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Abstract 
 
When CBR is applied to E-Commerce product configuration, the case adaptation method 
plays a central role. For many years an automatic case adaptation method has always been 
an object of CBR study. Genetic algorithms can be employed in case adaptation process. This 
paper presented a new case adaptation method using genetic algorithms for E-Commerce 
product configuration. The new adaptation method has two features. First, it uses crossover 
and mutation mechanisms of genetic algorithms (GAs) to adapt similar case(s) retrieved. 
Second, it uses case-similarity for optimization while constraint knowledge is utilized to 
construct feasible solution space. To evaluate the presented method, a test was carried out on 
a real world personal computers configuration dataset, and promising results show the 
efficiency and effectiveness of the new method. 
 
Keywords: Product Configuration, Case-Based Reasoning, Case Adaptation, Genetic 
Algorithms 
 
 
1. Introduction 
E-Commerce (electronic commerce) is playing a more and more important role for an 
organization’s survival and growth. In an E-Commerce environment, manufactures must 
supply customized products with respect to the customers’ requirements. As a result, product 
configuration paradigms are changed from mass production to mass customization (Sabin and 
Weigel 1998). The way in which case-based reasoning (CBR) solves a problem is much 
similar to the way in which a company uses similar, previously solved configurations and 
adapts them if necessary to suggest a solution. Therefore CBR has become an important 
technique for realizing product configuration on E-Commerce especially when there are only 
a few previous successfully-used configuration cases and traditional rule-based configuration 
methods are difficult to apply. 
 
A major challenge to case-based product configuration is case adaptation which needs 
specific domain knowledge while CBR is much suitable to solve problems in 
poorly-understood domains. Many commercial CBR systems have been successfully used 
without performing adaptation or just passively leaving adaptation tasks to people, i.e. they 
are primarily case retrieval systems (Watson 1997). 
 
As an excellent problem-solving strategy itself, CBR can be strengthened when combined 
with other problem solving paradigms such as rule-based systems (Lopez and Plaza 1993), 
genetic algorithms (Masher 1994), artificial neural networks (Thrift 1989), constraint 
satisfaction (Purvis and Pu 1995), and model-based reasoning (Karamouzis and Feyock 1992). 
Ramsey and Grefenstette (1993) presented a method to generate initial population of GAs 
based on past execution information stored in cases for the purpose of continuous learning in 
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a changing environment. Gómez de Silva Garza and Masher (1999) discussed an 
evolutionary case adaptation approach in which past solutions are adapted by evolving 
different combinations of their features in parallel and continuously, until a feasible 
combination is found. However, when evaluating candidate solutions generated in the 
evolutionary process, this case adaptation approach uses constraint satisfaction techniques to 
construct fitness function without the notion of finding the best solution which is more 
valuable for problem-solving applications. 
 
The objective of this paper is to present a new case adaptation method integrated with genetic 
algorithms for E-Commerce product configuration. The rest of the paper is organized as 
follows: the next section introduces background information of our research. Section 3 
presents the integrated case adaptation method in detail. In this section attention is especially 
directed to the definition of fitness function and a dynamic case representation is introduced 
to improve the performance of our method. Then experiments are carried out on real world 
personal computers (PCs) configuration dataset to evaluate the efficiency and effectiveness of 
the presented method. The last section provides conclusions of our work. 
 
2. Background 
 
2.1 Case Adaptation 
At the highest level of generality, CBR can be typically described as a cyclical process 
comprising the four REs, i.e. REtrieve, REuse, REvise, and REtain (Watson 1997; Aamodt 
and Plaza 1994). There are two kinds of reuse: (1) copy solution directly to solve the new 
problem; (2) adapt solutions of similar cases according to the new problem and suggest a 
solution. 
 
In case retrieval module unless at least one fully-matching case has been found, case 
adaptation must be executed to generate a solution to meet the new situation. CBR assumes 
that similar problems have similar solutions (Leake 1996), i.e. there exists a one-to-one 
mapping between the problem space and the solution space. It is noticed that most computing 
techniques especially decision support technologies also depend on this assumption about the 
real world (Watson 1997). Figure 1 gives an illustration of the process of case adaptation. 
 

Solution space

Problem space

Description of new problem to solve

Problem descriptions of stored cases

Solution for the new problem

Solutions for stored cases

Case retrieval

Case adaptation

 
 

Figure 1. CBR adapts similar case(s) to fit new problem 
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Although many commercial CBR systems have been successfully used without case 
adaptation which has been a final challenge to CBR study, there are systems such as 
PLEXUS (Alterman 1986), CHEF (Hammond 1986), and COACH (Collins 1987) which 
especially focus on case adaptation (Watson 1997). Since adaptation is differently handled in 
different CBR systems, Hanney et al. (1998) introduce four dimensions to classify CBR 
systems with respect to adaptation: 
 

 Presence or Absence of Adaptation: Systems clearly divide into those that do or do not 
use adaptation; 

 Single or Multiple Cases: Solutions may be based on single or multiple cases. 
Single-case systems base their solutions on just one case (even if successive cases are 
tested before a solution is reached). Multiple-case systems usually have problem subparts 
that can be identified and separately modified to compose a solution; 

 Complexity of Case-solutions: Solutions may be either atomic-valued solutions that are 
primitive indecomposable or compound solutions that have subparts that can be modified 
by adaptation; 

 Interactions within Case-solutions: Compound solutions may have subparts that are 
independent or interacting (e.g., where the adaptation of one part of a solution requires 
further modification of other solution parts). 

 
This paper deals with adaptation of both single and multiple cases whose solutions are 
compound while the subparts of solutions are interactive. 
 
As far as case adaptation is concerned, there are three central questions, i.e. which parts of a 
solution to adapt, which changes are reasonable for adapting them, and how to control the 
adaptation process (Leake 1996). To answer these questions, CBR systems usually execute 
adaptation mainly through two ways: (1) reuse the solution stored in retrieved case(s) 
(transformational adaptation), and (2) reuse the rules or formulas that generate the solution 
(derivational adaptation). Traditional case adaptation is usually performed by rule-based 
systems, which lead to confront the knowledge elicitation bottleneck again. The difficulty of 
case adaptation lies in that effective adaptation generally needs the injection of specific 
domain knowledge while the philosophy of CBR is to solve problem with little domain 
knowledge available by reusing similar previous cases stored in case base as past experience 
of problem solving. 
 
2.2 Case-Based Product Configuration on E-Commerce 
The central task for product configuration is to choose appropriate components and assemble 
them into a product. Since traditional product configuration systems are knowledge-based, a 
major challenge is the elicitation of the rules or constraints on which the configuration 
process depends (Sabin and Weigel 1998).  
 
Here we consider the configuration of Personal Computers (PCs) according to customers’ 
requirements as an example, but the same principles apply to configurations of other highly 
complex products as well. A PC typically comprises such components as: motherboard, 
processor, hard disk, RAM, sound card, machine case, monitor, mouse, keyboard, floppy 
drive, and CD/DVD etc.. Among these components there exist compatibility issues. For 
instance, some types of motherboards only support AMD processors while others support 
Intel processors. In addition to the compatibilities, a more important issue is configuration 
optimization which mainly addresses the configuration of high performance products. 
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Case-based configuration is to reuse previous configuration knowledge stored in cases to 
solve the new configuration problem avoiding knowledge elicitation bottleneck, and it has 
become an important technique for product configuration application. System architecture of 
case-based product configuration on E-Commerce is shown in figure 2. The target of 
configuration system is to find a compatible combination of components which satisfies the 
requirements of the customer. 
 

Proposed
Configuration

Retrieve

Reuse

Revise

RetainConfiguration
Case Base

Component
Database

Internet

Customer

Requirements

Confirmed
Configuration  

 
Figure 2. Case-based product configuration on E-Commerce 

 
The cycle of the configuration system is outlined below. 
 

 First customer requirements are input into the system. 
 A set of similar configuration cases is then obtained from case base in retrieve module, 

using nearest neighbor (NN) as a simple retrieval algorithm. 
 In the reuse phrase, the similar configuration cases are combined with respect to the 

customer’s requirements and a solution is suggested through copy or adaptation. 
Traditional adaptation for configuration is performed by rule-based systems which lead 
to confront the knowledge elicitation bottleneck again. 

 Through the revise process this solution is tested for success and repaired if failed. As a 
result, a confirmed configuration is given to customer. 

 The revised configuration is then retained in configuration case base. This is a learning 
process through which useful experience is retained for future configuration reuse. 

 
In consideration of the rapid update of components and the tremendous fluctuation of price, 
detailed information on components is stored in component database, while case base only 
stores information about general requirements and component identifiers corresponding to 
configuration cases, so that information inconsistency can be avoided. 
 
2.3 Genetic Algorithms 
Genetic algorithms were invented by John Holland in the 1960s. They are parallel, stochastic 
and adaptive search strategies based on natural selection and evolution. Genetic algorithms 
are especially useful when solving problems with large non-linear search space and 
poorly-understood domain knowledge which traditional optimization methods find difficult. 
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Given a clearly defined problem to be solved and a bit string representation for candidate 
solutions, a simple GA can be described as follows (Mitchell 1996): 
 
Step1. Start with a randomly generated population P of n l−bit chromosomes (candidate 

solutions to a problem); 
Step2. Calculate the fitness ƒ(x) of each chromosome x in the population; 
Step3. Repeat the following sub steps until a new population P' with n chromosomes has been 

generated: 
a. Select a pair of parent chromosomes from population P. The higher the fitness is, 

the more likely a chromosome is selected; 
b. With probability Pc (crossover probability), cross over the pair at a randomly 

chosen point (one point crossover) to form two offspring. If no crossover happens, 
just copy the pair to get two offspring respectively; 

c. Mutate the two offspring at each locus with probability Pm (mutation probability), 
and place the resulting chromosomes in the new population P'; 

If n is odd, one offspring can be randomly rejected to keep population size unchanged; 
Step4. Replace P with P';  
Step5. If the condition of termination is satisfied, end the algorithm; 

Else go to step2. 
 
3. Method 
When integrated with genetic algorithms, case adaptation method can not only synthesize 
subparts of old solutions to a new one, but also generate a fully novel solution through 
mechanisms of crossover and mutation. Case adaptation is performed incrementally through 
GAs’ evolutionary process until a satisfactory solution is found. This section presents the 
case adaptation method in detail. 
 
3.1 Algorithm Process 
Figure 3 illustrates the way in which case adaptation guided with the aid of GAs is executed.  
 

Problem

Problem

ProblemSolution

Solution

Solution

...

Case 1

Case 2

Case m

Mutation EvaluationCrossover

Selection

Final individual

Generated solution

Satisfactory?

Decode

Y

N

Retrieved case(s)

Encode

 
 

Figure 3. Case adaptation combined with GAs 
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After case retrieval, most similar cases from the case base are encoded to form the initial 
population of GAs. Then crossover and mutation are implemented generating new individuals 
which are genotype versions of candidate solutions to the given problem. To evaluate these 
individuals, fitness value is calculated for each one. If an individual’s fitness satisfies the 
optimal condition, it is the final expected one which can be converted into the solution to the 
given problem by decoding. Otherwise these individuals are selected to form the new 
generation for the next evolutionary cycle. The higher the fitness is, the more likely an 
individual is selected to the next generation. This process runs incrementally until the 
algorithm converges to a satisfactory solution. 
 
The role of GAs in the case adaptation process is to perform adaptation actions, i.e. crossover 
and mutation of case-solutions. Evolution processes through these two mechanisms, 
continuously generating new solutions which may be more suitable to the new situation than 
the old ones. Case adaptation is embedded in the evolutionary process which means the old 
solutions evolve to fit the new problem requirements. When convergence occurs in the GA 
cycles, the case adaptation is terminated with a solution being proposed to solve the new 
problem. The advantage of this kind of evolutionary adaptation lies in that it does not need 
adaptation rules or procedures which are difficult to elicit in real CBR applications. 
 
3.2 Algorithm Pseudocode 
The pseudocode for the case adaptation algorithm is shown as follows: 
 
Algorithm GA_Adaptation(P,CB, R_threshold,Pc,Pm,F_threshold,Maxgen) 
/*P: the new problem, CB: case base, R_threshold: threshold of case retrieval */ 
/* Pc: probability of crossover, Pm: probability of mutation*/ 
/*F_threshold: threshold of evolution termination*/ 
/* Maxgen: maximum generation of evolution*/ 
1.  {C1,C2,…,Cm}=FindSimilarCase (P,CB); //m is the number of similar case(s) 
2.  for each case Ck in {C1,C2,…,Cm} 
3.    if Sim(Ck, P)>= R_threshold //Ck is very similar to the new problem 
4.      Sk = SolutionExtract (Ck); //copy solution of Ck to solve problem P 
5.      return (Sk); // it is unnecessary to perform case adaptation 
6.  {S1,S2,…,Sm}=SolutionExtract (C1,C2,…,Cm); //extract solution parts of cases 
7.  pop={S1,S2,…,Sm}; //initiate population 
8.  if m= =1 
9.    m=m+1; 
10.   Sm=Sm-1; //ensure the size of population not less than 2 
11. gen=1; 
12. repeat 
13.   popsize=m; //initiate the size of pop 
14.   for i=1 to m 
15.     {parent1,parent2}=ChooseParent (pop); //choose two parent chromosomes 

 randomly from pop 
16.     {offspring1,offspring2}=Crossover (parent1,parent2,Pc); //with probability Pc, cross 

over the pair at a randomly chosen point (one point crossover) to form two 
offspring 

17.     if crossover happens 
18.       Spopsize+1= offspring1; 
19.       Spopsize+2= offspring2; 
20.       popsize=popsize+2; 
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21.   for each individual Sj (j=1,2, …,popsize) in pop 
22.     Sj =Mutate (Sj,Pm); //mutate the individual at each locus with probability Pm
23.     fj=Fitness (Sj); //calculate the fitness value 
24.   Sl=MaxFitnessIndividual (pop); //find the individual Sl that has the maximum fitness 
25.   if fl >= F_threshold 
26.     return(Sl); //get the satisfactory solution Sl to the problem P and terminate algorithm
27.   for each individual Sj (j=1,2, …,popsize) in pop 
28.     SPj =CalculateSelectionProbability (fj); //selection probability SPj is an increasing 

function of fitness fj
29.   SP=(SP1, SP2, …, SPpopsize); 
30.   for i=1 to m 
31.     Si =Select (pop,SP); //select an individual from pop in which each individual Sj is 

selected with probability SPj (j=1,2, …,popsize)
32.   pop={S1,S2,…,Sm}; //get the new population pop for the next evolutionary process 
33.   gen=gen+1; 
34. until gen>Maxgen 
End GA_Adaptation 
 
Note that when only one similar case is retrieved from case base, it can be copied to get 
another same case with the aim of keeping population size not less than 2. So this approach 
can be applied to the adaptation of both single and multiple cases. 
 
3.3 Definition of Fitness Function 
In the case adaptation method, since CBR usually is applied to domains with little knowledge 
available, a major difficulty of adaptation algorithm presented above lies in the definition of 
fitness function which is used to evaluate candidate solutions generated in evolutionary 
process of GAs. Gómez de Silva Garza and Masher (1999) presented a fitness function F=C 
which employs ideas based on constraint satisfaction techniques without the notion of finding 
the best solution. Effectively defining fitness function generally needs the availability of 
specific domain knowledge while CBR is often used to solve problems with little domain 
knowledge available. However, since the fundamental principle of CBR itself is to reuse 
previous experience which is contained in cases, this experience can also be employed to 
construct the fitness function. 
 
This paper considers the evaluation of suggested solutions as an optimization problem. First, 
constraint satisfaction techniques are used to construct feasible region. Then the 
case-similarity mechanism can be applied to optimize the feasible region to get optimal or 
near-optimal solution. To express this idea, first we define the similarity function between the 
suggested solution T and the solution part of the k-th similar case retrieved from case base as 
the following equation: 

∑

∑

=

=

×
= n

j
j

n

j
kjj

k

w

STlocalsimw
STSim

1

1

)),((
),(                     (1) 

where 
T is the target solution which needs to be evaluated 
Sk is the solution part of the k-th similar cases retrieved from case base 
n is the number of solution attributes in each case 
localsim j (T, Sk) is local similarity normalized on (0,1] for the j-th attribute in T and Sk
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wj is the importance weighting for the j-th attribute in T and Sk
Sim(T,Sk) �(0,1] is the similarity between T and Sk
 
In the above equation, the nearest neighbor (NN) algorithm is considered as the criterion of 
similarity measuring. Then we get the weighted similarity between the target solution T and 
the solution parts of m similar cases retrieved, using Sim(T,Sk) itself as the weighting of the 
similarity between T and Sk. Therefore the weighted similarity is computed as the following 
equation: 

∑

∑

=

== m

i
k

m

i
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STSim

STSim
STWS
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2
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where 
S is the set of m similar retrieved cases (through S1 to Sm) 
WS(T,S) �(0,1] is the weighted similarity between T and S 
 
Given k constraints (C1(T), C2(T),…, Ck(T)) that must be satisfied for the target solution T, the 
total fitness function of T is constructed as the following equation: 

),()()(
1

STWSTCTFitness
k

h
h +=∑

=

                      (3) 

If the h-th constraint is satisfied, Ch (T)=1, otherwise Ch (T)=0. The above fitness function 
can be simply expressed as F=C+WS. It is clear that Fitness(T) is a value between 0 and k+1, 
i.e. Fitness(T)�(0,k+1]. If Fitness(T)�(k,k+1], which means that all constraints have been 
satisfied, T is a feasible solution. Furthermore, when Fitness(T) is equal or very close to k+1, 
the target solution T can be considered as the optimal or sub-optimal solution to the given 
problem. 
 
In real application, the constraints is varied for different given problems. For example, in a 
PCs configuration scenario, a customer may constrain her/his favorite PC as the following: 
 
“My PC must comprise an Intel Pentium-4 2.0 GHz processor and one IBM hard disk with 
storage capacity not less than 60 GB; the total price should be between $800 and $1000.” 
 
In the evolutionary process of GAs, even a suggested solution with a fitness value less than k 
should not be eliminated from the GA cycle. The reason is that the suggested solution which 
has violated some constraints, i.e. it is not a feasible solution, may have optimal or 
near-optimal subparts which may yield to a whole optimal solution through crossover and 
mutation in the later GA cycles. 
 
3.4 Dynamic Case Representation 
A case is made up of two components, i.e. a problem description and a stored solution. It is 
assumed that there exits a one-to-one mapping between the problem space and the solution 
space (see section 2.1). However, since the difference between these two spaces exists, the 
similarity between the optimal solution and those ones of similar cases may not be the same 
with the similarity between the given problem and problem descriptions of similar retrieved 
cases. To reduce the difference between problem space and solution space, this paper 
introduces a dynamic case representation schema which can better support the definition of 
fitness function (see section 3.3). 
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In problem-solving domains such as PCs configuration, some local subparts of a solution is 
known or required, which reflects people’s knowledge about how the solution should be. 
With the purpose of utilizing this kind of knowledge, we define problem description as a set 
of attributes which is known to the new problem-solving task while solution is a set of 
attributes not known. In this way, the original problem and known solution subparts of a case 
all comprise the new problem of the same case, and other subparts of solution recombine the 
new solution part. For example, a PC configuration case is a set of values of attributes which 
include PC type, performance, price, processor, motherboard, RAM, RAM number, hard disk, 
hard disk number, video card, monitor, sound card, and sound box etc.. General requirements 
are PC type, performance, and price. If the customer selects a processor component and a 
hard disk component (for instance, Intel Pentium-4 2.4GHz and Maxtor 120GB UDMA 133) 
as her/his preferred components, then these two known components comprise component 
requirements subpart. Other components belong to configuration subpart. 
 
We suppose that all features in the original solution have something in common, which is true 
in many domains at least in the product configuration applications. The more attributes are 
known, which means more original solution subparts are transformed to the new problem part 
of the solution, the more similar the new problem space will be to the new solution space. As 
for what and how many attributes are known, it is dynamically determined by the specific 
problem-solving task. 
 
The essence of dynamic case representation is to reduce the original solution space; therefore 
the adaptation difficulty is partly diminished in contrast with traditional static case 
representation. Figure 4 illustrates a hierarchical representation of configuration case 
employing the idea of dynamic case representation described above. 
 

Requirements

General Requirements Component Requirements Configuration

Configuration Case

 
 

Figure 4. Case representation of product configuration 
 
There are two different views on a configuration case: requirements (problem description) 
and configuration (solution). Requirements are divided into two subparts, i.e. general 
requirements and component requirements. General requirements are generic configuration 
descriptions such as product type, performance, and expected price etc. which are submitted 
by the customer. Component requirements are those components the customer selects. This 
set of components reflects the customer’s preference for the product at component level. 
Other components excluding those customer selects comprise configuration subpart. Note 
that the component requirements subpart and configuration subpart are dynamically 
determined by specific configuration task. These two subparts have no intersection. The 
component requirements are treated as constraints; other constraints act on the whole 
configuration case such as compatibility of different product components and other rules 
elicited from domain experts. 
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3.5 Selection 
There are several selection mechanisms available such as roulette wheel selection, elitist 
selection, and scaling. In the evolutionary process of GAs, as described in section 3.3, even 
an unsatisfactory solution which has violated the constraints should also have the opportunity 
to be selected into the next GA cycle to reserve excellent subparts that may be contains in the 
solution. In this paper we choose roulette wheel selection mechanism which is similar to 
spinning a roulette wheel where the slot for each individual is proportional to its fitness value 
in size. The higher the fitness is, the more likely an individual is selected into the next 
generation, which is the notion of survival of the fittest. 
 
The cumulative selection probability Pj for each individual is calculated by the following 
expression: 

∑

∑

=

== Popsize

i

j

l
j
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lFitness
P

1

1

)(
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                            (4) 

To begin with the selection, a random number p between 0 and 1 ( p �(0,1] ) is generated. If 
Pj-1<p<=Pj (j=1, 2,…, popsize; P0=0), the j-th individual is selected. 
 
4. Experiments 
We have tested the case adaptation method presented in this paper on PCs configuration 
domain. The experiments aim to evaluate the proposed case adaptation method mainly in two 
aspects: time efficiency and accuracy of suggestion solutions. We selected 80 PCs 
configuration cases from www.pconline.com.cn. Each case has varied numbers of features. To 
simplify the problem, this experiment only considers 13 main features, i.e. PC type, 
performance, price, processor, motherboard, RAM, RAM number, hard disk, hard disk 
number, video card, monitor, sound card, and sound box. 
 
In order to simulate the process of product configuration, the original dataset is divided 
randomly into two parts: a training set of 60 cases and a test set of 20 cases. The training set 
is stored in case base as configuration cases which serve as memory organization for 
case-based reasoning. The problem description of test case is input as customer general 
requirements and the corresponding solution subpart is used as evaluation benchmark for 
solution suggested by adaptation process. The constraints a feasible configuration must 
satisfy simply include two types in the experiments. The first type is compatibility between 
PC components; and the second one is component requirements of the customer. 
 
4.1 Experiment 1 - Computational Time Efficiency 
Evaluating the time performance of the suggested case adaptation method is not so important 
from the research point of view. However, it is important for real E-Commerce applications. 
In the experiment, the generations required before convergence are tested by comparing the 
proposed case adaptation method with a pure GA. The case adaptation method integrated 
with GAs uses similar cases to initiate the first generation of GAs while not only constraint 
satisfaction techniques but also case-similarity between the suggested solution and solutions 
of similar cases is utilized to construct the fitness function. For the pure GA, the first 
generation is initiated randomly and the fitness function definition only considers constraint 
satisfaction techniques.  
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The case base for the proposed case adaptation method contains all the 60 training cases, and 
the 20 test cases are used to evaluate the computational time efficiencies of the proposed 
algorithm and the pure GA method respectively. We do the experiment through totally 120 
trials, with each test case 6 times. The experiment is given a limit of 200 generations of 
evolution in which to get a satisfactory solution, which means that if the algorithm does not 
converge till the 200 evolution generation, the trial will be redo until a convergence occurs. 
Table 1 shows the average generations before convergence for each algorithm. 
 

Table 1. Average generations before convergence 
Algorithm Average Generations 
Pure GA 21.57 

Case Adaptation integrated with GA 12.32 
 
It is obvious that case adaptation method combined with GAs has a higher convergence rate 
than pure GAs. The reason is that initial population injected by similar cases is served as the 
starting points for problem solving, while pure GAs’ initial population is randomly selected, 
i.e. pure GAs solve a problem from scratch. In addition, the initial population injected by 
cases retrieved from case base may contains customer’s tacit requirements which sometimes 
are key factors to enhance the customer’s satisfaction. 
 
4.2 Experiment 2 - Accuracy Competence 
The second experiment comprises the variance of the case-base size to construct the case base, 
using cases from training dataset. We have used ten different case-base sizes: 15, 20, 25, 30, 
35, 40, 45, 50, 55 and 60. The last one comprises all the possible training cases. At each case 
base size, 20 test cases are input to evaluate the accuracy competence of the proposed case 
adaptation algorithm compared with other methods.  
 
The term accuracy is a criterion to measure how far the result obtained is close to the result 
expected. In the product configuration application, it is difficult to directly compute the 
accuracy of the adaptation methods since the adaptation results are product configuration 
instances which may not be characterized by a simple numeric value. In fact, the accuracy is 
a kind of similarity which is a key factor in case-based reasoning. Therefore, in this 
experiment, we use the nearest neighbor similarity between suggested solution according to 
problem part of test case and the original solution part of the same test case to measure the 
accuracy of the adaptation method. 
 
Figure 5 compares average accuracy results of two different definitions of fitness function 
using static case representation with the case base size varying from 15 to 60. As expected we 
see that fitness function F=C+WS is always more competent than F=C which only considers 
constraint satisfaction without the notion of finding the optimal solution. As the case base 
size increases, both accuracy features rise and their difference is enhanced. However, the 
accuracy drops as case base size goes from 40 to 50. One reason might be the randomness of 
genetic algorithms. Another reason may lies in the organizing order of case base. 
 
To compare accuracy results of dynamic case representation and static case representation 
which is the original case representation schema contrasted with the dynamic one, in this 
experiment we suppose that the customer has selected her/his favorite brand of processor. 
Moreover, we just consider F=C+WS as the fitness function definition. From the results 
presented in figure 6, it can be inferred that the dynamic case representation has better 
performance than static case representation. The reason is that in dynamic case representation 
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the original solution space has been reduced to a new one so that the adaptation difficulty is 
partly diminished. 
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Figure 5. The accuracy of F=C+WS vs. the accuracy of F=C 
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Figure 6. Accuracy results of dynamic case representation and static case representation 

 
5. Conclusions 
In this paper, we have presented a new case adaptation method combined with genetic 
algorithms for the application of E-Commerce product configuration. A significant advantage 
of this case adaptation method is that the entire adaptation process does not need specific 
domain knowledge apart from evaluation module, and since the knowledge for evaluation is 
relatively easy to acquire, this method could be very efficient for problem-solving tasks with 
little domain knowledge available. 
 
The new algorithm recombines similar cases by using crossover mechanism, and through 
mutation mechanism existing cases could be extended to cover as much domain knowledge 
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as possible. Moreover, in the evolutionary process of GAs, this method employs 
case-similarity to find an optimal or sub-optimal solution with constraint knowledge being 
used to construct feasible solution space. 
 
Experiments have been carried out on a real world E-Commerce PCs configuration dataset. 
The preliminary results showed that the proposed method is appropriate for product 
configuration applications with a high performance especially in E-Commerce environment. 
The presented case adaptation method can be generally used for product configuration 
applications both at on-line and off-line settings. Reasoning tasks other than product 
configuration may also benefit. 
 
For further research, some more interesting work could be done on the dynamic case 
representation introduced in this paper. Dynamic case representation could reduce the 
difference between original problem space and solution space and then could better support 
the fitness function definition in this paper. But the resulting performance depends on how 
much the difference is, which is usually determined by how much knowledge people have 
about the solution to the new situation. Further work could be done on precisely evaluating 
the resulting solution when the difference between problem space and solution space is 
inevitably significant. 
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