UNDERSTANDING FACTORS FOR SUCCESSFUL ADOPTION OF WEB 2.0 APPLICATIONS

Yogesh Dwivedi
Michael Williams
Boumediene Ramdani
Suraj Niranjan
Vishanth Weerakkody

Follow this and additional works at: http://aisel.aisnet.org/ecis2011

Recommended Citation
Dwivedi, Yogesh; Williams, Michael; Ramdani, Boumediene; Niranjan, Suraj; and Weerakkody, Vishanth, "UNDERSTANDING FACTORS FOR SUCCESSFUL ADOPTION OF WEB 2.0 APPLICATIONS" (2011). ECIS 2011 Proceedings. 263.
http://aisel.aisnet.org/ecis2011/263

This material is brought to you by the European Conference on Information Systems (ECIS) at AIS Electronic Library (AISeL). It has been accepted for inclusion in ECIS 2011 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.
Abstract

As social technologies have been extensively taken up by web users, we are still unclear about the factors influencing such a high adoption rate. Although many studies have examined factors affecting consumer adoption of commercial web applications such as e-banking, very few studies have examined factors influencing the adoption Web 2.0 applications. To fill this gap, this study aims to explore some of the factors influencing the adoption of web 2.0 applications. Technology Acceptance Model (TAM) has been employed for designing and conducting an online survey. The findings indicate that usefulness and ease-of-use are significant factors for predicting users’ intentions to adopt Web 2.0 applications, which ultimately influences the actual usage of such technologies.

Keywords: Web 2.0, social technology, adoption, TAM,
1 Introduction

Social technologies have recently seen a large explosion of new ideas, applications and start-up companies working towards ways of extending and generating new services to add and/or leverage the existing ones. Evidently, technology never gets stagnated; neither do social or business progress. With so much of constant developments taking place, it becomes very difficult to keep pace with these developments and track their relevance to our own needs, and to segregate the services based on the objectives they are supposed to fulfil (Anderson, 2007).

Many studies have attempted to examine factors affecting consumer adoption of commercial web applications such as e-banking and B2C e-commerce. For example, Chen et al. (2002) examined consumer attitudes towards virtual store shopping; Tan and Teo (2000) employed innovation characteristics to examine user adoption of Internet Banking; and Bhattacherjee (2000) examined factors affecting intention to use electronic brokerage services. Many other web applications have also been examined to understand the factors influencing consumer adoption. Findings of these studies aim to facilitate further diffusion of such technologies and as a result increase a firm’s return on investment (Ramdani and Rajwani, 2010).

Similar studies are needed to explore the factors responsible for widespread adoption of voluntary Web 2.0 applications (e.g. Facebook, Youtube ,etc), since Web 2.0 tools such as blogs, wikis, podcasts, information tagging, widgets, prediction markets and social networks are transforming people’s lives. Findings from these studies can help in formulating better strategies to increase customer base in using a particular Web 2.0 application. Hence, the focal aim of this research is to identify and determine the factors influencing users to adopt Web 2.0 applications.

2 Theoretical Basis

Technology adoption has gained prominence with the introduction of TAM (Davis, 1989), which claims that the intention to adopt or use new technology is determined by its perceived usefulness and ease-of-use. It has been widely applied to a diverse set of technologies and users (Venkatesh et al., 2003; Williams et al., 2009). Researchers have utilised TAM for the initial exploration of factors influencing the adoption of many technologies such as broadband (Dwivedi and Irani, 2009; Irani et al., 2009), e-mail (Karahanna and Straub, 1999), voice mail (Karahanna and Limayem, 2000), and e-health systems (Wilson and Lankton, 2004). As TAM has also been used to study commercial web applications (Lee et al., 2003), this research postulates that usefulness and ease-of-use will significantly affect users’ behavioural intention to adopt Web 2.0 applications.

![TAM of Web 2.0 Applications](Source: Adapted from Davis, 1989)
2.1 Perceived Usefulness

In the context of Web usage, usefulness is defined as the extent to which consumers believe that Web applications would provide them with access to useful information and large variety of content, as well as helping them connect socially (Vijayasarathy, 2004). Web 2.0 offers many benefits to a variety of users/consumers such as facilitating technology enhanced learning through self-guided learning with the learner being the centre of the system (Chatti et al., 2008). It also provides collaborative tools such as wikis, blogs, instant messaging and podcasts which holistically improve information literacy (Harinarayana and Raju, 2010; Linh, 2008). Web 2.0 also assists users to generate content for collective intelligence (Mahmood and Selvadurai, 2006). Such uses of Web 2.0 reiterate its usefulness. Hence, we hypothesise that:

H1. There is a positive association between usefulness and behavioural intention to adopt Web 2.0 applications.

2.2 Perceived Ease-of-Use

In the context of Web applications, ease-of-use is defined as the extent to which consumers believe that the use of these applications are free of effort (Vijayasarathy, 2004). A number of characteristics makes Web 2.0 applications easy to use such as interaction enabled features, which makes visually challenged interactions easily accessible and more simplified (Hailpern et al., 2009), and more engaging webpage displays (Harrison and Barthel, 2009). These applications help users access information anytime anywhere (Remenyi, 2008), and people are no longer require advanced IT skills to create and manipulate Internet content, as anyone can participate (Isaías et al., 2009). Besides, a provision to build applications is enabled to help users rapidly identify resources appropriate to their needs from an overload of information with uncertain quality (Abbott, 2010), and make it possible to search for, locate and quickly access elements of learning that address immediate needs (Remenyi, 2007). These advantages highlight the importance of ease-of-use to understand reasons for adoption.

H2. There is a positive association between ease-of-use and behavioural intention to adopt Web 2.0 applications.

In line with our model, this research also tested following two hypotheses:

H3. Ease-of-use will significantly influence users’ perceived usefulness of Web 2.0 applications.

H4. Behavioural intention will significantly influence the actual usage of Web 2.0 applications.

3 Research Method

To test our model, we conducted an online survey which was based on non-probable sample and convenient sampling. Since the target audience is extremely large and scattered, it would not be possible for this research to reach out to a large population in a random approach. This is due to many reasons but most importantly due to lack of sample frame. Online survey enables researchers to reach out to a large number of respondents within short period of time and with minimal cost, which were also important considerations for this research. The questionnaire (see Table 4) was designed based on constructs that were adopted from previous studies (Lederer et al, 2000; Shih and Fang, 2004; Vijayasarathy, 2004). A pilot study was conducted before carrying out the survey.
Which of the following Web applications have you used in the past? u1: Facebook/ u2: Wikipedia/ u3: Blogs/ u4: Content sharing websites like Youtube/ u5: Free downloading websites like Utorrent/ u6: Mashup of Online maps and Addresses

Behavioral Intention (Lederer et al., 2000)

Your main intention to use the following Web applications are:

b1: Intend to use Facebook to connect socially with friends and family.
b2: Intend to use Wikipedia to access contents to gain additional knowledge over a particular topic.
b3: Intend to use Blogs as a platform to express my opinions on topics publically.
b4: Intend to use Content sharing website like Youtube as a form of online entertainment.
b5: Intend to use Free downloading websites like Utorrent for easy access to online contents like movies, documents, data and many others.
b6: Intend to use Mashup of Online maps and Addresses to help you navigate through to your desired location.

Usefulness (Lederer et al., 2000)

Web Applications have helped you enhance your effectiveness in the following aspects:

uf1: Using Social networking sites like Facebook has helped you connect socially
uf2: Using Wikipedia to enhance your effectiveness in learning and gaining knowledge
uf3: Using Blogs has improved your writing skills
uf4: Using free content downloading sites like Utorrent have increased your access to shared documents
uf5: Using Mashups like address on online maps has improved your effectiveness at finding the desired location while travelling
uf6: Using Social networking sites like Facebook for socially connecting has helped you connect with friends who you weren’t in touch with before.
uf7: Using Wikipedia during your work/course has provided additional knowledge on topics necessary.
uf8: Surfing through blogs has provided you with tacit knowledge of others, on different topics.
uf9: Using content sharing sites like YouTube has provided you with a new form of audio visual entertainment.
uf10: Using content sharing sites (e.g Picasa, Flicker) for sharing photos has helped you share large content of pictures easily across, to your friends and family.
uf11: Using Mashups like desired business addresses on online maps while travelling has helped you locate your desired location more quickly.
uf12: Using Social networking sites like Facebook & Twitter has improved your accessibility.
uf13: Using Wikipedia has helped you to gain additional knowledge required for your work/course.
uf14: Using blogs has helped you improve to express your ideas and knowledge better.
uf15: Using content sharing sites like YouTube has improved your mode of entertainment.
uf16: Using free downloading sites like Rapid share has helped you access large variety of documents.
uf17: Using Mash ups like addresses on online maps has improved your ease of travelling.

Ease of Use (Lederer et al., 2000)

It is easy for you to carry out the required functions on the following Web applications:

e1: Getting connected with your friends and family through social networking is easy for you.
e2: Getting the required information on a particular topic that you want from Wikipedia is easy for you.
e3: Accessing/Posting an article over blogs is easy for you.
e4: Accessing online videos through YouTube is easy for you.
e5: Downloading movies through Utorrent is easy for you.
e6: Finding the desired address on a descriptive online map is easy for you.
e7: Social networking sites to connect socially is easy.
e8: Wikipedia to assist you in gaining the required knowledge is easy.
e9: Blogs as a platform to express your opinion is easy.
e10: YouTube to view online videos is easy.
e11: Download movies from Websites like UTorrent is easy.
e12: Use addresses on descriptive Online maps is easy.

Table 1. List of items/questions included in the survey instrument.
The final questionnaire used in this research consisted of number of questions. These questions were divided into two categories: (1) **Multiple-choice questions**: addressing demographic characteristics such as age, gender, education, occupation, frequency of web usage, and preferred mode of accessing the Web; and (2) **Likert scale (1-5 points) questions**: addressing issues relating to research constructs associated with hypotheses testing. A total of 200 respondents were contacted via email and requested to complete the survey. Only 153 returned the questionnaire and a few respondents did not complete all questions. A number of analyses were performed to test the proposed hypotheses including reliability test, descriptive statistics, and regression analyses.

4 **Findings**

Of the total 153 respondents, two thirds (69%) were males and the rest were females. With regards to the age group, 71% forming the majority of the survey respondents belonged to the 25-34 age group, 20% of the respondents belonged to 18-24 age group, 6% belonged to 35-44 age group, and 3% of the respondents from the 45-54, with no respondents from both 55-64 and 65+ age groups. The educational level of the respondents varied as 58% of the respondents have/or are currently undertaking a postgraduate degree, 20% of the respondents have/or are undertaking an undergraduate degree, and only 5% of the respondents fell within the Doctoral level. The survey indicated that about 16% did not relate to any of these categorisations since the survey was conducted across different nationalities. The respondents related their undergraduate degree to a graduate level of education as seen in the responses of specifying other education levels as highlighted in table 2. In terms of occupation, nearly two thirds (63%) of the respondents were employed, a quarter of them were students, and 12% of the respondents were unemployed.

Our survey looked at web usage among respondents in terms of the number of hours spent daily and the preferred mode of accessing the web. About 12% of the respondents tend to use Web applications from more than 10 hours per day, a third of the respondents claim to use these applications between 5-10 hours daily, the other third claims to use them between 2-5 hours daily, 16% of the respondents’ usage was between one and two hours, and 5% accessed these application for less than an hour. In terms of the preferred mode of access, around half (49%) of the respondents preferred laptops, 27% of the respondents preferred mobile phones in general and about 11% were specific about preferring smart-phones. Our survey captures the usage of specific web applications among respondents. About 90% of the respondents have used Facebook, and 75% of those have had used Wikipedia in the past. Around 46% of the respondents have used Blogs. Content-sharing applications, such as Youtube, have been used by around 73% of the respondents. About 45% of the respondents have used free downloading applications such as Utorrent, and around 47% of these respondents have used Mashups of online maps and addresses.
<table>
<thead>
<tr>
<th>Categorization</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-24</td>
<td>30</td>
<td>19.60%</td>
</tr>
<tr>
<td>25-34</td>
<td>109</td>
<td>71.20%</td>
</tr>
<tr>
<td>35-44</td>
<td>9</td>
<td>5.90%</td>
</tr>
<tr>
<td>45-54</td>
<td>5</td>
<td>3.30%</td>
</tr>
<tr>
<td>Total</td>
<td>153</td>
<td>100%</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>107</td>
<td>69.90%</td>
</tr>
<tr>
<td>Female</td>
<td>46</td>
<td>30.10%</td>
</tr>
<tr>
<td>Total</td>
<td>153</td>
<td>100%</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undergraduate</td>
<td>29</td>
<td>19.60%</td>
</tr>
<tr>
<td>Taught Postgraduate</td>
<td>87</td>
<td>58.80%</td>
</tr>
<tr>
<td>Doctorate</td>
<td>8</td>
<td>5.40%</td>
</tr>
<tr>
<td>Others</td>
<td>24</td>
<td>16.20%</td>
</tr>
<tr>
<td>Total</td>
<td>148</td>
<td>100%</td>
</tr>
<tr>
<td>Occupation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student</td>
<td>38</td>
<td>25.00%</td>
</tr>
<tr>
<td>Unemployed</td>
<td>18</td>
<td>11.80%</td>
</tr>
<tr>
<td>Employed</td>
<td>96</td>
<td>63.20%</td>
</tr>
<tr>
<td>Total</td>
<td>152</td>
<td>100%</td>
</tr>
<tr>
<td>Missing</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Web Usage per Day (in hrs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><1hr</td>
<td>7</td>
<td>4.60%</td>
</tr>
<tr>
<td>1-2 hrs</td>
<td>25</td>
<td>16.40%</td>
</tr>
<tr>
<td>2-5 hrs</td>
<td>50</td>
<td>32.90%</td>
</tr>
<tr>
<td>5-10 hrs</td>
<td>52</td>
<td>34.20%</td>
</tr>
<tr>
<td>10hrs +</td>
<td>18</td>
<td>11.80%</td>
</tr>
<tr>
<td>Total</td>
<td>152</td>
<td>100%</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Preferred Mode of Accessing the Web:

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desktop</td>
<td>63</td>
<td>90</td>
<td>153</td>
</tr>
<tr>
<td>Laptop</td>
<td>116</td>
<td>37</td>
<td>153</td>
</tr>
<tr>
<td>Palmtop</td>
<td>4</td>
<td>149</td>
<td>153</td>
</tr>
<tr>
<td>Smart-phone</td>
<td>26</td>
<td>127</td>
<td>153</td>
</tr>
<tr>
<td>Mobile</td>
<td>27</td>
<td>126</td>
<td>153</td>
</tr>
</tbody>
</table>

Table 2. Respondents Demographic Profile, Web Usage Pattern and their Preferred Mode of Accessing the Web.
4.1 Reliability Test

From our analysis, Cronbach Alpha values varied between 0.659 to as high as 0.909 across all constructs. The value obtained for behavioural intention construct was 0.659 indicating a moderate reliable construct (Hinton et al., 2004). Cronbach Alpha values for both independent constructs were 0.909 for usefulness and 0.743 for ease-of-use indicating excellent reliability (Hinton et al., 2004). Including the behavioural intention’s construct with moderate reliability, both constructs had high to excellent Cronbach’s Alpha values signify consistency within each construct and indicating that all items within each construct are measuring the same content (Hinton et al., 2004).

4.2 Descriptive Statistics

To understand the directions in which the general preference of the respondents’ regarding the adoption of Web 2.0, we used descriptive statistics of the mean and the standard deviation (SD). The respondents showed tendency of strong agreement towards most of the used construct. For behavioural intention construct, the mean for the individual items within the construct vary from 3.91 to 4.41 with the fluctuation of the SD from 0.904 to 0.729 respectively, again reflecting a strong inclination towards agreement of the items used to measure behavioural intention. The overall mean agreement for this construct was 4.0 (SD= 0.547).

For usefulness, it was found that mean of the individual items within the construct vary with the lowest mean value standing at 3.42 (SD= 0.963) and the highest at 4.30 (SD= 0.810), again reflecting a moderate to strong agreement of the respondents towards usefulness. The overall mean agreement for this construct was 3.99 (SD= 0.569). For ease-of-use, the lowest among the mean value for the individual items within this construct stands at 3.65 (SD=0.737), and the highest value of the mean is 4.30 (SD=0.737). These values indicate again a strong inclination towards agreement of the items used to measure ease-of-use. The overall mean agreement for this construct was 4.0 (SD= 0.540).

4.3 Examining Influence of Predictors on Dependent Variables

To identify the relationship between the chosen constructs, regression analysis is performed on the constructs keeping in mind the flow structure of the TAM model. This was achieved by performing three separate regression analyses. The first regression analysis tested the relationship between predictors (i.e. usefulness and ease of use) and behavioural intention as dependent variable. From the analysis, a significant model emerged ($F (2, 95) = 76.15, p < 0.001$) with the adjusted R Square of 0.608 (See Table 3, Regression #1). The impact of both variables was significant: usefulness ($\beta = .623$, $p < .001$) and ease-of-use ($\beta = .197$, $p = .050$) (See Table 4, Regression #1).

<table>
<thead>
<tr>
<th>Regression #</th>
<th>Predictors</th>
<th>Dep. Variable</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
<th>F Value</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ease-of-use, Usefulness</td>
<td>Behavioral Intention</td>
<td>.785</td>
<td>.616</td>
<td>.608</td>
<td>.354</td>
<td>76.15</td>
<td>.000</td>
</tr>
<tr>
<td>2</td>
<td>Behavioral Intention</td>
<td>Use</td>
<td>.508</td>
<td>.258</td>
<td>.251</td>
<td>.255</td>
<td>38.90</td>
<td>.000</td>
</tr>
<tr>
<td>3</td>
<td>Ease-of-use</td>
<td>Usefulness</td>
<td>.769</td>
<td>.591</td>
<td>.587</td>
<td>.367</td>
<td>148.675</td>
<td>.000</td>
</tr>
</tbody>
</table>

Table 3. Model Summaries from Regression Analyses.
The second regression analysis tested the relationship between single predictor (i.e. behavioural intention) and use as dependent variable. From the analysis, a significant model emerged ($F (1, 112) = 38.90, p < 0.001$) with the adjusted R Square of 0.251 (See Table 3, Regression #2). The coefficient between behavioural intention and use was also found ($\beta = .508, p < .001$) (See Table 4, Regression #2).

<table>
<thead>
<tr>
<th>Regression #</th>
<th>Dependent Variable</th>
<th>Predictors</th>
<th>Unstandardised Coefficients</th>
<th>Standardised Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Behavioural Intention</td>
<td>(Constant)</td>
<td>.782</td>
<td>.272</td>
<td>2.871</td>
<td>.005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Usefulness</td>
<td>.610</td>
<td>.097</td>
<td>6.270</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ease-of-use</td>
<td>.202</td>
<td>.101</td>
<td>1.987</td>
<td>.050</td>
</tr>
<tr>
<td>2</td>
<td>Use</td>
<td>(Constant)</td>
<td>.581</td>
<td>.177</td>
<td>3.285</td>
<td>.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Behavioural Intention</td>
<td>.273</td>
<td>.044</td>
<td>6.237</td>
<td>.000</td>
</tr>
<tr>
<td>3</td>
<td>Usefulness</td>
<td>(Constant)</td>
<td>.735</td>
<td>.268</td>
<td>2.747</td>
<td>.007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ease-of-use</td>
<td>.805</td>
<td>.066</td>
<td>12.193</td>
<td>.000</td>
</tr>
</tbody>
</table>

Table 4. Regression Analyses: Coefficients.

The third regression analysis tested the relationship between single predictor (i.e. ease of use) and usefulness as dependent variable. From the analysis, a significant model emerged ($F (1, 103) = 148.67, p < 0.001$) with the adjusted R Square of 0.587 (See Table 3, Regression #3). The coefficient between behavioural intention and use was also found ($\beta = .769, p < .001$) (See Table 4, Regression #3). The analyses presented above when mapped against the proposed hypotheses generated for the designed research model, all hypotheses were accepted at < .001 significance level.

5 Discussion

H1 postulated a strong positive linkage between perceived usefulness and behavioural intention to adopt Web 2.0 applications. From our empirical analysis, it is clear that usefulness plays a significant role in predicting behavioural intentions to adopt these applications. Ease-of-use has also been found to be a significant factor in determining behavioural intention to adopt Web 2.0 applications confirming H2. TAM studies argue that ease-of-use plays an important role to adopt certain technologies at the initial stages only, as over a period of time the influence of ease-of-use slightly diminishes (Vijayasarathy, 2004). These studies consider the behavioural intention of Web users over a period of time, whereas our study takes a snapshot of the effect of this factor on the behavioural intention of Web users at the time of the survey. Findings presented in Table 4 suggest that ease-of-use in comparison to usefulness has marginally less impact on behavioural intention to adopt Web 2.0 applications. Our study has also looked at ease-of-use as a predictor taking usefulness as an independent variable. Findings indicate that ease-of-use influences behavioural intention directly as well as indirectly via its impact on usefulness (H3). Shifting our focus on the second half of the model, where behavioural intention is now treated as an independent variable and actual usage is treated as a dependent variable, H4 holds valid as there is a positive association between behavioural intention to use web 2.0 applications and the conversion of that intention into actual use of these applications.

Establishing the significance of usefulness and ease-of-use of web 2.0 applications makes us realise the importance of dynamic interaction (Chatti et al., 2008), diverse interactive application tools (Linh, 2008), and ease-of-use of Web application component (Isaías et al., 2009).
Even though our empirical study draws its conclusions from a non-probability convenient sampling, respondents’ demography in our empirical study was in-line with the previous research available on the audience cluster of Web users. This profiling of Web users included convergence in the findings of the pattern of demographic variables like age, gender, and qualification as well as tangential variables like occupation and Web usage. In terms of the preferred mode to access the Web, our analysis shows tendency towards mobility, which reiterates ‘anytime and anywhere’ (Chadwick-Dias et al., 2007) aspect of the Web.

6 Conclusion

The empirical findings of this paper suggest that the adoption of Web 2.0 applications is similar to other commercial web applications such as e-banking. In that, perceived usefulness and ease-of-use are significant predictors of behavioural intention to adopt Web 2.0 applications, users’ behavioural intention influences the usage of these applications, and ease-of-use influence behavioural intention both directly and indirectly through influencing perceived usefulness.

With this in mind, perceived usefulness and ease-of-use are crucial in developing Web 2.0 applications as well as developing future generation of web applications (Web 3.0). The means that companies developing these applications should focus their efforts not only to include features that are now available in the investigated applications, but also to include features that increase users’ perceptions of applications’ usefulness and ease-of-use. These features may include an online system from which users can create elaborate content that is user-friendly, adheres to compliances of standards, provides off-line communication alerts (Boulakfouf and Zampunieris, 2008), has multi ontology systems (Motta and Sabou, 2006); has semantic data generation and reusability (Motta and Sabou, 2006); and allows for interoperability (O’Reilly, 2005).

7 Limitations & Future Research Directions

A few potential limitations that might have crept up over the course of this study also need to be highlighted, paving a roadmap for future research. In conducting our empirical study, an online survey was carried out on a non-probability sampling, which was further narrowed down by propagating convenient sampling, since the demography of Web users are extremely wide and scattered. Again, the nature sample set considered in this study focused on adopters of Web 2.0 applications and did not include non-adopters. Because of time constraint, the survey employed in this research could not be tried and tested for accuracy over a larger pilot of respondents. Even within the questionnaire, each construct considered measures a varied number of applications which might lead to variation in the research findings.

A qualitative analysis could enrich our findings by understanding why specific factors influence a particular Web application. Also, since the demography of Web users are extremely wide and scattered, a refinement of the survey and appropriate resource could be deployed to reach out to a wider set of population including non-adopters. This study is only the start of a journey to explore the factors influencing the adoption of Web 2.0 applications. Researchers interested in this area may want to explore other factors using models such as TOE - Technological Organisational Environmental (Tornatzky and Fleischer, 1990), or UTAUT - Unified Theory of Acceptance and Use of Technology (Venkatesh et al., 2003). Having a clear idea of the influencing factors will pave the way to further understand how future Web applications could be adopted.
References

