organizations, as shown by the illustrations PA1-3 and PB1-3. However, this paper aims to pave way for further research to elaborate and empirically test the knowledge
claims that link the ‘Application Layer’ to the ‘Business Layer’ to the ‘Motivation Layer’ of the model to establish evidence of its validity. Such research can be used as a prescriptive framework to (a) model, and (b) achieve strategic alignment between business and IT in a wide range of organizations. Furthermore, the intention is to explore the other two constructs of the model, namely ‘IT Strategy’ and ‘Business Infrastructure and Processes’, for future research.

REFERENCES

Aligning IT Capabilities with Business Strategy using EA

Aligning IT Capabilities with Business Strategy using EA