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Decision Analytics with Heatmap Visualization
for Multi-step Ensemble Data

An Application of Uncertainty Modeling to Historical Consistent
Neural Network and Other Forecasts

With today’s computing power, it is easy to generate huge amounts of data. The real
challenge lies in adequately condensing the data in decision making processes. Here,
the focus is on ensemble data that typically arises when distributions of forecasts are
generated for several time steps in the future. Often a distribution is aggregated by taking
an ensemble’s mean or median. This results in a single line that is easy to interpret. However,
this single line may be seriously misleading when the ensemble splits into two or more
different bundles. The mean or median may also lie in a region where there are only very
few ensemble members. To remedy this, a heatmap visualization to better represent
ensemble data for decision analytics is proposed. Heatmap visualization provides an
intuitive way to identify regions of high and low activity. The regions are color-coded
according to the (weighted) number of ensemble members in a specific region.
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1 Introduction and Motivation

One of the typical tasks of a decision sup-
port system is to produce forecasts and –
more importantly – to help people in-
terpret those forecasts. However, single
value forecasts may be misleading. For
this reason ensemble forecasts – based
on a collection of several individual fore-
casts – can be used to largely improve
the forecasting accuracy; see for exam-
ple (Zhang and Berardi 2001). With en-
semble forecasts, quite often only a sin-
gle value is (or a few points of the distri-
bution are) used. This is useful for auto-
matic usage in information systems but
the real shape of the other features of
the distribution remains unclear; see for
example (Welch 2001; Hansen 2008). It

is not necessarily the case that the fore-
cast distribution is unimodal. Generally it
could be multimodal. That means that we
cannot characterize the forecast by a sin-
gle number (for example the mean). Sev-
eral different models make up the fore-
cast and we cannot expect our forecast to
have a single peak. In this case the mean
or median can be misleading, as we will
show. Multi-step means that our forecast
does not just forecast, for example, to-
morrow’s value. Rather, the forecasts we
are looking at will stretch over several
time-steps. In essence, common data ag-
gregation techniques either lose informa-
tion or do not scale well. In both cases
this greatly reduces the usefulness of the
forecast.

We present first steps towards answer-
ing the research question: “How can an
adequate visualization enable decision an-
alytics for today’s ensemble forecast meth-
ods?”

Ensembles of artificial neural network
(ANN) models are a typical case where
we obtain forecasts that consist of several
hundred individual paths. In the present
paper we look at a 20-day forecast for
the price of natural gas in US dollars.
The figures are computed from an en-
semble of 200 networks. We are using a
new class of ANN, the Historical Con-
sistent Neural Network (HCNN) intro-
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duced by Zimmermann et al. (2010). See
also von Mettenheim and Breitner (2010)
for a detailed presentation and perfor-
mance evaluation. For the goals of the
present paper it is sufficient to be aware
of the fact that HCNNs use a simple state
equation to compute the following state
from the immediately preceding state.
Multi-step forecasts are therefore easy to
generate. We generally use HCNNs when
we have to model several time-series and
their distribution simultaneously. When
we train different HCNNs with randomly
initialized weights, we obtain a diverse
ensemble of forecasts.

The exact forecast asset is not central
to the following discussion and it is not
our goal to evaluate the forecast perfor-
mance of the ANN. Rather, our focus is
on making the forecast output easier to
interpret for the human decision maker.
Our approach is therefore not limited
to ANNs. Other model types that might
produce an unlimited number of fore-
cast paths based on good historical per-
formance could also be used in this con-
text. These include, for example, Support
Vector Machines, Evolutionary Program-
ming, and Monte Carlo Simulations. For
this reason we outline the ANN model
only briefly. In our paper we present a
heatmap visualization of the resulting en-
semble forecasts. This is a step towards
visually supporting the human decision
maker, because heatmaps aggregate in-
formation but conserve the essence of
the forecast, even if the distribution is
multimodal.

We can now make our research ques-
tion more concrete: “How can we intu-
itively present the complete forecast infor-
mation to a decision maker, but also exploit
all distribution information?”

We propose heatmap visualization.
A heatmap allows us to differentiate be-
tween more active and less active regions
of the forecast space by color coding (see
Figs. 1(d)–1(f) and examples in Figs. 3,
4, and 5). A detailed discussion of Fig. 1
will follow below, especially in Sect. 6.

Whereas simply plotting aggregate val-
ues in Figs. 1(a) and 1(b) loses informa-
tion, it is also not possible to only plot
each forecast individually as is done in
Fig. 1(c). We cannot distinguish individ-
ual forecasts anymore and the output is
useless. Figures 1(d) and 1(e) show our
heatmap approach and Fig. 1(f) is an
even more useful presentation. We can
clearly see splitting paths in Figs. 1(d)–
1(f). This is a warning signal from the
model: the forecast is dubious.

Heatmaps also help us gauge the qual-
ity of the forecast. Depending on the
width of the forecast and the number
of peaks we see in the heatmap, we can
qualify the forecast as more or less re-
liable This offers an alternative to the
usual binary output of most of today’s
forecasting methods. It is quite common
that a forecast model either outputs “up”
or “down”. This is not entirely honest.
There should be a third output possi-
bility: “don’t know”. Heatmaps offer just
that: rather than hiding information be-
hind a single number (which will in-
variably be wrong) they present the en-
tire forecast spectrum to the decision
maker. Problematic areas are then easy to
identify.

2 Research Design

To answer the research question, we were
inspired by the Design Science Research
approach from Hevner et al. (2004,
p. 83). Figure 2 shows the implementa-
tion of our research design. In the fol-
lowing we place our contribution in the
context of selected research guidelines:

The presented research is relevant
(Problem Relevance), as our visualiza-
tion approach tackles distributional fore-
casts that for example arise in the con-
text of ANN ensembles. The same visu-
alization could be useful for any other
forecast models that generate ensembles,
or time-series. We review existing con-
cepts in the area of ensemble and time-
series visual representation and show the
limitations of commonly used visualiza-
tion techniques in Sect. 3. In Sect. 4 we
present the formal model of our method
for heatmap generation. We argue that
this approach is an artifact that “ex-
tends the boundaries of human problem
solving” (Hevner et al. 2004) because it
can help decision makers arrive at bet-
ter decisions by providing additional in-
formation, which is invisible when us-
ing statistic aggregations (Design as an
Artifact).

The first step of our evaluation is to
build a prototype implementation. The
prototype is described in Sect. 5. We use
the prototype to demonstrate the utility
of our approach, in the form of qualita-
tive information gain. One example sce-
nario is given by the above-mentioned
gas-price forecast scenario; another is ar-
tificially created for clearer description

of the information gained by interpo-
lation,following the concept of Descrip-
tive Design Evaluation with Scenarios
(Hevner et al. 2004, p. 86).

An earlier stage of this work was pre-
sented to the scientific and practice au-
dience at a conference (von Mettenheim
et al. 2012) and a workshop (Commu-
nication of Research). We discussed the
results with ANN experts and incorpo-
rated their feedback. From this discussion
an independent implementation of our
approach emerged, conducted by expert
users in a large international company.
Hevner et al. (2004) states that “the ob-
jective of design-science research is to de-
velop technology-based solutions to im-
portant and relevant business problems”.
We consider the existence of an indepen-
dent implementation to be a strong in-
dicator for the importance and business
relevance of the problem we address with
our approach.

3 Related Work

Potter et al. (2009b) underline the “enor-
mous power” of ensemble data sets, but
also the “formidable challenge” of en-
semble visualization due to their com-
plexity. Andrienko and Andrienko (2005)
focus on spatially distributed time-series
data as used in cartographic and geo-
visualization applications. They criticize
the combined plotting of many localized
time-series, as cluttering and overlapping
lines result in a hardly legible display, and
the concept becomes “completely unus-
able” for a large number of hundreds
and more time-series. As an alterna-
tive they propose map- and aggregation-
based visualization. Aggregation is real-
ized by plotting the minimum, maxi-
mum, median and quartiles. Andrienko
et al. (2010) focus on event detection sup-
port in multiple time-series. They present
a toolkit with interactive user-controlled
data visualization, using mean or me-
dian for statistical summary of multi-
ple time-series. Bade et al. (2004) use
minima, maxima, median and the 25 %
and 75 % percentile for the presenta-
tion of aggregated high-frequency data
streams. Hao et al. (2009) describe a vi-
sual support framework for time-series
prediction. Their tool uses a one dimen-
sional heatmap style “visual accuracy in-
dicator” to show over, under, and close
predictions.

Aigner et al. (2007) present a “concep-
tual visual analytics framework for time-
oriented data”. They describe aspects
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Fig. 1 Visualizations of a multi-step ensemble forecast

of time visualization and time-oriented
data, and illustrate some of them. The ex-
ploring of trends and patterns is referred
to as “particularly important tasks when
dealing with time-oriented data and in-
formation”. They see interaction as an es-
sential part of visualization. May et al.
(2010) also emphasize the definition of
visual analytics and refer to it as “the

science of analytical reasoning facilitated
by interactive visual interfaces.” Thomas
and Cook (2006) follow the same direc-
tion. Savikhin et al. (2011) presents a vi-
sual analytics tool for financial decision
support.

Buono et al. (2007) present a simi-
larity-based time-series forecasting ap-
proach on a data set of historical time-

series. Their interactive time-series visu-
alization tool “Time Searcher 3” uses a
“River Plot View” and presents statistical
attributes and quantiles for the indication
of forecast uncertainty. Feng et al. (2010)
present several methods for visualizing
uncertainty, motivated by medical appli-
cation. They characterize density plots as
“useful tools for summarizing extremely
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Fig. 2 Research design
inspired by Hevner et al.
(2004, p. 83)

large data sets” and propose them as the
“fundamental tool for visualizing uncer-
tain multivariate data”. Their visualiza-
tion technique for scatter plots is based
on kernel density estimation (KDE) of
probability density in a data set.

Yagi et al. (2012) presents a data vi-
sualization technique for plotting tagged
time-varying data in the single polyline
chart space. To deal with reduced read-
ability of “hundreds or even thousands”
of lines, they use a two-step approach:
they cluster the polylines and select rep-
resentative samples for each cluster. They
implement an interactive visualization
environment.

In summary, the visualization of time-
series ensembles by plotting summary
data, especially in the simple form
of mean/median/extrema/quantiles, is
commonly used; see for example (An-
drienko and Andrienko 2005; Andrienko
et al. 2010; Buono et al. 2007; Feng et al.
2010). The most basic approach is to use
the mean or median (Figs. 1(a)). Adding
some representative percentiles such as
quartiles (including extrema) increases
the visible information (Fig. 1(b)). An
additional step is to plot every path of
individual ensemble members; see also
Potter et al. (2009a). Figure 1(c) is, for
example, a plot of 200 individual paths.
The approach of plotting every ensem-
ble member is inefficient When the en-
semble includes several hundred mem-
bers it becomes unwieldy. The “readabil-
ity of jammed lines is a common problem
of information visualization techniques,
and several works have addressed the
problem” (Uchida and Itoh 2009).

We additionally searched for simi-
lar approaches in Google Scholar and
Google Images (for visual impression)
using combinations of at least two
of the following keywords: ensemble;
{visualisation|visualization}; uncertainty;
heatmap; time-series; distribution.

The concept of fanplots/fancharts is
similar to our approach, as a heatmap-
like representation is used for uncer-
tainty visualization. Fanplots are used in
macroeconomic or probabilistic popula-
tion forecasts, for example. The United
Kingdom Monetary Policy Committee
(MPC) presents the projections of GDP
and CPI inflation as fancharts in their in-
flation reports. Elder et al. (2005) doc-
ument this usage in detail: The charts
are based on the mode (“the single most
likely point”) as a central projection and a
symmetrical or skewed distribution. The
colored area is defined to cover 90 %
of the future outcome. The width of the
fan chart defines the degree of uncer-
tainty and widens with the forecast hori-
zon, “reflecting the increased probability
that some unforeseen event could” oc-
cur (Elder et al. 2005, p. 330). Raymer
et al. (2012) use fanplots for the visual-
ization of probabilistic population fore-
casting. The second author published the
package fanplot for the R Project of Sta-
tistical Computing. The plot is generated
from the calculated “percentiles for a set
of sequential distributions over a speci-
fied time period” (Abel 2013), so there
is also the possibility to generate fan-
plots from ensemble data. An introduc-
tion and three exemplary use cases are
presented by Abel (2012). However, the
fanplot concept is limited, because it is
based on percentiles and the mode: The
information of multimodal distributions
and therewith the possible forecast result
“don’t” is lost.

4 Mathematical Model of
Heatmap Generation

Table 1 defines the formal base of the
heatmap generation approach. In the fol-
lowing we will use the term forecast data,
although the model could be applied
to all ordered multi-step ensemble data.

Therefore the process steps do not need
to describe time.

Two parameters define the dimension
of forecast data F: m gives the number
of ensemble members used to generate
the distribution. The parameter n gives
the number of forecast steps. M and N
are the related index sets that are needed
to describe the position in the forecast
data, where N is extended by the index 0
for the already known starting point. The
value of the starting point is given by g.
The input data for heatmap generation
D is composed of F by adding the step
0 and set the value to g for all ensemble
members.

The parameter h directly influences
horizontal resolution of the resulting
heatmap. For h > 1 the forecast data is
expanded by the linear interpolation of
each ensemble member D·h·N ·h gives the
associated index set of interpolated fore-
cast steps. This interpolation preserves
the original forecast data and we have
N ·1 = N and D·1 = D.

The heatmap resolution is defined by
the number of interpolated steps n·h
and the vertical resolution parameter yres.
X and Y are the related index sets of
heatmap coordinates, V is the set of val-
ues associated to the y-coordinates. The
value range is defined as [vmin, vmax] and
should contain at least all values of D.
When generating heatmaps from a series
of forecasts, the same range should be
used for all heatmaps and should con-
tain all values of all forecasts for better
comparability.

The heatmap H is generated column
by column for every time-step and in-
terpolated time-step. Each column Hx
of the heatmap is independent of all
other columns and the calculation of the
heatmap column generator function c
depends on data column D·h

x/h only. Con-

sequently, the interpolation does not al-
ter the non-interpolated columns. Basi-
cally, c can be any function of the type
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Table 1 Formal symbols and definitions

Symbol and definitions Description

m ∈ N Number of ensemble members

n ∈ N Number of forecast steps

F ∈ R
m×n Ensemble forecast

M := {1; . . . ;m} ⊂N Index set of ensemble members

N := {0; . . . ;n} ⊂ N0 Index set of forecast steps including starting point

g ∈ R Value of starting point (before forecast)

D := (gF) = (D0 . . . Dn) = (dij) ∈ R
M×N Input data (columns) for heatmap generation

h ∈ N Forecast interpolation factor (h = 1 no interpolation)

N ·h := {0; 1
h ; . . . ;1; . . . ;n − 1

h ;n} ⊂ Q+ Index set of interpolated forecast steps

D·h := (dij), i ∈ M, j ∈ N∗h with di,j′+q := (1 − q)·di,j′ + q·di,j′+1 (j′ + q) ∈ N ·h, j′ ∈ N Interpolated data

x ∈ X := {0, . . . ,n·h} ⊂ N0 Heatmap x-coordinates

y ∈ Y := {0, . . . , r} ⊂ N0 Heatmap y-coordinates

vmin, vmax ∈ R with dij ∈ [vmin, vmax] Range of forecasted values shown in heatmap

V := {vy := vmin + y·(vmax − vmin)/r | y ∈ Y} ⊂ R Heatmap y-coordinate values

H := (H0 . . . Hn·h) ∈ R
Y×X with Hx := c(D·h

x/h) ∈ R
Y Heatmap data and heatmap column generator

c(D·h
j ) := (cj(v0), . . . , cj(vr))

t ∈ R
Y Heatmap column generator

cj(v) := sj(v)∗k(v) = ∑
i∈M k(v − dij) ∈ R Heatmap element generation by convolution

sj(v) := |{i ∈ M|dij = v}|, j ∈ N ·h Count of ensemble members at v in column j

k(δ) :R →R Convolution kernel

Hnormed := (H0 . . . Hn·h) ∈ R
Y×X with Hnormed,x := Hx/max(Hx) Heatmap data normed by column

c : RM → R
Y that maps the distribution

of the values in a data column D·h
x/h to

a “comprehensible” image. The column
vector c(D·h

j ) is composed by the calcu-

lation results of cj for each heatmap y-
coordinate value. For cj we use a func-
tion class that can be reproduced by a
(discrete) convolution of kernel k(δ) with
sj(v) the number of ensemble members at
v in column j. We will discuss several re-
alized heat map column generators in the
following sections.

The normalization of heatmap col-
umns is the optional last step of heatmap
calculation. This could improve the read-
ability, as the starting point at index 0 al-
ways has the maximum density. This den-
sity is usually much higher than the den-
sity of forecasts. The use of normalization
adds supplementary requirements to the
heatmap column generator: it must be
ensured that each column vector Hx con-
sists of non-negative values and includes
at least one element with a positive non-
zero value. This ensures that max(Hx) >

0 for all x ∈ X, so that Hnormed,x the di-
vision of each heatmap column by its
maximum is defined.

The values of the resulting heatmap
matrix H (or Hnormed in the same way)
are presented color-coded in the range
[0,max(H)].

5 Prototype Visualization Tool

We implement the heatmap visualization
model in a software prototype in Java
with SWT (Standard Widget Toolkit) for
the user interface. Figure 3 shows the
prototype with an alternative heatmap
style and disabled column norming.
Overall the current version of the pro-
totype includes 15 different heatmap
(column) generators, include algorithms
based on counting members within a
given ε-environment (simple and very
fast), convolutions with gauss and simi-
lar shaped kernels, kernel density estima-
tions, plus two differing concepts similar
to a cumulative distribution function and
its mean gradient in the associated value
range of one heatmap pixel. The member
counting within a given ε-environment
can also be described as a convolution
with k1(δ) := 1{|δ|<ε}.

The right section of the program win-
dow controls several plot parameters.
The heatmap style and optional nor-
malization, the vertical plot resolution r
(“heatmap v res”) and the horizontal in-
terpolation factor h (“heatmap h res∗”)
can all be configured. Higher parame-
ters produce smoother heatmaps, but will
increase the time for heatmap calcula-
tion. Other controls allow users to change

the free parameter used in several al-
gorithms, and the “class radius divider”
for setting the parameter ε in k1(δ) by
the division of (max(Hx)–min(Hx)) for
relative, or (vmax–vmin) for the absolute
radius definition.

Several checkboxes are used to se-
lect or deselect plotted information: ex-
trema, quantiles, percentiles, all ensem-
ble values with optional highlighting of
all members which touched the extrema
at least once, the target value for the
retrospective analysis of forecast quality
and “ensemble behavior”, and finally the
heatmap.

We especially focus on the interactive
component of our prototype, as empha-
sized by several authors (Aigner et al.
2007; Andrienko et al. 2010; May et al.
2010; Potter et al. 2009b). The first plot-
ting engine with the free software Gnu-
plot (version 4.2 patchlevel 6) proved
too slow: high resolution plots sometimes
took more than 30 seconds. Even a di-
rect transfer of binary-coded heat map
data via pipe to the input of the Gnu-
plot process does not lead to a suffi-
cient acceleration. The additional new in-
ternal plotting engine reduces this time
to less than 0.2 seconds, an increase in
plotting speed by two orders of mag-
nitude, and is now being used as the
default. The heatmap generation engine
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Fig. 3 Screenshot of the prototype visualization tool (alternative heatmap style)

parallelizes computation of the heat-mal
columns to the available number of cores
and therefore makes good use of multi-
core CPUs. The calculation of heatmap
columns is simplified, for example by us-
ing the gauss kernel k6(δ) := ep·δ·δ in-

stead of e−δ2/(2a2). An alternative algo-
rithm use a lookup table (pre-calculated
only once for all columns) to increase the
calculation speed by one order of magni-
tude. The increase in speed was attained
on a common quad-core CPU. We con-
sider the smooth scrolling through large
forecast result series as an important as-
pect. It allows users to see how the fore-
cast develops with time. Also, a fast dis-
play of results helps in the context of live
applications. In daytrading applications
the latency is crucial, for example.

6 Discussion

As a first step of ensemble visualization,
we can simply plot the mean or median
(see Fig. 1(a)). The general visual impres-
sion of Fig. 1(a) is that of a strong down-
trend. The figure does not convey any
distributional information. This changes
slightly when we add representative per-
centiles, such as quartiles (see Fig. 1(b)).
Note an interesting feature: future uncer-
tainty, as measured by the difference of

maximum and minimum, does not nec-
essarily increase. In fact, uncertainty de-
creases during the last five forecast days.
The figure now only conveys the visual
impression of a slight downtrend, due
to the width of the distribution. Nev-
ertheless, we still have no idea of the
distribution of individual paths.

An additional step is to plot all the 200
paths of individual ensemble members;
see also Potter et al. (2009a). This leads
to Fig. 1(c). For clarity, the figure also
shows mean and median in bold lines.
It becomes apparent that we do not gain
much by plotting every path. On the con-
trary, the information becomes less clear
because the paths overlap. All we can
see is that the distribution is dense in
the middle and less dense at its borders.
We might therefore visually conclude that
the distribution is unimodal – a possibly
dangerous conclusion as we will see later
on.

In the heatmap visualization, red re-
gions indicate a forecast of high activity
For clarity, Figs. 1(d)–1(f) and Fig. 3 also
show mean, median, maximum and min-
imum in thick lines. Figure 1(e) shows
a more balanced heatmap style than
Figs. 1(d), and 1(f) shows the heatmap
style of Fig. 1(e) smoothed by interpola-
tion. We note that often, but not always,
the mean coincides with red regions.

However, we also note in Figs. 1(d) and
1(f) that approximately from day 5 to day
15 the red region splits into several paths
and increases considerably. This becomes
especially clear in the smoothed version
of the heatmap Fig. 1(f). The conclu-
sion is that according to the forecast the
mean is not an accurate representation of
the distribution, because (especially for
days 6 to 8) the distribution is bimodal
or multimodal. This significantly changes
the interpretation of the decision maker.
Looking only at Figs. 1(a)–1(c), it seems
apparent that the forecast for days 6 to
8 is a slight downtrend. Looking at the
heatmap we see that the correct answer
actually is: the ensemble doesn’t know!
This is a warning to the decision maker.
On the other hand, during the last few
forecast days (days 16–20), uncertainty
decreases and the model clearly forecasts
a downtrend. Keep in mind that we are
not dealing with forecast accuracy, we are
just exploiting the forecast information a
priori.

At first glance no additional informa-
tion seems to be gained by interpolating
between different forecast steps. How-
ever, the smoothed graphics allows us
to follow the paths in the forecasts (see
Figs. 4 and 5 for the information gained
by interpolation). Figure 4 shows the im-
proved visibility of a splitting path in
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Fig. 4 Information gained
by time-step interpolation:
splitting paths (without/
with interpolation)

Fig. 5 Information gained
by time-step interpolation:
crossing paths (without/
with interpolation)

the forecast ensemble, and Fig. 5 shows
an artificial ensemble of two parallel and
crossing members. A distinction is possi-
ble only with interpolation (see Figs. 1(e)
without and Fig. 1(f) with interpolation).

We implemented 15 heatmap genera-
tion algorithms. The numbering reflects
the order of implementation. Some of
them provide similar visual results; oth-
ers create a completely different visual
impression. Table 1-A in the Appendix
(available via http://link.springer.com)
shows a formal overview of all imple-
mented styles. Figure 1-A in the Ap-
pendix shows the visual result of our ex-
ample generated with default configura-
tion. Changing the parameters could sig-
nificantly change the result. In general,
that is desired for optimizing the visibil-
ity of distribution, but not for all parame-
ters. While indicator-function-based ker-
nels (like k1 and k4) are very fast, they
have the disadvantage of not producing

a stable result under variation of the ver-
tical heatmap resolution r. Continuous
(but not necessarily differentiable) kernel
functions are more robust and avoid this
problem.

Overall, the gauss kernel k6 generates
satisfying results for several data sets,
but the calculation of this kernel is slow.
To improve the interactivity, we imple-
mented three similar shaped kernels k7,
k8 and k9. The kernel k7 generates the
most similar results and is about four
times faster; the others are slower and
generate a suboptimal result. Finally the
pre-calculation of gauss kernels and use
of a lookup-table (k10) as well as the re-
duction from double to float accuracy
(k11) could reduce the calculation time
by about factor ten without a visible in-
fluence. The gauss kernels with lookup-
table are independent of the heatmap res-
olution, provide a good visibility of paths

and internal structures at the same time
and are fast enough for an interactive use.

The four implemented KDE kernels
(k11, k12, k13, k14) have no configurable
parameters. This can be an advantage for
ease of use, but in the data sets we tested
they lost the structure of ensemble dis-
tribution as they are “too wide”. Kernel
k3 differs from other heat map genera-
tors as the result corresponds to a cumu-
lative distribution function. This makes
it an interesting choice when the under-
or overrun of quantiles is important and
enables visualizations such as fanplots.

An apparent alternative to heatmap vi-
sualization would be a 3D plot. This
would replace or extend the color-coded
information with height information.
However, the disadvantage of three di-
mensional plots is that parts of the plot
may often hide other parts (see Fig. 6).
Generally, obtaining adequate informa-
tion from a three-dimensional plot is
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Fig. 6 3D visualization for comparison: the results are more difficult to interpret

more difficult. The 2D heatmap visu-
alization provides a good compromise
between information density and visual
interpretability.

The underlying forecast model (an
ANN example) is not central to the ap-
plicability of our research. Our proposed
heatmap could be used to visualize all
kinds of forecast and in general all or-
dered data if about 100 or more paths ex-
ist. The only assumption is that the fore-
cast is composed of a distribution that
cannot be characterized by just a few sim-
ple numbers. Nevertheless, heatmaps can
also ease the adoption of ANN based
forecast methods.

7 Limitations

While heatmap visualization compelling
advances, certain limitations are inher-
ent to the approach. The most important
drawback is that visual results are diffi-
cult to quantify. A human decision maker
can easily interpret splitting paths as the
state of “don’t know”. However, the ques-
tion remains as to how to aggregate the
visual information into data that is ma-
chine readable, but that does not lose the
advantage of heatmap visualization.

The paper only focuses on visual rep-
resentation. It would be interesting to
analyze whether we could also quantify
the advantage of using the forecast in-
formation more efficiently. This involves,
e.g., identifying peaks of the distribution
and benchmarking a tri-state model fore-
cast (increases, decreases, don’t know)
against the realization or a forecast based
on mean and median only. Other means
of better quantifying the forecast infor-
mation can be devised. Finally, we sug-
gest that some form of clustering algo-
rithm could be used to filter the informa-
tion. Yagi et al. (2012) describes cluster-
ing for the polyline-plot of time-varying

data. Ideally, the algorithm would high-
light strong paths and discard regions
with noise.

A second category of drawbacks in-
volves the number of meta-parameters
that can be set to visualize ensemble
data. Depending on parameters such as
kernel, resolution, and normalizing of
columns, quite different visual output
can be achieved. Not every parameter
combination leads to meaningful results
that really improve the interpretability of
data. While other (expert) users did not
complain about the complexity and were
rapidly able to achieve helpful visual re-
sults, this kind of software is not just
“plug and play”. A basic understanding of
the effects of different meta-parameters,
especially the working of the smooth-
ing kernels, is necessary. Presently, an
automatic tuning of meta-parameters is
missing.

Column normalization especially is a
double-edged sword. On the one hand,
normalization improves the visual im-
pression of distributions that often grow
“wider” as time advances. As we move to
the “right” of the image, the ensemble of-
ten becomes larger, which is a measure
of uncertainty. Fewer and fewer ensem-
ble members can be found in a specific
radius. A representation without normal-
ization will give a noisy impression (see
for example Fig. 3). But normalization
will destroy the information that fewer
ensemble members contribute to a visi-
ble path. A human decision maker could
falsely come to the conclusion that a path
is supported by many ensemble mem-
bers when it is actually only supported by
a slight majority. All in all, the normal-
ization feature of the prototype should
be carefully used. A horizontal indica-
tor, similar to the one used by Hao et al.
(2009, p. 1), or an additional saturation
coding in the heatmap could help reduce
the risk of misinterpretation.

A potential improvement of human de-
cisions with heatmap visualization has

been discussed with experts, but has not
yet been validated. The feedback of re-
searchers and practitioners during con-
ference and workshop presentations and
in real-world applications is positive.
However, a proper empirical validation of
the (perceived) usefulness would involve
more formal methods, for example based
on expert and user questionnaires. Even
if a positive effect is assumed by human
decision makers, this does not necessar-
ily imply better decisions. It may be dif-
ficult to assess the contribution of bet-
ter data visualization in generally com-
plex business decision processes; see also
Potter et al. (2012, p. 239) who describe
the evaluation of uncertainty visualiza-
tion as “double problematic”. However, in
the special field of short- and medium-
term trading, better decisions translate
into better returns. Giving traders access
to heatmap visualization of asset fore-
casts could help in assessing the use-
fulness of the method. Even then it re-
mains difficult to differentiate between
the quality of the forecast method it-
self and the added value of better visu-
alization. In this vein, a purely quantita-
tive validation without human decision
makers could be useful. This would ne-
cessitate the above-mentioned clustering
algorithm to highlight important paths.

8 Conclusions and Outlook

Our paper outlines steps towards ade-
quate visualization and interpretation of
ensemble forecasts and distributed or-
dered data. Heatmaps offer an improved
approach to exploit forecast data than
current methods. We see that mean and
median do not necessarily confer the
right information, for example because
the distribution may split. This makes
mean and median bad representatives for
the ensemble values. Forecast uncertainty
measured by the width of the ensemble
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does not uniformly increase with future
time-steps. A split distribution may ac-
tually become unimodal again. Heatmap
visualization provides a third alternative
for the human decision maker: to the
outcomes “up” or “down” we add a state
of model uncertainty, “don’t know”. Thus
this approach to forecast is more hon-
est, because it reduces the risk of misin-
terpreting a forecast consisting of a sin-
gle number. Here, we explicitly acknowl-
edge uncertainty in the forecast and do
not rely on just one number.

The prototype offers different heatmap
styles which we have only briefly dis-
cussed here. We need further experi-
mentation in selecting an appropriate
heatmap style and parameters, as param-
eterization is “vital for ensuring effective
visualization” (Aigner et al. 2007). Relat-
edly, our approach adds interpolation be-
tween time steps as a means of obtaining
an even better and smoother impression
of the underlying paths.

We do not show the realized path of the
forecast time-series here because we are
focusing on introducing heatmap visual-
ization. In further work it is important to
actually also benchmark the heatmap vi-
sualization’s performance: we have to an-
swer the question as to whether the addi-
tional information indeed helps us arrive
at better decisions. However, benchmark-
ing is tightly coupled to an underlying
forecast model, in this case ANN. Bench-
marking would have shifted the focus of
the paper towards the forecast qualities of
ANN and HCNN.

In further research we plan to provide
a corresponding case study in which we
apply the results of using heatmap based
decision analytics and support for exam-
ple in an investment decision context. An
interesting area of research is also to ana-
lyze the impact of heatmap visualizations
with a technology acceptance or infor-
mation system success model. An inde-
pendent implementation of a German re-
search and consulting group shows that
access to the informational content of the
ensemble distribution may be promising.
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Abstract
Cornelius Köpp, Hans-Jörg
von Mettenheim, Michael H. Breitner

Decision Analytics with
Heatmap Visualization
for Multi-step Ensemble Data

An Application of Uncertainty
Modeling to Historical Consistent
Neural Network and Other Forecasts

Today’s forecasting techniques, which
are integrated into several information
systems, often use ensembles that rep-
resent different scenarios. Aggregating
these forecasts is a challenging task:
when using the mean or median (com-
mon practice), important information
is lost, especially if the underlying dis-
tribution at every step is multimodal.
To avoid this, the authors present a
heatmap visualization approach. It is
easy to visually distinguish regions of
high activity (high probability of re-
alization) from regions of low activ-
ity. This form of visualization allows to
identify splitting paths in the forecast
ensemble and adds a “third alterna-
tive” to the decision space. Most fore-
cast systems only offer “up” or “down”:
the presented heatmap visualization
additionally introduces “don’t know”.
Looking at the heatmap, regions can
be identified in which the underlying
forecast model cannot predict the out-
come. The authors present a software
prototype with interactive visualization
to support decision makers and discuss
the information gained by its use. The
prototype has already been presented
to and discussed with researchers and
practitioners.

Keywords: Decision analytics, Fore-
cast, Visualization, Fuzzy decision mak-
ing, Uncertainty modeling, Historical
consistent neural network (HCNN),
Heatmap
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1 

Appendix A 
 
Table A-1 Heatmap styles 

Kernel / style Description 

k1(δ):=1{|δ|<ε} “InClassRadiusHeatmapGenerator” 

k2(δ) has no trivial representation,  
this style is not based on convolution 

“MeanGradientHeatmapGenerator“ 
This style use the mean gradient (within the range 
associated to each heatmap element) of a function 
similar to a linear interpolated cumulative 
distribution function. 

k3(δ):=1{δ>0} “DistributionFunctionLikeHeatmapGenerator” 

k4(δ):=k1(δ)   with   ε=(vmax-vmin)/r/2 “InBucketHeatmapGenerator” 

k5(δ):=( δ5+1)-2   with 
δ5:=(max({min{|δ|-(vmax-vmin)/r/2;1});0})+1)-2 

“InverseSquareBucketDistanceHeatmapGenerator” 

k6(δ):=ep·δ²   with  p<0 Gauss Kernel 

k7(δ):=1/(1+p·δ²)  

k8(δ):=ep·|δ| Replaced δ² by |δ| in Gauss Kernel 

k9(δ):=1-|tanh(δ)|  

k10(δ):≈k6(δ)   with lookup table Gauss Kernel with lookup table 

k11(δ):≈k10(δ)   with float not double 
precision 

Gauss Kernel with lookup table and float precison 

k12(δ):= (2·π)-1/2·e-δ²/2 KDE Gauss 

k13(δ):=1/π·1/(1-δ²) KDE Cauchy 

k14(δ):= ½·e-|δ|  KDE Picard 

k15(δ):=¾·max({1-δ²;0}) KDE Epanechikov 
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Fig. A-1 Implemented heatmap styles (default parameters, normed) 
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