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a Comparison under Increasing Wind Penetration

Abstract

We compare the ability to support resource adequacy
and revenue sufficiency under two market designs
(a capacity market and an energy-only market) and
increasing levels of wind energy penetration. An
ideal seven node network with six generators and
ten transmission lines provides a test system for our
analysis. Simulations of power market outcomes are
evaluated in terms of capacity expansion and revenue
sufficiency.

1. Introduction

Maintaining long-run generation adequacy and
system reliability represents a critical challenge in
electric power systems. However, markets do not
necessarily provide for the adequate level of generation
capacity. During periods of scarcity in which capacity
resources are fully utilized, wholesale prices should
rise to a level that allow generators to recover
their investment costs. However, the existence of
demand-side flaws (i.e., lack of consumer response to
wholesale prices) and price caps aimed at preventing the
exercise of market power in most jurisdictions deprive
producers of these high prices. This revenue loss, or
“missing money”, is considered one of the primary
causes of underinvestment in generation [1, 2].

Several mechanisms have been designed and
implemented to address the missing money problem. In
the United States, four of the six FERC jurisdictional
wholesale electricity markets (PJM, ISO New England,
MISO and New York ISO) operate centralized forward
capacity markets in which the system operator
sets a generation capacity target and organizes its
procurement. The required amount of capacity is
contracted between load serving entities and capacity
suppliers years and/or months before delivery. Capacity
markets are organized as auctions, and the price of
the capacity supplied is determined by the settlement
between a capacity demand curve that reflects the
required reserve margin and the bids of the capacity
suppliers. Forward capacity markets in the U.S. RTOs
differ with regard to products, capacity procurement
methods, and auction procedures. Further, in ISO New

England capacity suppliers are required to sell financial
call options to customers when the energy price rises
above a pre-agreed strike price, making this design
similar to a reliability options model [3, 4]. CAISO
and SPP impose resource adequacy requirements on
load serving entities in their footprint, but do not run
a centralized capacity market [5].

In contrast, ERCOT opted for an energy and
operating reserves market (often referred to as an
“energy-only” market design [6]), where energy prices
may increase up to $9000/MWh during periods of
scarcity. A dynamic operating reserve demand curve
(ORDC) is implemented in the real-time market to
determine an hourly reserve price that depends on the
amount of reserves available. Since ERCOT currently
does not co-optimize provision of energy and operating
reserves in real time, the operating reserve price is
derived ex post, and added to the real-time energy price
to provide additional revenues to cover fixed costs. It
should be noted that energy and/or ancillary service
prices surpass the variable cost of the most expensive
resources during periods of scarcity even in RTOs
that run capacity markets [5, 7]; however, in these
jurisdictions scarcity prices are set administratively set
at a lower level than the value of lost load (VOLL).

Ensuring resource adequacy and system reliability
is particularly challenging in a setting where electricity
prices are at historic lows because of declining natural
gas prices and increasing penetration of renewable
energy sources with zero or low marginal cost.
Wholesale electricity prices have dropped on an average
annual basis and inframarginal rents in energy markets
(through which baseload resources have traditionally
recovered a large fraction of their costs, see Figure 1)
have declined. Capacity factors for thermal generators
have also decreased, further reducing revenues for those
plants. As a result of these trends, there is concern
that generating firms may fail to recover their capital
and operating costs in the long run, preventing future
investment in capacity resources that are needed to
maintain system reliability.

Under increasing renewable energy penetration,
which market design supports resource adequacy while
providing sufficient revenues for resources to recover
their capital costs? We analyze the performance
of capacity markets and energy-only markets under
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Figure 1. Revenue Source by Technology in NY, NE,

and PJM [8]

increasing wind penetration, and uncertainty in wind
generation and natural gas prices. First, we formulate
a three-stage equilibrium model (for the capacity
market design) and a mixed integer program (for the
energy-only market design) that determine optimal
capacity expansion decisions, and hourly commitment
and dispatch decisions. Second, we present impacts
of increasing wind penetration under uncertainty on
capacity expansion and generator profitability for an
ideal seven node network.

2. Contribution to the literature

Papers in the literature have compared market
designs that are intended to support resource adequacy
using various modeling approaches. [9, 10] adopt
a system dynamic approach, [11, 12, 13] rely
on an optimization approach, while [14, 15] use
agent-based simulation models. Our analysis is
closely related to studies adopting an optimization
approach, and contributes to this strand of literature
for several reasons. First, while earlier papers
assume a centralized dispatch setting, an equilibrium
modeling approach allows for better characterization
of individual generation expansion decisions, rather
than system plans. For the capacity market design,
we present a three-stage equilibrium model that
determines optimal capacity expansion decisions, and
hourly commitment and dispatch decisions. The
three stages represent 1) the capacity market, 2) the
day-ahead energy market, and 3) the real-time energy
market. To enable computational tractability, we
solve the model as a S-adapted open-loop game [16]:
all decisions are made simultaneously for all time
periods, and market participants adapt their decisions
to the sample path of the stochastic variables, without
observing what other market participants do when time
unfolds. Equilibria for S-adapted open-loop models
may be computed through non-linear complementarity

problems or variational inequality schemes, which are
computationally feasible using current solvers, like
PATH. To investigate the impacts of increasing wind
penetration in an energy-only market structure, we
present a mixed-integer program including a real-time
ORDC price adder to determine expansion, commitment
and dispatch decisions. We are reformulating this
optimization problem as a stochastic equilibrium model,
in line with the approach for the capacity market design.

As a second contribution, our analysis accounts
for transmission constraints, which are typically
disregarded in market design comparisons (e.g., [17]).
As unexpected changes in generation become more
frequent due to increased variable output, transmission
constraints are expected to bind more often, yielding
dispatch solutions that may be very different from
unconstrained solutions. Thus, our analysis allows for a
more accurate representation of the impacts of network
constraints, relative to the existing literature.

Finally, earlier studies consider only one source of
uncertainty at a time (typically, wind generation). In
contrast, we include sources of uncertainty on both the
demand and supply side (natural gas prices, demand and
wind generation).

3. Methodology

Under each market design, we consider four
scenarios of wind penetration (no wind, 10%, 20% and
30%, where 10% represents the share of wind power
capacity in the test system); for each scenario, we solve
the model for four different 24-hour periods of the year
representing low and high conditions for natural gas
price and wind generation (Figure 2).

3.1. Capacity market design (CM)

We present a three-stage equilibrium model that
determines optimal capacity expansion decisions, as
well as hourly commitment and dispatch decisions. The
model is solved using the S-adapted open-loop
information structure [16], which assumes that market
participants adapt their decisions to the sample path of a
stochastic variable, but do not observe other participants
actions as time unfolds. Possible realizations of the
stochastic variables are described by the event tree in
Figure 2, and each path along the tree corresponds to a
set of conditions with associated probability.

Real-Time Market. The real-time energy market
allows market participants to buy and sell electricity
and operating reserves to balance supply and demand
during the actual operating day. The auctions act as an
adjustment to the day-ahead market. Real-time supply
is updated from the scheduled day-ahead commitment to
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Figure 2. Scenario Tree

account for changes in the actual demand, and determine
real-time locational marginal prices (LMPs) for each
node in network. We assume that real-time markets are
run hourly.1 Market players include fast-start generators,
slow-start generators, wind generators, and the system
operator.

(i) Fast-start generator j ∈ J f
i at node i seeks to

maximize profits by choosing the amount of real-time
power to generate (xωi jh), and the amount of spinning
and non-spinning reserves to provide (sωi jh, nsωi jh), where
ω represents the real-time condition, i the node, j the
generator, and h the hour. Day-ahead market decisions
are indexed by ψ, capacity market decisions are given
in the real-time stage, and real-time generation is an
adjustment to the day-ahead schedule. Each generator
receives the real-time energy LMP (peωih) for this
real-time generation at its node, as well as the spinning
and non-spinning reserve price (psωh , pnsωh ) for the
reserves provided to the system. Fast-start generators
are assumed to produce at a constant marginal cost
MCi j, which is calculated using variable fuel and
maintenance costs by technology type. Further, total
generation by each plant from the day-ahead and
real-time markets must be lower than its production
limit (Ki j + kNew

i j ) and higher than the minimum output
level (Ki j). Units are also subject to ramping limits,
which constrain how much their output can increase or
decrease over time (RUi j and RDi j). Lastly, spinning
and non-spinning reserve offers made by each generator

1Real-time markets in the U.S. settle every five minutes.

are restricted by the maximum percentage of capacity
they are allowed to provide for reserves (S PFi j and
NS Fi j). Each fast-start generator’s real-time problem
over 24 hours in a day is:

max
xωi jh,s

ω
i jh

nsωi jh

∑
h

[
(peωih − MCi j) · xωi jh + (psωh + pnsωh ) · sωi jh

+ pnsωh · nsωi jh (3.1.1)

subject to:(
xψi jh + xωi jh

)
+ sωi jh + nsωi jh ≤ (Ki j + kNew

i j ), ∀h ∈ H
(3.1.2)

xψi jh + xωi jh ≥ Ki j, ∀h ∈ H (3.1.3)

(xψi jh + xωi jh) − (xψi jh−1 + xωi jh−1) + sωi jh + nsωi jh ≤ RUi j,

∀h ∈ H (3.1.4)

(xψi jh + xωi jh) − (xψi jh−1 + xωi jh−1) ≥ −RDi j, ∀h ∈ H
(3.1.5)

sωi jh ≤ (Ki j + kNew
i j ) · S PFi j, ∀h ∈ H (3.1.6)

nsωi jh ≤ (Ki j + kNew
i j ) · NS Fi j, ∀h ∈ H (3.1.7)

sωi jh ≥ 0, nsωi jh ≥ 0, ∀h ∈ H (3.1.8)

xψi jh + xωi jh ≥ 0, ∀h ∈ H (3.1.9)

(ii) Unlike fast-start generators, slow-start generators
cannot offer non-spinning reserves into the market.
Hence, the problem solved by j ∈ J s

i is similar to the
one presented above, but does not include non-spinning
reserve variables.

(iii) Wind generator j ∈ Jw
i solves the following

problem:

max
xωi jh

∑
h

[
(peωih − MCi j) · xωi jh + PTC · xωi jh

]
(3.1.10)

subject to (xψi jh + xωi jh) ≤ Wω
i jh, ∀h ∈ H (3.1.11)

xψi jh + xωi jh ≥ 0, ∀h ∈ H (3.1.12)

where generation must be lower than the real-time
forecast production, which differs by hour and condition
(i.e. Wω

i jh). Wind producers also receive a production tax
credit for the energy they produce (PTC).

(iv) The system operator’s problem is:

max
yωih

∑
h

∑
i

peωih · y
ω
ih (3.1.13)
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subject to
∑

i

(
yψih + yωih

)
= 0, ∀h ∈ H (3.1.14)

−
∑

i

PT DFil
(
yψih + yωih

)
≤ Tl, ∀l ∈ L,∀h ∈ H (3.1.15)

−
∑

i

PT DFil
(
yψih + yωih

)
≥ −Tl, ∀l ∈ L,∀h ∈ H (3.1.16)

where yωih represents the net injection adjustment into
node i during hour h and condition ω.

(v) The consumer problem in real time is:

max
esωih srsωh ,nsrsωh

∑
h

[∑
i

(EOC − peωih) · (Dω
ih − esωih) + (S C − psωh )·

· (S ω
h − srsωh ) + (S C − pnsωh ) · (S ω

h + NS ω
h − nsrsωh )

]
(3.1.17)

subject to 0 ≤ esωih ≤ Dω
ih, ∀i ∈ I,∀h ∈ H (3.1.18)

srsωh ≥ 0, nsrsωh ≥ 0, ∀h ∈ H (3.1.19)

where esωih is the energy scarcity (lost load) at i during
hour h, which we assume priced at an energy offer cap
(EOC) lower than VOLL, and srsωh and nsrsωh are the
spinning and non-spinning reserve scarcity in hour h,
which we assume are priced at the administratively set
scarcity penalty.

(vi) Finally, the hourly real-time market clearing
conditions for energy, spinning reserves, and
non-spinning reserves are, respectively:∑

j∈Ji

(
xψi jh + xωi jh

)
+ yψih + yωih = Dω

ih − esωih
(
peωih

)
,

∀i ∈ I,∀h ∈ H (3.1.20)∑
i

∑
Jht

i

sωi jh = S ω
h − srsωh

(
psωh

)
, ∀h ∈ H (3.1.21)

∑
i

∑
J f

i

(sωi jh + nsωi jh) = S ω
h + NS ω

h − nsrsωh
(
pnsωh

)
,

∀h ∈ H (3.1.22)

Day-Ahead Market. The day-ahead energy market
allows market participants to commit to buying or
selling electricity one day before actual power is
dispatched. This creates a schedule of electricity
production to be delivered for each hour of the following
day based on load and wind forecasts. A day-ahead
LMP is established at each node in the network for each
hour of the delivery day.

(i) Fast-start generator j ∈ J f
i at node i seeks

to maximize total profits by choosing its day-ahead
schedule (xψi jh), where ψ represents the day-ahead

condition. Capacity market decisions are given in
the day-ahead stage. Each generator receives the
nodal LMP (peψih) for generation at its own node, and
the day-ahead schedule is bounded by total capacity.
Finally, expected real-time market profits are included
in the objective function. The formulation for each
generator’s day-ahead problem (for each day-ahead
scenario ψ) is presented below:

max
xψi jh

∑
h

[
(peψih − MCi j) · x

ψ
i jh

]
+ E

{
max
xωi jh,s

ω
i jh

nsωi jh

∑
h

[
(peωih − MCi j) · xωi jh

+ (psωh + pnsωh ) · sωi jh + pnsωh · nsωi jh
]}

(3.1.23)

subject to xψi jh ≤ (Ki j + kNew
i j ), ∀h ∈ H (3.1.24)

xψi jh ≥ Ki j, ∀h ∈ H (3.1.25)

xψi jh − xψi jh−1 ≤ RUi j, ∀h ∈ H (3.1.26)

xψi jh − xψi jh−1 ≥ −RDi j, ∀h ∈ H (3.1.27)

xψi jh ≥ 0, ∀h ∈ H (3.1.28)

(ii) Slow-start generators j ∈ J s
i do not include the

real-time non-spinning reserve variable in the real-time
expectation.

(iii) Wind generator j ∈ Jw
i solves the following

problem:

max
xψi jh

∑
h

[
(peψih − MCi j) · x

ψ
i jh + PTC · xψi jh

]
+ E

{
max

xωi jh

∑
h

[
(peωih − MCi j) · xωi jh + PTC · xωi jh

]}
(3.1.29)

subject to 0 ≤ xψi jh ≤ Wψ
i jh, ∀h ∈ H (3.1.30)

where generation must be lower than an exogenous
day-ahead production forecast that differs by hour and
condition, Wψ

i jh.
(v) Finally, the hourly day-ahead market clearing

condition for energy is:∑
j∈Ji

xψi jh + yψih = Dψ
ih

(
peψih

)
, ∀i ∈ I,∀h ∈ H (3.1.31)

We assume that reserves are only provided in real time,
hence there is no day-ahead market clearing condition
for reserves.

Capacity Market. The capacity market stage allows
generators to procure new capacity resources to meet a
reserve margin target determined by the system operator.
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We assume that the auctions are run far enough in
advance (i.e. 3 year like in the markets run by PJM
or NYISO) for generators to physically build new
capacity by the delivery year. A vertical demand curve
specification, as employed by NE-ISO and MISO, sets
the planning reserve margin, which is modeled as a
single “target” value used to clear the market.

(i) Fast-start generator j ∈ J f
i at node i offers

its existing capacity (Ki j) and any potential new
capacity investments (kNew

i j ) into the auction to maximize
annualized profits. These include the annual revenue
received from the capacity market payments minus the
annualized capital cost of building new capacity (KCi j).
Also included are the expected profits received from the
day-ahead and real-time markets. In this formulation,
pc refers to the market clearing price for capacity, fi j

is the capacity owned by j that clears the auction,
and ACi j represents the annual depreciation cost of the
existing capacity. Additionally, the capacity that clears
the auction for all generators is bounded by their total
capacity amount. The problem formulation for j at i is:

max
fi j,kNew

i j

365 · pc · fi j − KCi j · kNew
i j − ACi j

+E
{

max
xψi jh

∑
h

[
(peψih − MCi j) · x

ψ
i jh

]
+E

{
max
xωi jh,s

ω
i jh

nsωi jh

∑
h

[
(peωih − MCi j) · xωi jh

+(psωh + pnsωh ) · sωi jh + pnsωh · nsωi jh
]}}

(3.1.32)

subject to fi j ≤ Ki j + kNew
i j · (1 − FORi j), (3.1.33)

Ki j + kNew
i j ≤ Ki j, (3.1.34)

fi j ≥ 0, kNew
i j ≥ 0, (3.1.35)

(ii) Slow-start generators j ∈ J s
i do not include the

real-time non-spinning reserve variable in the real-time
expectation.

(iii) Wind generator j ∈ Jw
i at node i receive a

capacity credit (CCi j) for their offer into the auction:

max
fi j,kNew

i j

365 · pc · fi j − ACi j + E
{

max
xψi jh

∑
h

[
(peψih − MCi j)·

·xψi jh + PTC · xψi jh
]
+ E

{
max

xωi jh

∑
h

[
(peωih − MCi j) · xωi jh

+ PTC · xωi jh
]}}

(3.1.36)

subject to fi j ≤ KOld
i j ·CCi j, (3.1.37)

fi j ≥ 0, (3.1.38)

(iv) The market clearing condition sets an inelastic
resource adequacy requirement (T ARGET ) which
consists of a forecasted future peak demand level plus a
10% reserve margin. The sum of all capacity that clears
the market for each generator must equal the resource
adequacy target set by the system operator:

T ARGET =
∑

i

∑
j

fi j
(
pc

)
, (3.1.39)

3.2. Energy-only market design (ORDC)

To model the energy-only market structure, we
develop and solve a nonlinear optimization model
in which the electricity market operator minimizes
the total cost of operations over a 24-hour period,
including fixed investment costs, operating costs, and
the costs associated with lost load (i.e., reserve
scarcity) events. Each stage of the optimization
is run simultaneously, subject to the physical and
inter-temporal constraints for electricity generators (e.g.
ramping rates, capacity constraints, etc.), and real-time
optimal dispatch solutions represent an adjustment from
the day-ahead commitment schedule. In particular, the
real-time objective of the system operator’s problem is
as follows:

min
∑

h

[∑
i

∑
j∈Ji

MCi j · xωi jh +
∑

i

EOC · esωih + RBS ω
h [Rsωh ]

+ RBNS ω
h [Rnsωh ] −

∑
i

∑
j∈Jw

i

PTC · xωi jh

]
(3.2.1)

EOC represents the costs associated to energy scarcity,
or the value of lost load. RBS and RBNS represent
instead the societal benefits generated through the
provision of spinning and non-spinning reserves by
thermal generators.2 These benefits are defined
by hourly operating reserve demand curve (ORDC)
functions, which are solved directly within the model.
The calculation of ORDCs merits further discussion. An
ORDC is constructed for each of four seasons and six
time-of-day blocks (each consisting of four hours), for
a total of 24 curves. Mean and standard deviation of
the hourly system-wide error (i.e., deviation between
hour-ahead and actual reserves) in 2011 and 2012 are
publicly available from ERCOT, the only U.S. market
implementing ORDC curves [19]. Since the error is
assumed to be normally distributed [19], using historical

2We assume that wind generators cannot provide operating
reserves for reliability purposes [18].
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data we calculate the loss of load probability for the
non-spinning and spinning reserves as follows:

LOLP(µh,s, σh,s, s + ns − X)
= 1 −CDF(µh,s, σh,s, s + ns − X) (3.2.2)

LOLP(µh,s, σh,s, s − X)

= 1 −CDF(
µh,s

2
,
σh,s
√

2
, s − X) (3.2.3)

where h indicates an hour in one of the six time-of-day
blocks, s denotes season, CDF is the cumulative density
function of the normal distribution with mean µ and
standard deviation σ, and X represents the minimum
contingency level for the system (assumed to be 200
MW, which is 10% of the peak load). The LOLP
represents the probability that an unforeseen shortfall
in capacity (or demand increase) exceeds the level of
reserves. We adjust mean and standard deviation using a
scaling factor for wind penetration, as in [12]. Assuming
that lambda is the marginal cost of generation from a
NGCC unit ($46.50/MWh) This is used to obtain an
adder to the system real-time energy price that quantifies
the value of scarce reserve capacity, and is derived from
the first order conditions of the two-stage stochastic
problem first presented in [6]:3

Pns = 0.5 · (VOLL − λ)
· (1 −CDF(µh,s, σh,s, s + ns − X)) (3.2.4)

Ps = Pns + 0.5 · max(VOLL − λ, 0)

· (1 −CDF(
µh,s

2
,
σh,s
√

2
, s − X)) (3.2.5)

where VOLL represents the value attributed to
consumers to unsupplied energy and is assumed to
equal $9,000/MWh [12]. Note that a different reserve
price corresponds to each level of reserves above the
minimum contingency level, s + ns − X or s − X. The
ORDC maps each level of reserves provided in the
system to a reserves price. In each hour, the market
clearing price for reserves (and adder to the real-time
energy price) is determined based on the value of the
ORDC curve that corresponds to the level of reserves
provided in the system.

4. Data

We solve the models on a modified version of the
7-node network presented in [20]. In this test system, six
generators are located at separate nodes on the network,
which are all connected by transmission constrained

3[17] provides an analytical derivation of the first order conditions
for this problem.

lines. There are separate consumer loads at six nodes
in the network, leaving one without any demand. This is
considered to be the slack bus, or hub node, and is where
all power is assumed to flow through. A system operator
is modeled to efficiently manage the power flows on
the transmission network by accounting for the PTDFs
(derived from PLEXOS [20]). A representation of this
7-node network is presented in Figure 3.

The six generators included in the model represent
a nuclear plant, a coal plant, a natural gas combined
cycle plant (NGCC), two natural gas combustion turbine
(NGCT) plants (which have the same parameters but
are located at different nodes) and one wind turbine.
Each of these has a different generating capacity (MW),
capital cost of construction (in $/kW), marginal cost
of production (in $/MWh), and lifetime (in years)
[12] [21]. The marginal cost of production for each
generation technology type was calculated using their
average fuel cost (in $/ton or $/Mcf) from 2017, heat
content (in Btu/lb or Btu/Mcf), heat rate (in Btu/kWh),
and variable operations/maintenance costs (in $/MWh).
The coal and nuclear plants are assumed to have been
built in the 1970s/1980s, therefore capital cost data
comes from older sources to reflect the costs when they
were built [22] [23]. Similarly, the NGCC plant was
assumed to have been built in the year 2000, and capital
costs are from [24].

The 10% and 20% levels of the wind penetration
scenarios are chosen based on 2017 operating capacity
data found from [21]. CAISO has a wind penetration
share of about 11% by capacity, while ERCOT and SPP
have the highest levels of wind penetration by capacity
(about 19% and 20%, respectively). Our highest wind
scenario case is assumed to be 10% higher than the
penetration levels of ERCOT and SPP.

5. Preliminary Results

Four different scenarios are run for the capacity
market and energy-only market models, representing a
no-wind setting, a 10% wind penetration setting, a 20%
wind penetration setting, and a 30% wind penetration
setting. Within each of these scenarios, different
conditions are created to represent uncertainty in natural
gas prices, wind generation levels, and changes in
demand from the day-ahead market to the real-time
market. For example, there are two sets of natural gas
prices that are assumed in the model, a high price of
$7/Mcf and a low price of $3.5/Mcf. The low price
is roughly similar to the current cost of natural gas for
electricity producers and the high price is about the same
as how natural gas costs were in 2007. Additionally,
for the 10%, 20%, and 30% wind scenarios, there
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Figure 3. 7-Node Network

is a significant amount of uncertainty related to wind
production in the day-ahead market. The real-time
market also has uncertainty related to wind production,
but at a much lower level than in the day-ahead. Lastly,
there is some demand uncertainty included in the model,
which accounts for a difference in the day-ahead and
real-time loads. Figure 2 shows how we account for
uncertainty by having different combinations of natural
gas prices and wind generation levels (demand is also
uncertain in real-time). Both models are solved in
GAMS. The equilibrium problem is solved as a mixed
complementarity model (MCP) using the PATH solver,
and converges to a local optimum in about a minute. The
energy-only model is solved as a nonlinear optimization
problem using the CONOPT solver, and converges in
about 5 seconds.

Since the decision problems of the market players
include expectations of day-ahead and real-time stages,
our results should be interpreted as average values. We
simulate results for the four wind penetration scenarios,
and compare them based on multiple metrics. For
example, the amount of new generation capacity added
on by thermal generators changes under different levels
of wind penetration. Figures 4 - 6 show the existing
capacity for each generator in the system, as well as
the new capacity added on in the capacity market and
energy-only market models. As more wind generation
enters the network, less capacity needs to be added on by
thermal generators. Only the NGCC and NGCT plants

are able to add on new capacity in our models. In the
energy-only model, the NGCC is the only plant that
adds on new capacity. While the capital costs of the
NGCC generator is higher than the NGCT generators,
the marginal cost of production is lower. Adding on
new NGCC capacity would allow the plant to generate
more electricity in the day-ahead and real-time markets,
reducing the need for more expensive generation from
the NGCT plants. Further, the energy-only market
model adds on far less total new capacity than the
capacity market model. Results presented here assume a
moderate level of electricity demand. Given this level of
demand, the energy-only market model does not need to
add on much new capacity, whereas the capacity market
model sets a requirement on how much new capacity
needs to be added. In the no-wind case, the capacity
model adds 556 MW of total new capacity, while the
energy-only model adds 240 MW of total new capacity.
In the 10% wind case, the capacity model adds 499 MW
of total new capacity, while the energy-only model adds
180 MW of total new capacity. Lastly, in the 30% wind
case, the capacity model adds 387 MW of total new
capacity, while the energy-only model adds 100 MW of
total new capacity.

The expected daily real-time generation levels for
each plant with non zero generation in the capacity
market and energy-only market model are compared
across wind cases in Figures 7 and 8. The nuclear
plant produces at capacity for all hours of the day
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Figure 4. Total Capacity Levels - No Wind Case

Figure 5. Total Capacity Levels - 10% Wind Case

Figure 6. Total Capacity Levels - 30% Wind Case

in each wind penetration scenario. The coal plant
initially produces at capacity, but as wind penetration
increases, its production slightly decreases. For the
NGCC plant, production decreases steadily as wind
generation increases. The reason for this is that wind
is displacing coal and NGCC-based generation, as its
marginal cost of production is lower. The NGCT plants
are used slightly more in the energy-only market model,
because the NGCC plant does not add on as much new
capacity in the energy-only market model. Therefore, in
some hours of the day, the NGCT plants would need to
be dispatched in the energy-only model when the NGCC
is operating at full capacity.

Figure 7. Expected Real-Time Generation - CM

Figure 8. Expected Real-Time Generation - ORDC

To examine how resource sufficiency is affected as
wind penetration increases, we compare annual carrying
costs to total annual revenues (in $/kW-yr) in the
capacity and energy markets.4 The annual carrying cost
of a generator includes its annualized fixed costs, which
are based on the capital costs of building the plant, and
its annual operating costs, which depend on the total
usage of the plant. The carrying cost represents the total
annual cost a power plant would need to recover through
the capacity, energy and reserve markets. Figures 9
- 13 compare the annual carrying costs to the annual
revenues for each generator (except the coal plant,
whose trends are similar to the nuclear plant) and each
wind case. It should be noted that carrying costs may be
at different levels, depending on plant usage under each
wind case. For example, generation from the NGCC
plant starts out high in the no wind case, but decreases
as wind penetration increases. This causes the annual
operating costs to decrease, which in turn leads to a
decrease in the total annual carrying costs.

Revenues for the nuclear, coal, and NGCC plants
drop significantly under both market structures, as wind

4Results presented here assume a moderate level of electricity
demand. Thus, there is no reserve scarcity in any time period, i.e.
reserve prices are always zero and plants do not receive reserve
revenues.
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penetration increases in the system. The NGCT 1 plant
shows only a small decrease in revenue in the capacity
market structure, but revenue decrease is sharper in
the energy-only market structure. Notably, for CT 1
revenues in the energy-only market are higher than in
the capacity market model in the no wind and 10%
wind cases, but lower in the 20% and 30% cases. This
can be explained by a quantity effect. In the no wind
and 10% wind cases of the energy-only market model,
NGCT 1 produces enough electricity to make revenues
higher than the combined capacity and energy revenues
in the capacity market design. In the 20% and 30%
wind cases of the energy-only market model, production
from NGCT 1 decreases and revenues drop below the
capacity market revenues. The NGCT 2 plant doesn’t
produce in the capacity market model, therefore all
revenues come from the capacity market. In contrast,
this unit has non zero generation under the energy-only
market structure, but does not produce enough to match
revenues in the capacity market structure. Finally, the
wind plant always produces at its forecast levels, but as
wind penetration increases, its revenues decrease due to
lower energy prices.

Figure 9. Annual Revenue and Carrying Cost

Comparison - Nuclear

Figure 10. Annual Revenue and Carrying Cost

Comparison - NGCC

Figure 11. Annual Revenue and Carrying Cost

Comparison - NGCT 1

Figure 12. Annual Revenue and Carrying Cost

Comparison - NGCT 2

Figure 13. Annual Revenue and Carrying Cost

Comparison - Wind

6. Conclusions

We analyze the performance of capacity markets and
energy-only markets under increasing wind penetration,
and uncertainty in wind generation and natural gas
prices. First, we formulate a three-stage equilibrium
model (for the capacity market design) and a
nonlinear optimization model (for the energy-only
market design with ORDC) that determine optimal
capacity expansion decisions, and hourly commitment
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and dispatch decisions. Second, we present impacts
of increasing wind penetration under uncertainty on
capacity expansion and generator profitability in an ideal
seven node network. Preliminary results suggest that:
a) the least generation capacity is added in the ORDC
framework; b) as wind penetration increases, generator
revenues decrease more for baseload units (nuclear,
coal, NGCC) than for peak units, and c) under no reserve
scarcity, an energy-only market structure with a dynamic
ORDC does not guarantee revenue sufficiency. Next
steps include simulating scenarios that include reserve
scarcity, reformulating the energy-only market design as
an equilibrium problem, including additional metrics to
assess resource adequacy, and adding exit decisions to
the model formulation. We also plan on solving the
models on a test system with more realistic topology
(i.e., a modified version of the 36-bus electric network
in [25]), and selecting representative days in a year to
more accurately determine the probability of moving
from the capacity to the day-ahead market stage. In
the 36-bus test system, wind day-ahead forecasts and
real-time output will be based on locational data from
NREL.
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