
Association for Information Systems
AIS Electronic Library (AISeL)

PACIS 2004 Proceedings Pacific Asia Conference on Information Systems
(PACIS)

December 2004

A Case Adaptation Method Integrated with
Genetic Algorithms for E-Commerce Product
Configuration
Langtao Chen
Fudan University

Limin Lin
Fudan University

Hong Ling
Fudan University

Follow this and additional works at: http://aisel.aisnet.org/pacis2004

This material is brought to you by the Pacific Asia Conference on Information Systems (PACIS) at AIS Electronic Library (AISeL). It has been
accepted for inclusion in PACIS 2004 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please
contact elibrary@aisnet.org.

Recommended Citation
Chen, Langtao; Lin, Limin; and Ling, Hong, "A Case Adaptation Method Integrated with Genetic Algorithms for E-Commerce
Product Configuration" (2004). PACIS 2004 Proceedings. 103.
http://aisel.aisnet.org/pacis2004/103

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fpacis2004%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2004?utm_source=aisel.aisnet.org%2Fpacis2004%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis2004%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis2004%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2004?utm_source=aisel.aisnet.org%2Fpacis2004%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2004/103?utm_source=aisel.aisnet.org%2Fpacis2004%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

A Case Adaptation Method Integrated with Genetic Algorithms for
E-Commerce Product Configuration

Langtao Chen

School of Management,
Fudan University,

Shanghai 200433, China
langtaochen@hotmail.com

Limin Lin
School of Management,

Fudan University,
Shanghai 200433, China

lmlin@fudan.edu.cn

Hong Ling
School of Management,

Fudan University,
Shanghai 200433, China

hling@fudan.edu.cn

Abstract

When CBR is applied to E-Commerce product configuration, the case adaptation method
plays a central role. For many years an automatic case adaptation method has always been
an object of CBR study. Genetic algorithms can be employed in case adaptation process. This
paper presented a new case adaptation method using genetic algorithms for E-Commerce
product configuration. The new adaptation method has two features. First, it uses crossover
and mutation mechanisms of genetic algorithms (GAs) to adapt similar case(s) retrieved.
Second, it uses case-similarity for optimization while constraint knowledge is utilized to
construct feasible solution space. To evaluate the presented method, a test was carried out on
a real world personal computers configuration dataset, and promising results show the
efficiency and effectiveness of the new method.

Keywords: Product Configuration, Case-Based Reasoning, Case Adaptation, Genetic
Algorithms

1. Introduction
E-Commerce (electronic commerce) is playing a more and more important role for an
organization’s survival and growth. In an E-Commerce environment, manufactures must
supply customized products with respect to the customers’ requirements. As a result, product
configuration paradigms are changed from mass production to mass customization (Sabin and
Weigel 1998). The way in which case-based reasoning (CBR) solves a problem is much
similar to the way in which a company uses similar, previously solved configurations and
adapts them if necessary to suggest a solution. Therefore CBR has become an important
technique for realizing product configuration on E-Commerce especially when there are only
a few previous successfully-used configuration cases and traditional rule-based configuration
methods are difficult to apply.

A major challenge to case-based product configuration is case adaptation which needs
specific domain knowledge while CBR is much suitable to solve problems in
poorly-understood domains. Many commercial CBR systems have been successfully used
without performing adaptation or just passively leaving adaptation tasks to people, i.e. they
are primarily case retrieval systems (Watson 1997).

As an excellent problem-solving strategy itself, CBR can be strengthened when combined
with other problem solving paradigms such as rule-based systems (Lopez and Plaza 1993),
genetic algorithms (Masher 1994), artificial neural networks (Thrift 1989), constraint
satisfaction (Purvis and Pu 1995), and model-based reasoning (Karamouzis and Feyock 1992).
Ramsey and Grefenstette (1993) presented a method to generate initial population of GAs
based on past execution information stored in cases for the purpose of continuous learning in

 1299

a changing environment. Gómez de Silva Garza and Masher (1999) discussed an
evolutionary case adaptation approach in which past solutions are adapted by evolving
different combinations of their features in parallel and continuously, until a feasible
combination is found. However, when evaluating candidate solutions generated in the
evolutionary process, this case adaptation approach uses constraint satisfaction techniques to
construct fitness function without the notion of finding the best solution which is more
valuable for problem-solving applications.

The objective of this paper is to present a new case adaptation method integrated with genetic
algorithms for E-Commerce product configuration. The rest of the paper is organized as
follows: the next section introduces background information of our research. Section 3
presents the integrated case adaptation method in detail. In this section attention is especially
directed to the definition of fitness function and a dynamic case representation is introduced
to improve the performance of our method. Then experiments are carried out on real world
personal computers (PCs) configuration dataset to evaluate the efficiency and effectiveness of
the presented method. The last section provides conclusions of our work.

2. Background

2.1 Case Adaptation
At the highest level of generality, CBR can be typically described as a cyclical process
comprising the four REs, i.e. REtrieve, REuse, REvise, and REtain (Watson 1997; Aamodt
and Plaza 1994). There are two kinds of reuse: (1) copy solution directly to solve the new
problem; (2) adapt solutions of similar cases according to the new problem and suggest a
solution.

In case retrieval module unless at least one fully-matching case has been found, case
adaptation must be executed to generate a solution to meet the new situation. CBR assumes
that similar problems have similar solutions (Leake 1996), i.e. there exists a one-to-one
mapping between the problem space and the solution space. It is noticed that most computing
techniques especially decision support technologies also depend on this assumption about the
real world (Watson 1997). Figure 1 gives an illustration of the process of case adaptation.

Solution space

Problem space

Description of new problem to solve

Problem descriptions of stored cases

Solution for the new problem

Solutions for stored cases

Case retrieval

Case adaptation

Figure 1. CBR adapts similar case(s) to fit new problem

 1300

Although many commercial CBR systems have been successfully used without case
adaptation which has been a final challenge to CBR study, there are systems such as
PLEXUS (Alterman 1986), CHEF (Hammond 1986), and COACH (Collins 1987) which
especially focus on case adaptation (Watson 1997). Since adaptation is differently handled in
different CBR systems, Hanney et al. (1998) introduce four dimensions to classify CBR
systems with respect to adaptation:

 Presence or Absence of Adaptation: Systems clearly divide into those that do or do not
use adaptation;

 Single or Multiple Cases: Solutions may be based on single or multiple cases.
Single-case systems base their solutions on just one case (even if successive cases are
tested before a solution is reached). Multiple-case systems usually have problem subparts
that can be identified and separately modified to compose a solution;

 Complexity of Case-solutions: Solutions may be either atomic-valued solutions that are
primitive indecomposable or compound solutions that have subparts that can be modified
by adaptation;

 Interactions within Case-solutions: Compound solutions may have subparts that are
independent or interacting (e.g., where the adaptation of one part of a solution requires
further modification of other solution parts).

This paper deals with adaptation of both single and multiple cases whose solutions are
compound while the subparts of solutions are interactive.

As far as case adaptation is concerned, there are three central questions, i.e. which parts of a
solution to adapt, which changes are reasonable for adapting them, and how to control the
adaptation process (Leake 1996). To answer these questions, CBR systems usually execute
adaptation mainly through two ways: (1) reuse the solution stored in retrieved case(s)
(transformational adaptation), and (2) reuse the rules or formulas that generate the solution
(derivational adaptation). Traditional case adaptation is usually performed by rule-based
systems, which lead to confront the knowledge elicitation bottleneck again. The difficulty of
case adaptation lies in that effective adaptation generally needs the injection of specific
domain knowledge while the philosophy of CBR is to solve problem with little domain
knowledge available by reusing similar previous cases stored in case base as past experience
of problem solving.

2.2 Case-Based Product Configuration on E-Commerce
The central task for product configuration is to choose appropriate components and assemble
them into a product. Since traditional product configuration systems are knowledge-based, a
major challenge is the elicitation of the rules or constraints on which the configuration
process depends (Sabin and Weigel 1998).

Here we consider the configuration of Personal Computers (PCs) according to customers’
requirements as an example, but the same principles apply to configurations of other highly
complex products as well. A PC typically comprises such components as: motherboard,
processor, hard disk, RAM, sound card, machine case, monitor, mouse, keyboard, floppy
drive, and CD/DVD etc.. Among these components there exist compatibility issues. For
instance, some types of motherboards only support AMD processors while others support
Intel processors. In addition to the compatibilities, a more important issue is configuration
optimization which mainly addresses the configuration of high performance products.

 1301

Case-based configuration is to reuse previous configuration knowledge stored in cases to
solve the new configuration problem avoiding knowledge elicitation bottleneck, and it has
become an important technique for product configuration application. System architecture of
case-based product configuration on E-Commerce is shown in figure 2. The target of
configuration system is to find a compatible combination of components which satisfies the
requirements of the customer.

Proposed
Configuration

Retrieve

Reuse

Revise

RetainConfiguration
Case Base

Component
Database

Internet

Customer

Requirements

Confirmed
Configuration

Figure 2. Case-based product configuration on E-Commerce

The cycle of the configuration system is outlined below.

 First customer requirements are input into the system.
 A set of similar configuration cases is then obtained from case base in retrieve module,

using nearest neighbor (NN) as a simple retrieval algorithm.
 In the reuse phrase, the similar configuration cases are combined with respect to the

customer’s requirements and a solution is suggested through copy or adaptation.
Traditional adaptation for configuration is performed by rule-based systems which lead
to confront the knowledge elicitation bottleneck again.

 Through the revise process this solution is tested for success and repaired if failed. As a
result, a confirmed configuration is given to customer.

 The revised configuration is then retained in configuration case base. This is a learning
process through which useful experience is retained for future configuration reuse.

In consideration of the rapid update of components and the tremendous fluctuation of price,
detailed information on components is stored in component database, while case base only
stores information about general requirements and component identifiers corresponding to
configuration cases, so that information inconsistency can be avoided.

2.3 Genetic Algorithms
Genetic algorithms were invented by John Holland in the 1960s. They are parallel, stochastic
and adaptive search strategies based on natural selection and evolution. Genetic algorithms
are especially useful when solving problems with large non-linear search space and
poorly-understood domain knowledge which traditional optimization methods find difficult.

 1302

Given a clearly defined problem to be solved and a bit string representation for candidate
solutions, a simple GA can be described as follows (Mitchell 1996):

Step1. Start with a randomly generated population P of n l−bit chromosomes (candidate

solutions to a problem);
Step2. Calculate the fitness ƒ(x) of each chromosome x in the population;
Step3. Repeat the following sub steps until a new population P' with n chromosomes has been

generated:
a. Select a pair of parent chromosomes from population P. The higher the fitness is,

the more likely a chromosome is selected;
b. With probability Pc (crossover probability), cross over the pair at a randomly

chosen point (one point crossover) to form two offspring. If no crossover happens,
just copy the pair to get two offspring respectively;

c. Mutate the two offspring at each locus with probability Pm (mutation probability),
and place the resulting chromosomes in the new population P';

If n is odd, one offspring can be randomly rejected to keep population size unchanged;
Step4. Replace P with P';
Step5. If the condition of termination is satisfied, end the algorithm;

Else go to step2.

3. Method
When integrated with genetic algorithms, case adaptation method can not only synthesize
subparts of old solutions to a new one, but also generate a fully novel solution through
mechanisms of crossover and mutation. Case adaptation is performed incrementally through
GAs’ evolutionary process until a satisfactory solution is found. This section presents the
case adaptation method in detail.

3.1 Algorithm Process
Figure 3 illustrates the way in which case adaptation guided with the aid of GAs is executed.

Problem

Problem

ProblemSolution

Solution

Solution

...

Case 1

Case 2

Case m

Mutation EvaluationCrossover

Selection

Final individual

Generated solution

Satisfactory?

Decode

Y

N

Retrieved case(s)

Encode

Figure 3. Case adaptation combined with GAs

 1303

After case retrieval, most similar cases from the case base are encoded to form the initial
population of GAs. Then crossover and mutation are implemented generating new individuals
which are genotype versions of candidate solutions to the given problem. To evaluate these
individuals, fitness value is calculated for each one. If an individual’s fitness satisfies the
optimal condition, it is the final expected one which can be converted into the solution to the
given problem by decoding. Otherwise these individuals are selected to form the new
generation for the next evolutionary cycle. The higher the fitness is, the more likely an
individual is selected to the next generation. This process runs incrementally until the
algorithm converges to a satisfactory solution.

The role of GAs in the case adaptation process is to perform adaptation actions, i.e. crossover
and mutation of case-solutions. Evolution processes through these two mechanisms,
continuously generating new solutions which may be more suitable to the new situation than
the old ones. Case adaptation is embedded in the evolutionary process which means the old
solutions evolve to fit the new problem requirements. When convergence occurs in the GA
cycles, the case adaptation is terminated with a solution being proposed to solve the new
problem. The advantage of this kind of evolutionary adaptation lies in that it does not need
adaptation rules or procedures which are difficult to elicit in real CBR applications.

3.2 Algorithm Pseudocode
The pseudocode for the case adaptation algorithm is shown as follows:

Algorithm GA_Adaptation(P,CB, R_threshold,Pc,Pm,F_threshold,Maxgen)
/*P: the new problem, CB: case base, R_threshold: threshold of case retrieval */
/* Pc: probability of crossover, Pm: probability of mutation*/
/*F_threshold: threshold of evolution termination*/
/* Maxgen: maximum generation of evolution*/
1. {C1,C2,…,Cm}=FindSimilarCase (P,CB); //m is the number of similar case(s)
2. for each case Ck in {C1,C2,…,Cm}
3. if Sim(Ck, P)>= R_threshold //Ck is very similar to the new problem
4. Sk = SolutionExtract (Ck); //copy solution of Ck to solve problem P
5. return (Sk); // it is unnecessary to perform case adaptation
6. {S1,S2,…,Sm}=SolutionExtract (C1,C2,…,Cm); //extract solution parts of cases
7. pop={S1,S2,…,Sm}; //initiate population
8. if m= =1
9. m=m+1;
10. Sm=Sm-1; //ensure the size of population not less than 2
11. gen=1;
12. repeat
13. popsize=m; //initiate the size of pop
14. for i=1 to m
15. {parent1,parent2}=ChooseParent (pop); //choose two parent chromosomes

 randomly from pop
16. {offspring1,offspring2}=Crossover (parent1,parent2,Pc); //with probability Pc, cross

over the pair at a randomly chosen point (one point crossover) to form two
offspring

17. if crossover happens
18. Spopsize+1= offspring1;
19. Spopsize+2= offspring2;
20. popsize=popsize+2;

 1304

21. for each individual Sj (j=1,2, …,popsize) in pop
22. Sj =Mutate (Sj,Pm); //mutate the individual at each locus with probability Pm
23. fj=Fitness (Sj); //calculate the fitness value
24. Sl=MaxFitnessIndividual (pop); //find the individual Sl that has the maximum fitness
25. if fl >= F_threshold
26. return(Sl); //get the satisfactory solution Sl to the problem P and terminate algorithm
27. for each individual Sj (j=1,2, …,popsize) in pop
28. SPj =CalculateSelectionProbability (fj); //selection probability SPj is an increasing

function of fitness fj
29. SP=(SP1, SP2, …, SPpopsize);
30. for i=1 to m
31. Si =Select (pop,SP); //select an individual from pop in which each individual Sj is

selected with probability SPj (j=1,2, …,popsize)
32. pop={S1,S2,…,Sm}; //get the new population pop for the next evolutionary process
33. gen=gen+1;
34. until gen>Maxgen
End GA_Adaptation

Note that when only one similar case is retrieved from case base, it can be copied to get
another same case with the aim of keeping population size not less than 2. So this approach
can be applied to the adaptation of both single and multiple cases.

3.3 Definition of Fitness Function
In the case adaptation method, since CBR usually is applied to domains with little knowledge
available, a major difficulty of adaptation algorithm presented above lies in the definition of
fitness function which is used to evaluate candidate solutions generated in evolutionary
process of GAs. Gómez de Silva Garza and Masher (1999) presented a fitness function F=C
which employs ideas based on constraint satisfaction techniques without the notion of finding
the best solution. Effectively defining fitness function generally needs the availability of
specific domain knowledge while CBR is often used to solve problems with little domain
knowledge available. However, since the fundamental principle of CBR itself is to reuse
previous experience which is contained in cases, this experience can also be employed to
construct the fitness function.

This paper considers the evaluation of suggested solutions as an optimization problem. First,
constraint satisfaction techniques are used to construct feasible region. Then the
case-similarity mechanism can be applied to optimize the feasible region to get optimal or
near-optimal solution. To express this idea, first we define the similarity function between the
suggested solution T and the solution part of the k-th similar case retrieved from case base as
the following equation:

∑

∑

=

=

×
= n

j
j

n

j
kjj

k

w

STlocalsimw
STSim

1

1

)),((
),((1)

where
T is the target solution which needs to be evaluated
Sk is the solution part of the k-th similar cases retrieved from case base
n is the number of solution attributes in each case
localsim j (T, Sk) is local similarity normalized on (0,1] for the j-th attribute in T and Sk

 1305

wj is the importance weighting for the j-th attribute in T and Sk
Sim(T,Sk) �(0,1] is the similarity between T and Sk

In the above equation, the nearest neighbor (NN) algorithm is considered as the criterion of
similarity measuring. Then we get the weighted similarity between the target solution T and
the solution parts of m similar cases retrieved, using Sim(T,Sk) itself as the weighting of the
similarity between T and Sk. Therefore the weighted similarity is computed as the following
equation:

∑

∑

=

== m

i
k

m

i
k

STSim

STSim
STWS

1

1

2

),(

)),((
),((2)

where
S is the set of m similar retrieved cases (through S1 to Sm)
WS(T,S) �(0,1] is the weighted similarity between T and S

Given k constraints (C1(T), C2(T),…, Ck(T)) that must be satisfied for the target solution T, the
total fitness function of T is constructed as the following equation:

),()()(
1

STWSTCTFitness
k

h
h +=∑

=

 (3)

If the h-th constraint is satisfied, Ch (T)=1, otherwise Ch (T)=0. The above fitness function
can be simply expressed as F=C+WS. It is clear that Fitness(T) is a value between 0 and k+1,
i.e. Fitness(T)�(0,k+1]. If Fitness(T)�(k,k+1], which means that all constraints have been
satisfied, T is a feasible solution. Furthermore, when Fitness(T) is equal or very close to k+1,
the target solution T can be considered as the optimal or sub-optimal solution to the given
problem.

In real application, the constraints is varied for different given problems. For example, in a
PCs configuration scenario, a customer may constrain her/his favorite PC as the following:

“My PC must comprise an Intel Pentium-4 2.0 GHz processor and one IBM hard disk with
storage capacity not less than 60 GB; the total price should be between $800 and $1000.”

In the evolutionary process of GAs, even a suggested solution with a fitness value less than k
should not be eliminated from the GA cycle. The reason is that the suggested solution which
has violated some constraints, i.e. it is not a feasible solution, may have optimal or
near-optimal subparts which may yield to a whole optimal solution through crossover and
mutation in the later GA cycles.

3.4 Dynamic Case Representation
A case is made up of two components, i.e. a problem description and a stored solution. It is
assumed that there exits a one-to-one mapping between the problem space and the solution
space (see section 2.1). However, since the difference between these two spaces exists, the
similarity between the optimal solution and those ones of similar cases may not be the same
with the similarity between the given problem and problem descriptions of similar retrieved
cases. To reduce the difference between problem space and solution space, this paper
introduces a dynamic case representation schema which can better support the definition of
fitness function (see section 3.3).

 1306

In problem-solving domains such as PCs configuration, some local subparts of a solution is
known or required, which reflects people’s knowledge about how the solution should be.
With the purpose of utilizing this kind of knowledge, we define problem description as a set
of attributes which is known to the new problem-solving task while solution is a set of
attributes not known. In this way, the original problem and known solution subparts of a case
all comprise the new problem of the same case, and other subparts of solution recombine the
new solution part. For example, a PC configuration case is a set of values of attributes which
include PC type, performance, price, processor, motherboard, RAM, RAM number, hard disk,
hard disk number, video card, monitor, sound card, and sound box etc.. General requirements
are PC type, performance, and price. If the customer selects a processor component and a
hard disk component (for instance, Intel Pentium-4 2.4GHz and Maxtor 120GB UDMA 133)
as her/his preferred components, then these two known components comprise component
requirements subpart. Other components belong to configuration subpart.

We suppose that all features in the original solution have something in common, which is true
in many domains at least in the product configuration applications. The more attributes are
known, which means more original solution subparts are transformed to the new problem part
of the solution, the more similar the new problem space will be to the new solution space. As
for what and how many attributes are known, it is dynamically determined by the specific
problem-solving task.

The essence of dynamic case representation is to reduce the original solution space; therefore
the adaptation difficulty is partly diminished in contrast with traditional static case
representation. Figure 4 illustrates a hierarchical representation of configuration case
employing the idea of dynamic case representation described above.

Requirements

General Requirements Component Requirements Configuration

Configuration Case

Figure 4. Case representation of product configuration

There are two different views on a configuration case: requirements (problem description)
and configuration (solution). Requirements are divided into two subparts, i.e. general
requirements and component requirements. General requirements are generic configuration
descriptions such as product type, performance, and expected price etc. which are submitted
by the customer. Component requirements are those components the customer selects. This
set of components reflects the customer’s preference for the product at component level.
Other components excluding those customer selects comprise configuration subpart. Note
that the component requirements subpart and configuration subpart are dynamically
determined by specific configuration task. These two subparts have no intersection. The
component requirements are treated as constraints; other constraints act on the whole
configuration case such as compatibility of different product components and other rules
elicited from domain experts.

 1307

3.5 Selection
There are several selection mechanisms available such as roulette wheel selection, elitist
selection, and scaling. In the evolutionary process of GAs, as described in section 3.3, even
an unsatisfactory solution which has violated the constraints should also have the opportunity
to be selected into the next GA cycle to reserve excellent subparts that may be contains in the
solution. In this paper we choose roulette wheel selection mechanism which is similar to
spinning a roulette wheel where the slot for each individual is proportional to its fitness value
in size. The higher the fitness is, the more likely an individual is selected into the next
generation, which is the notion of survival of the fittest.

The cumulative selection probability Pj for each individual is calculated by the following
expression:

∑

∑

=

== Popsize

i

j

l
j

iFitness

lFitness
P

1

1

)(

)(
 (4)

To begin with the selection, a random number p between 0 and 1 (p �(0,1]) is generated. If
Pj-1<p<=Pj (j=1, 2,…, popsize; P0=0), the j-th individual is selected.

4. Experiments
We have tested the case adaptation method presented in this paper on PCs configuration
domain. The experiments aim to evaluate the proposed case adaptation method mainly in two
aspects: time efficiency and accuracy of suggestion solutions. We selected 80 PCs
configuration cases from www.pconline.com.cn. Each case has varied numbers of features. To
simplify the problem, this experiment only considers 13 main features, i.e. PC type,
performance, price, processor, motherboard, RAM, RAM number, hard disk, hard disk
number, video card, monitor, sound card, and sound box.

In order to simulate the process of product configuration, the original dataset is divided
randomly into two parts: a training set of 60 cases and a test set of 20 cases. The training set
is stored in case base as configuration cases which serve as memory organization for
case-based reasoning. The problem description of test case is input as customer general
requirements and the corresponding solution subpart is used as evaluation benchmark for
solution suggested by adaptation process. The constraints a feasible configuration must
satisfy simply include two types in the experiments. The first type is compatibility between
PC components; and the second one is component requirements of the customer.

4.1 Experiment 1 - Computational Time Efficiency
Evaluating the time performance of the suggested case adaptation method is not so important
from the research point of view. However, it is important for real E-Commerce applications.
In the experiment, the generations required before convergence are tested by comparing the
proposed case adaptation method with a pure GA. The case adaptation method integrated
with GAs uses similar cases to initiate the first generation of GAs while not only constraint
satisfaction techniques but also case-similarity between the suggested solution and solutions
of similar cases is utilized to construct the fitness function. For the pure GA, the first
generation is initiated randomly and the fitness function definition only considers constraint
satisfaction techniques.

 1308

The case base for the proposed case adaptation method contains all the 60 training cases, and
the 20 test cases are used to evaluate the computational time efficiencies of the proposed
algorithm and the pure GA method respectively. We do the experiment through totally 120
trials, with each test case 6 times. The experiment is given a limit of 200 generations of
evolution in which to get a satisfactory solution, which means that if the algorithm does not
converge till the 200 evolution generation, the trial will be redo until a convergence occurs.
Table 1 shows the average generations before convergence for each algorithm.

Table 1. Average generations before convergence
Algorithm Average Generations
Pure GA 21.57

Case Adaptation integrated with GA 12.32

It is obvious that case adaptation method combined with GAs has a higher convergence rate
than pure GAs. The reason is that initial population injected by similar cases is served as the
starting points for problem solving, while pure GAs’ initial population is randomly selected,
i.e. pure GAs solve a problem from scratch. In addition, the initial population injected by
cases retrieved from case base may contains customer’s tacit requirements which sometimes
are key factors to enhance the customer’s satisfaction.

4.2 Experiment 2 - Accuracy Competence
The second experiment comprises the variance of the case-base size to construct the case base,
using cases from training dataset. We have used ten different case-base sizes: 15, 20, 25, 30,
35, 40, 45, 50, 55 and 60. The last one comprises all the possible training cases. At each case
base size, 20 test cases are input to evaluate the accuracy competence of the proposed case
adaptation algorithm compared with other methods.

The term accuracy is a criterion to measure how far the result obtained is close to the result
expected. In the product configuration application, it is difficult to directly compute the
accuracy of the adaptation methods since the adaptation results are product configuration
instances which may not be characterized by a simple numeric value. In fact, the accuracy is
a kind of similarity which is a key factor in case-based reasoning. Therefore, in this
experiment, we use the nearest neighbor similarity between suggested solution according to
problem part of test case and the original solution part of the same test case to measure the
accuracy of the adaptation method.

Figure 5 compares average accuracy results of two different definitions of fitness function
using static case representation with the case base size varying from 15 to 60. As expected we
see that fitness function F=C+WS is always more competent than F=C which only considers
constraint satisfaction without the notion of finding the optimal solution. As the case base
size increases, both accuracy features rise and their difference is enhanced. However, the
accuracy drops as case base size goes from 40 to 50. One reason might be the randomness of
genetic algorithms. Another reason may lies in the organizing order of case base.

To compare accuracy results of dynamic case representation and static case representation
which is the original case representation schema contrasted with the dynamic one, in this
experiment we suppose that the customer has selected her/his favorite brand of processor.
Moreover, we just consider F=C+WS as the fitness function definition. From the results
presented in figure 6, it can be inferred that the dynamic case representation has better
performance than static case representation. The reason is that in dynamic case representation

 1309

the original solution space has been reduced to a new one so that the adaptation difficulty is
partly diminished.

15 20 25 30 35 40 45 50 55 60
66

67

68

69

70

71

72

73

74

75

 F=C +W S
 F=C

Ac
cu

ra
cy

C ase Base s ize

Figure 5. The accuracy of F=C+WS vs. the accuracy of F=C

15 20 25 30 35 40 45 50 55 60

69
70
71
72
73
74
75
76
77
78
79
80
81

 Dynamic case representation
 Static case representationAc

cu
ra

cy

Case Base size

Figure 6. Accuracy results of dynamic case representation and static case representation

5. Conclusions
In this paper, we have presented a new case adaptation method combined with genetic
algorithms for the application of E-Commerce product configuration. A significant advantage
of this case adaptation method is that the entire adaptation process does not need specific
domain knowledge apart from evaluation module, and since the knowledge for evaluation is
relatively easy to acquire, this method could be very efficient for problem-solving tasks with
little domain knowledge available.

The new algorithm recombines similar cases by using crossover mechanism, and through
mutation mechanism existing cases could be extended to cover as much domain knowledge

 1310

as possible. Moreover, in the evolutionary process of GAs, this method employs
case-similarity to find an optimal or sub-optimal solution with constraint knowledge being
used to construct feasible solution space.

Experiments have been carried out on a real world E-Commerce PCs configuration dataset.
The preliminary results showed that the proposed method is appropriate for product
configuration applications with a high performance especially in E-Commerce environment.
The presented case adaptation method can be generally used for product configuration
applications both at on-line and off-line settings. Reasoning tasks other than product
configuration may also benefit.

For further research, some more interesting work could be done on the dynamic case
representation introduced in this paper. Dynamic case representation could reduce the
difference between original problem space and solution space and then could better support
the fitness function definition in this paper. But the resulting performance depends on how
much the difference is, which is usually determined by how much knowledge people have
about the solution to the new situation. Further work could be done on precisely evaluating
the resulting solution when the difference between problem space and solution space is
inevitably significant.

Acknowledgement
The research in this paper has been funded by the NSFC No. 70201009.

References
Aamodt, A., and Plaza, E. “Case-Based Reasoning: Foundational Issues, Methodological

Variations, and System Approaches,” AI Communications (7:1), 1994, pp. 39-59.
Alterman, R. “An Adaptive Planner,” Proceedings of AAAI-86, Cambridge, MA: AAAI Press

/MIT Press, 1986.
Collins, G. “Plan Creation: Using Strategies as Blueprints,” Ph.D. thesis, Department of

Computer Science, Yale University, 1987.
Gómez de Silva Garza, A., and Masher, M.L. “An Evolutionary Approach to Case

Adaptation,” Proceedings of the 3rd International Conference on CBR, 1999.
Hammond, K.J. “CHEF: A Model of Case-Based Planning,” Proceedings of AAAI-86,

Cambridge, MA: AAAI Press /MIT Press, 1986.
Hanney, K., Keane, M.T., Smyth, B., and Cunningham, P. “When Do You Need Adaptation?:

A Review of Current Practice,” AAAI-95 Fall Symposium on Adaptation in Knowledge
Reuse, Cambridge, MA, USA, 1995.

Holland, J. “Adaptation in Natural and Artificial Systems,” The University of Michigan Press,
Ann Arbour, 1975.

Karamouzis, T., and Feyock, S. “An Integration of Case-Based and Model-Based Reasoning
and its Application to Physical System Faults,” in Lecture Notes in Computer Science 604,
Berlin: Springer-Verlag, 1992, pp. 100-108.

Kelbassa, H.-W. “Optimal Case-Based Refinement of Adaptation Rule Bases for Engineering
Design,” Proceedings of the 53rd International Conference on CBR, 2003.

Leake, D. “Case-Based Reasoning: Experience, Lessons, and Future Directions,” AAAI Press,
Menlo Park, California, 1996.

Lopez, B., and Plaza, E. “Case-Based Planning for Medical Diagnosis,” Methodologies for
Intelligent Systems, 7th International Symposium, ISMIS-93, Lecture Notes in Artificial
Intelligence 689, Berlin: Springer-Verlag, 1993.

 1311

Louis, S.J., and Johnson, J. “Robustness of Case-Initialized Genetic Algorithms,”
Proceedings of FLAIRS (Florida Artificial Intelligence Conference)’99, 1999, pp.
129-133.

Louis, S.J., and Rawlins, G.J.E. “Designer genetic algorithms: Genetic algorithms in structure
design,” Proceedings of the Fourth International Conference on Genetic Algorithms,
Morgan Kauffmann Publishers, 1991, pp. 53-60.

Maher, M.L. “Creative Design Using a Genetic Algorithm,” ASCE, 1994, pp. 2014-2021
Mitchell, M. “An Introduction to Genetic Algorithms,” The MIT Press, Cambridge MA,

1996.
Purvis, L., and Pu, P. “Adaptation Using Constraint Satisfaction Techniques,” in Case-Based

Reasoning Research and Development, edited by M. Veloso and A. Aamodt., Lecture
Notes in Artificial Intelligence 1010. Berlin: Springer-Verlag, 1995.

Ramsey, C.L., and Grefenstette, J.J. “Case-Based Initialization of Genetic Algorithms,”
Proceedings of the Fifth International Conference on Genetic Algorithms, Morgan
Kaufmann Publishers, 1993, pp. 84-91.

Sabin, D., and Weigel, R. “Product Configuration Frameworks-A Survey,” Intelligent
Systems, IEEE[see also IEEE Expert](13: 4), 1998, pp. 42-33.

Shin, K. and Han, I. “Case-Based Reasoning Supported by Genetic Algorithms for Corporate
Bond Rating,” Expert Systems with Applications (16:2), 1999, pp. 85-95.

Thrift, P. “A Neural Network Model for Case-Based Reasoning,” Proceedings of the DARPA
Case-Based Reasoning Workshop, edited by K.J. Hammond, San Francisco: Morgan
Kaufman Publishers, 1989.

Watson, I. “Applying Case-Based Reasoning: Techniques for Enterprise Systems,” Morgan
Kaufman, Inc., 1997.

Wiratunga, N., Craw, S., and Rowe, R. “Learning to Adapt for Case-Based Design,” 6th
European Conference on Case-Based Reasoning, Springer Verlag, 2002, pp. 421-435.

 1312

	Association for Information Systems
	AIS Electronic Library (AISeL)
	December 2004

	A Case Adaptation Method Integrated with Genetic Algorithms for E-Commerce Product Configuration
	Langtao Chen
	Limin Lin
	Hong Ling
	Recommended Citation

	A Case Adaptation Method Integrated with Genetic Algorithms

