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Abstract

Information technology security investment is receiving increasing attention in recent years.  Various methods
have been proposed to determine the effective level of security investment.  In this paper, we introduce an
extreme value approach to address the issues of effective budgeting and investing in IT security.  In our model,
the security status of a system depends on two factors:  system security level, which is measured by the level
of security investment, and system attack level, which reflects the security risk with which the system is
confronted.  Security investment level is endogenous to the system, while attack level is exogenous.  Extreme
value analysis is used to characterize the stochastic behavior of high-level attacks based on the historical data
and to make inferences on future attacks.  Based on these inferences, we determine the effective security
solutions and the level of security investment to modulate the likelihood of system failure.  For illustration
purposes, we use an extreme value approach to analyze a set of traffic data collected from a regional bank.

Keywords:  Information assurance, security investment, two-factor model, extreme value theory, denial of
service (DoS)

Introduction

The importance of effective management of information technology security has increased in recent years due to the increasing
frequency and cost of security breaches (Gordon et al. 2005).  While high-risk organizations may adopt security at any price, most
commercial organizations have to consider the cost-benefit tradeoff for such an investment.  How to efficiently invest in IT
security is a big challenge.  In the Ernst & Young Global Information Security Survey (Ernst & Young 2003, 2004), budget
constraints are listed as one of the main obstacles to effective information security.  Quantification tools, if applied prudently, can
assist in the anticipation and control of direct and indirect computer security cost (Geer et al. 2003; Mercuri 2003).

In this paper, we propose an  approach based on extreme value theory (Gumbel 1958) for IT security investment.  In our model
the security status of a system depends on two factors:  system security level, which is measured by the level of security
investment, and system attack level, which reflects the security risk with which the system is confronted.  Attack level is treated
as an exogenous variable that causes system failure, while security investment level is endogenous, preventing system failure,
and is determined by organizations.  The difference between security level and the attack level measures the vulnerability of the
system.
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Instead of calculating the expected loss value, we apply extreme value theory to study the extreme attack behavior and address
the issues of effective budgeting and investing in IT security.  Extreme value theory is one of the most important statistical
disciplines for the applied science, and has found applications in engineering (Castillo 1988), insurance and finance (Embrechts
et al. 1997), and management strategy (Dahan and Mendelson 2001), as well as in environment and biomedical research.  Extreme
value theory quantifies the stochastic behavior of a process at unusually large (or small) levels.  It is concerned with probabilistic
and statistical questions related to those extreme events.  To our knowledge, this is the first paper to apply the extreme value
theory in security investment decisions.  With the application of extreme value theory, we attempt to address the following issues:

1. What is the probability distribution of high-level attacks (i.e., what is the probability that an attack over a given level will
occur during a given year)?

2. What security investment is needed so that the probability of potential system failure is below a certain threshold?

3. What are the factors affecting the behavior of high-level attacks?  Are the nature and causes of high-level attacks changing
over time? Is it a seasonal phenomenon?

By answering these questions, we make inferences on future attacks, thus determining the effective security solutions and
investment level to modulate the likelihood of system failure.

Consider defending against denial of service (DoS) as an example.  A DoS attack is an incident in which an organization is
deprived of the services of a resource they would normally expect to have.  A Web site can occasionally be forced to temporarily
cease operation when accessed by millions of people.  High-level traffic is always regarded as a signal of forthcoming DoS
attacks.  Suppose that, as part of our design criteria to defend against DoS, the Web server is required to be able serve all traffic
that it is likely to experience within its projected life span, say 1 year (or more years).  Daily traffic is monitored and historical
data might be available for the last 2 years.  The challenge is to estimate the traffic level that might occur over the next 1 year
given the 2-year history.  Extreme value theory provides a framework enabling such extrapolations.  Using extreme value theory,
we may not only estimate the distribution of high-level traffic and the occurrence probability of the traffic over a given level
during a given year, but also answer such questions as what level of traffic will be exceeded with probability 1/365 in a given day.
In addition, we may identify factors that influence the behavior of high-level traffic with proper regression analyses, thus helping
us predict the trend of traffic with the change of environment and time.  Based on the characterization of extremely heavy traffic,
we make inferences on future attacks and determine a proper security solution and the level of investment.

The organization of this paper is as follows.  In the next section, after a literature review, we introduce our two-factor security
model.  We then present the extreme value theory.  We apply extreme value analysis to a set of daily internal traffic data collected
from a regional bank for illustrative purposes.  Finally, we summarize our study and discuss ideas for future research.

Security Risk and Security Investment

Related Literature

Several models have been proposed to determine the effective level of security investment.  There are basically two approaches
(Cavusoglu 2004).

1. Using traditional risk or decision analysis framework.  Generally these models apply a standard result in optimal-control
theoretic certainty equivalence, which implies that only the mean values (probability-weighted average outcomes) of target
variables matter for an optimal policy setting.  Gordon and Loeb (2002) proposed an expected benefits of investment in
information security (EBIS) model.  Hoo (2000)  used a decision analysis approach to evaluate different policies for IT
security.  Longstaff et al. (2000) proposed a hierarchical holographic model (HHM) to assess security risks and provide a
model for assessing the efficacy of risk management.

2. Using game theory to model the strategic interactions between the organizations and attackers.  Some researchers argue that
IT security can be treated as a kind of game between organizations and attackers.  While the organizations try to cover
vulnerabilities in their systems, attackers race in an effort to exploit them.  Security investments not only prevent security
breaches by reducing vulnerabilities that attackers can exploit but also act as a deterrent for attackers by making attacks less
attractive (Schechter and Smith 2003).  Longstaff et al. (2000)argued that investment in system risk assessment can reduce
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the likelihood of intrusions, which yields benefits much higher than the investment.  Cavusoglu, et al. (2004) constructed a
game tree to describe the interaction between organization and hackers.

There are two main issues in these models.

1. The expected loss value or benefit value cannot fully characterize security failures.  Usually security failures are low-
probability events, but once realized, failures can bring huge loss.  The loss may be intangible and not amenable to accurate
estimation.

2. Rationality of hackers is hard to capture as they may be motivated by a different value system.  They may be rational, but
not in our terms.  They may be driven by motivations other than money.  It is hard for us to know their cost function for
attacking the system.

A Two-Factor Security Model

Security risk assessment determines the level of security risk that exists within the organization.  Farahmand et al. (2005)
presented a subjective analysis and probability assessment with a damage evaluation of information security incidents.  Geer et
al. (2003) introduced a technique called business-adjusted risk (BAR) for classifying security defects by their vulnerability type,
degree of risk,  and potential business impact.  In this paper, we define attack level a as a metric, which reflects the threats that
an organization confronts,  in the same manner as the temperature reflects the relative warmth and cold of a day and the Dow
Jones Index reflects the healthiness of the stock market.  Attack level may be evaluated daily or monthly based on the information
on hackers, worms, virus, and other attack incident.  A similar idea is used in the Homeland Security Advisory System
(http://www.dhs.gov/dhspublic/display?theme=29).  On a daily basis of monitoring and analyzing threat information, the
government may issue a threat level to reflect the current situation (severe—red; high—orange; elevated—yellow; guarded—blue;
and low—green).  In defending against DoS, organizations may monitor the daily traffic, and regard the level of traffic as the
attack level on systems.

We define security level s as the ability of an organization to defend its IT systems from failure resulting from a security attack,
such as the capability that an organization has in defending the system again a DoS attack.  The system’s security level is
converted from the organization’s security investment i.  By investing in IT security (training security staff; buying new
technologies such as an intrusion detection system, a firewall, etc.; timely installation of software patches; and increasing the
system capacity), the organization improves its system security level.  For simplicity in our discussion, we assume that the level
of IT security investment is equivalent with the security level system in our model.

Schechter (2004) argued that when attacking a software system is only as difficult as it is to obtain a vulnerability to exploit, the
security strength of that system is equivalent to the market price of such vulnerability.  He suggested that the strength of a system’s
security should be quantified from the viewpoint of the attacker rather than the defender, and introduces an approach that security
strength can be measured using a market mechanism.  In our paper, we use the difference between security level and the attack
level, which is the term i-a, to measure the vulnerability of the system.  We assume that both the investment level i and the attack
level a are continuous. 

The security status of information systems is affected only by these two factors.  We define a system survival function (the
probability function of system failure) (F) depending on the probability that i – a < L, where L is a certain threshold of
vulnerability; that is, 

F = probability of failure = prob.  (i – a < L) (1.1)

where i  is the investment level and a is the attack level.  F increases when a increases, and decreases when i increases.  When
(i – a) increases, F decreases.  If we assume L = 0, the probability of system failure depends on the probability that i < a (i.e., the
probability that investment level is less than equal to attack level).  a (attack level) is exogenous in the function F, while i
(investment level) is endogenous.  An organization follows a dynamic investment strategy, in which it makes investment decisions
based on attack level a and the status of the system F; that is,

(1.2)( , )i i a= F

http://www.dhs.gov/dhspublic/display?theme=29
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Table 1.  Notations
Two-Factor Security Model

F System survival function (the probability function of system failure)
i Security investment level 
a System attack level

Extreme Value Theory
X Random observations, x is one observation from X
F Common cumulative distribution function F of random observations

nM Block maxima, , and n is the number of observations.  1 2max{ , ,... }n nM X X X=

( )H x The limiting distribution of exetrma

, ,µ σ α Distribution Parameters of Frechet, Weibull, Gumbel, as well as Generalized Extreme Value
distribution (GEV)

ξ Shape Parameter of GEV

px Return Level

ˆ px Estimated Return Level

1/p Return Period, p is a probability
u High threshold
Y , y is an observation from Y0Y X u= − >
G Generalized Pareto Distribution (GPD)

, ,ξ σ ψ Distribution Parameters of GPD

Zt The maximum level in time period t

In the example of defending against DoS, the system status depends on the system capacity and the daily traffic experienced by
the system.  The probability of system failure is determined by the probability that the system capacity is less than the daily traffic.
Based on the observed daily traffic, the organization determines proper security solutions.  

One of the key requirements for such a dynamic investment strategy is to accurately capture and model the dynamic behavior of
attacks.  With our two-factor security model, it is important for us to know the behavior of extreme attacks for an effective
investment.  To defend against DoS, we need to understand the behavior of high-level traffic so that we can make inferences on
future attacks and design proper defense solutions to prevent the system failure caused by extremely heavy traffic.  In the
following section, we introduce extreme value theory, which we use to characterize the stochastic behavior of high-level attacks
and to identify the factors (including time) that may influence high-level attacks.  Table 1 lists the notations we use in the analysis.

Extreme Value Analysis

Classic Extreme Value Theory

The principal results of extreme value theory concern the limiting distribution of sample extrema (maxima or minima).  Since
in our model the probability of system failure depends on the probability of the exceedance of attack over investment and we are
concerned with the behavior of extreme large attacks, such as the distribution of high-level traffic, we will only discuss sample
maxima here.  Suppose that X1, X2, … Xn  is a sequence of independent, identically distributed observations, such as n-day daily
traffic in DoS, with a common cumulative distribution function F, which is not necessarily known.  Let the sample maximum be
denoted by Mn = max {X1, X2, … Xn}  (Mn is also referred as block maxima).  We are interested in the stochastic behavior of Mn.
We know 

(1.3)Pr{ } ( )n
nM x F x≤ =
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Result (1.3) is of no immediate interest, since it simply says that for any fixed x for which F(x) < 1, we have Pr{ } 0nM x≤ →
as n goes to infinity.  For nontrivial limit results we must renormalize:  find an > 0, bn such that 

(1.4)Pr ( ) ( )n n
n n

n

M b x F a x b H x
a

⎧ ⎫− ≤ = + →⎨ ⎬
⎩ ⎭

where H(x)  is the limiting distribution of F(anx + bn).  The fundamental theorem of the extreme value theorem provides three
possible distributions for H(x) as follow:

Theorem 1 (Fisher and Tippett 1928):  The only three types of non-degenerate distributions H(x)  satisfying Equation
(1.4) are

Frechet:  (1.5)( )
0

x

e if xH x
otherwise

αµ
σ µ

−−⎛ ⎞−⎜ ⎟
⎝ ⎠

⎧
⎪ ≥= ⎨
⎪⎩

Weibull:  (1.6)
1

( ) x

if x
H x

e otherwise
αµ

σ

µ
−⎛ ⎞−⎜ ⎟

⎝ ⎠

≥⎧
⎪= ⎨
⎪⎩

Gumbel:  (1.7)( ) 0
x

eH x e x and
µ

σ σ
−⎛ ⎞−⎜ ⎟

⎝ ⎠−= −∞≤ ≤∞ >

The three extreme-value distributions, normalized to mean and unit variance, are shown in Figure 1 (" = 3.9 for Frechet, and "
= -2 for Weibull).  The stars indicate the 99th percentile of the distributions respectively.

Frechet:  This is the “long-tailed” case.  The underlying attack-level distribution H(x) for Frechet distribution has a fat tail (e.g.,
1 – H(x) declines as x-").  The attack level confronted by organizations has great upside uncertainty.

Gumbel:  This is the “medium-tailed” case for which 1 – H(x)   decreases exponentially for large x.  For this type of attack
distribution, there are no specific limits on the attack level, but the attack level is not likely to be too high or too low.  Most attack
levels are distributed in a central range.

Weibull:  This is the “short-tailed” case in which the distribution has a finite endpoint.  Organizations face predictably finite attack
levels.

Figure 1.  Densities for the Three Extreme Value Distributions (: = 0, F² = 1)
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There are several reasons why there may be different probability distributions for the high-level attack.  First, it may be due to
the nature of digital assets:  the perceived value of digital assets and their criticalness to the public and organizations.  Terrorism
or engineered attacks are more attracted to high-valued digital assets, or the digital assets that can cause high-level damage to the
public and/or organizations.  Second, different attack types may have different distributions.  For example, a violation that is
initiated from a finite number of internal users in an organization is likely to differ from threats from viruses or worms, which
can originate anywhere in the world.  Third, the exposure range of the digital assets may also result in different distributions of
the attack level.  The digital assets connected with the Internet are more likely to come under high-level attack, while application
systems having limited access in an isolated environment are less likely to be exposed to same level attack.  Fourth, due to
negative externality of attack (Camp and Wolfram 2004), the size of the organization and its network becomes a factor.  A larger
organization is more likely to suffer an attack than a smaller one.  However, empirical exploration of these hypotheses is needed.

The three types may be combined into a single generalized extreme value (GEV) distribution (Coles 2001a, p. 48). 

(1.8)
1 /

( ) exp 1 xH x
ξµξ

σ

−⎧ ⎫⎡ − ⎤⎪ ⎪⎛ ⎞= − +⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎪ ⎪⎩ ⎭

where , :  is a location parameter, F > 0is a scale parameter and > is a shape parameter.  The limit: 1 0xx µξ
σ

⎧ − ⎫⎛ ⎞+ >⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

 corresponding to the Gumbel distribution,  to the Frechet distribution with ,  to the Weibull0ξ → 0ξ >
1α
ξ

= 0ξ <

distribution with .
1α
ξ

= −

By inversing the equation (1.8),  we obtain

[ ]{ }
{ }

1 log(1 ) , 0

log log(1 ) , 0
p

p for
x

p for

ξσµ ξ
ξ

µ σ ξ

−⎧ − − − − ≠⎪= ⎨
⎪ − − − =⎩

where G(xp) = 1 – p.  In common terminology, xp is the return level associated with the return period 1/p, since, to a reasonable
degree of accuracy, the level xp is expected to be once every 1/p periods.  In other word, xp is exceeded by the period maximum
in any particular period with probability p.

Exceedances over Thresholds

Extremes are scarce, so model estimations of block maxima have a large variance (Coles 2001a, p. 66).  Modeling block maxima
is a wasteful approach to extreme value analysis especially if one block happens to contain more extreme observations than
another.  If an entire time series of, say, hourly or daily observations are available, the data may be better used by avoiding the
procedure of blocking.  Exceedances over thresholds provide a alternative way to model extreme value by characterizing an
observation as extreme if it exceeds a high threshold.

Theorem 2 (Coles 2001a, p. 75; Smith 2003):  Consider the distribution of X conditionally on exceeding some high
threshold u , and let  Y = X – u, and  Y > 0.  We know 

( ) ( )( ) Pr{ | 0}
1 ( )u

F u y F uF y Y y Y
F u

+ −= ≤ > =
−

As , we found a limit distribution,sup{ : ( ) 1}Fu x F xω→ = <
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( ) ( ; , )u uF y G y σ ξ≈

where G is generalized Pareto distribution (GPD)

(1.9)
1 /

( ; , ) 1 1 yG y
ξ

σ ξ ξ
σ

−
⎛ ⎞= − +⎜ ⎟
⎝ ⎠

defined on {y:y >0 and (1 + >y/F) > 0}

The rigorous connection between exceedances over thresholds and  the classic extreme value theory was established by Pickands
(1975).  Similar with GEV, GPD has three cases depending on the value of the parameter >:  

• The case > > 0  is the long-tailed case, for which 1 – G(x) decays at the same rate as x-1/> for large x.  This is reminiscent of
the usual Pareto distribution, .  1/( ) 1G x cx ξ−= −

• For  > = 0, we have the exponential distribution with mean F as the limit 

( ; , 0) 1 exp yG y σ
σ

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

• For > < 0, the distribution has finite upper endpoint at .  
σ
ξ

−

Replacing Y = X – u into (1.9), now we have

 (1.10)
1 /

P r{ | } 1 x uX x X u
ξ

ξ
σ

−−⎛ ⎞> > = +⎜ ⎟
⎝ ⎠

It follows that

(1.11)
1 /

P r{ } 1u
x uX x

ξ

ς ξ
σ

−−⎛ ⎞> = +⎜ ⎟
⎝ ⎠

where .  By inversing the equation (1.11), we obtainPr{ }u X uς = >

(1.12)
1 , 0

log , 0

u

p

u

u for
p

x

u for
p

ξ
ςσ ξ

ξ

ςσ ξ

⎧ ⎡ ⎤⎛ ⎞⎪ + − ≠⎢ ⎥⎜ ⎟
⎪ ⎢ ⎥⎝ ⎠⎣ ⎦= ⎨
⎪

+ =⎪
⎩

xp is the (1/p)-observation return level.  In other word,  the level xp is expected to be once every 1/p observations to a reasonable
degree of accuracy , or the probability of an observation to exceed xp is p.  Suppose that we have one observation for each day.
Then a 365-observation return level is the same as a 1-year (or 365-day) return level, which is the level expected to be exceeded
once every 365 observations (or in a year).

Factor Analysis

In the above discussion, we do not consider that high-level attacks may systemically change through time, or be influenced by
the changes of other environmental factors.  In the context of DoS, the network traffic or server load may increase over time,
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because the Internet is expanding and the e-business is maturing.  The organization’s internal traffic may be affected significantly
by the number of employees and the number of enterprise applications.  The activities of worms, viruses, or hackers may vary
seasonally.  In the following discussion, we introduce the models that capture these changes and influences.  

Let GEV(:, F, >)  denote the GEV distribution with parameters :, F, and >.  Let Zt denote the maximum attack level in time period
t.  To examine whether the maximum attack level changes linearly over the observation periods, a suitable model for Zt is (Coles
2001a, p. 107)

~ ( ( ), , )tZ GEV tµ σ ξ

where  

0 1( )t tµ β β= +

for coefficients $0  and $1.

To identify other factors that might have significant impact on the maximum attack levels, the model can be extended into a
general form

0

1
1( ) [1, ( ),..., ( )]

...n

n

t z t z t

β
β

µ

β

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

where zi(t) are the factors to be examined (e.g., the number of employees and the number of enterprise applications in different
time periods).

The seasonal model with k seasons s1, s2, …, sn takes the form

1

2
1 2( ) [ ( ), ( ), ..., ( )]

...k

k

t I t I t I t

β
β

µ

β

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

where Ij(t) is the dummy variable having

1, ( )
( ) , 1,...,

0,
j

j

if s t s
I t j k

otherwise

=⎧
= =⎨
⎩

Using these regression models, we are able to identify whether high-level attacks are changing over time, and/or whether there
is any seasonal effect.  We also can identify factors that may influence the maximum attack level.  Following the same logic, we
can also test the factors that might have an impact on the parameters " and >.  The information helps us understand the trend of
attacks and thus make strategic investment in IT security more effectively with the change of environment.

An Empirical Analysis

Malicious traffic from self-propagating worms and denial of service attacks constantly threatens everyday operation of an
organization’s Internet systems.  Defending networks from these threats demands appropriate tools to conduct comprehensive
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vulnerability assessments of networked systems (Sommers et al. 2004).  The high-level traffic above a certain threshold is
perceived as a signal of attack to IT systems.  High-level traffic causes network outage and denial of service.  In this section, we
analyze daily internal traffic collected from a large regional bank situated in New York state.  With 1 year as the return period,
we estimate the return level of traffic.  The return level of traffic provides valuable information, enabling us to design proper
defense strategies and adjust the investment level to prevent network outage and denial of service.

We record the internal traffic from January 16, 2004, to March 20, 2005, daily (see Figure 2).  The traffic is comprised by a
number of activities, including

• employee login/logout, file/printer access, or any other activity done at network level
• inter-server communication (most of which happens automatically or is scheduled) 
• application access information (only some applications are monitored)

Since a series of daily data is available, “exceedances over thresholds” is employed in our extreme value analysis.  We use the
maximum-likelihood method to estimate the distribution parameters of generalized Pareto distribution (GPD) with the S-PLUS
functions obtained from the website (Coles 2001b).  To use exceedances over thresholds, a proper threshold must be selected.
The mean residual life plot (Coles 2001a, p. 78) is a diagnostic plot drawn before fitting any model and gives guidance about what
threshold to use.  Figure 3 shows the mean residual life plot with approximate 95 percent confidence intervals for the daily traffic.
The plot is initially linear, but shows substantial curvature in the range of  1.1 × 106 < u < 1.3 × 106.  For u > 1.3 × 106, the plot
is reasonably linear when judged relative to confidence intervals, suggesting we set u = 1.3 × 106.  (We also did a sensitivity
analysis with u = 1.5 × 106,  the results do not have much difference.)  The choice leads to 149 exceedences in the series of length
430.  Thus =149/430=0.347 with .  The maximum likelihood estimators of GPD parameters areˆuς 4ˆvar( ) 5.27 10uς −= ×

= (281972.2, 0.09), with standard error 33901.08 and 0.09 respectively.  The 95 percent confidence interval for > is [-0.09,ˆˆ( , )σ ξ
0.26] (Figure 4) .  Therefore, the maximum likelihood estimate corresponds to an unbounded distribution, although the evidence
is not overwhelming and 0 lies inside the 95 percent confidence interval.

Diagnostic plots for the fitted GPD are shown in Figure 5.  Both the set of the probability plot and of the quantile plot are near
linear, showing the validity of the fitted model.  The return level curve asymptotes to an infinite level.  The corresponding density
estimates are roughly consistent with the histogram of the data, but not perfect.

Figure 2.  Daily Traffic from January 16, 2004, to March 20, 2005
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Figure 3.  Mean Residual Life Plot for Daily Traffic

Figure 4.  Profile Likelihood for Shape Parameter > in Threshold Excess Model of Daily Traffic
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Figure 5.  Model Diagnostic Plots for Threshold Excess Model Fitted to Daily Traffic Pattern

Figure 6.  Profile Likelihood for 1-Year Return in Level in the Threshold Excess Model
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The GPD model provides a direct method for risk estimation using return level.  In our analysis, we use 1 year as our return
period.  Since we have one observation for each day, the 1-year return level corresponds to the 365-observation return level with
p = 1/365.  As , we use the first part of equation (1.12) to calculate the return level and have .  Figure 6ˆ 0ξ > 6ˆ 3.01 10px = ×
plots the profile log-likelihood for the 1-year return level.  The 95 percent confidence interval is [2.6 × 106, 4.0 × 106].  The return
level of traffic shows the level of investment we should match for the next year such that the exceeded probability of traffic
at   in next year is less than 1/365 with 95% confidence.  6ˆ 3.01 10px = ×

In our model, we have (i - a) as a measure of vulnerability, where i is the investment factor and a is the attack factor.  In the data
analysis, a is the packet traffic rate, while i is the capacity rate in packets per second that the system can handle.  Estimated return
level of traffic  in the data analysis provides an extremal value estimate of packet traffic rate to which the system is subject,ˆ px
which in turn gives the value of attack factor a.

Taking this value as the system capacity i, and assuming that the security system is a simple serial system of three elements—
connection to the Internet, firewall/router, and the server—we can then specify the bandwidth of the pipe that is connecting to
the firewall, the firewall/router’s filtration capacity, and the capacity of the server operating system to handle that TCP/IP traffic,
all in terms of packets per unit of time.  Given these capacities, we can estimate what the cost of such a security system is likely
to be, and decide whether to increase or decrease investment by comparing with current configurations.  We may also introduce
intrusion detection systems (IDS) or reconfigure the existing IDS to properly protect the system.

Conclusion

In this paper, we introduce an extreme value approach for security investment.  Compared with other methods on determining
the effective level of security investment, our model does not need to calculate the expected loss due to system failure, nor make
assumptions relating to hackers’ behavior.  It is a dynamic strategy for security investment.  With extreme value analysis, the
distribution of high-level attacks is estimated.  We may then determine the return level of attacks for a certain return period.  The
return level of attacks provides important information for us to design a proper defense capability and make an investment
decision.  Using the daily traffic data collected from a large regional bank, we examine the distribution of high-level traffic.  Using
one year as the return period, we estimate the return level of traffic.  The methodology provides many avenues of research in the
future.  First of all, using the extreme value approach, we can examine whether there is any difference in the distribution of high-
level attacks from different types of attacks, such as denial of service, malicious code, etc, as well as from different initiators, such
as internal employees, hackers, or competitors.  Second, the time-effect on the attack level can be examined empirically.  With
the extreme value approach, we can answer whether the maximum attack level is changing over time, and whether there is any
seasonal effect.  Further we can identify factors that influence the maximum attack level.  This information will help to make
strategic investment in IT security more effective.

A similar analysis can also be done for spam e-mail where we can estimate the capacity of the e-mail system to handle the surge
in traffic due to spams.  There too, we will get a system size in terms of packet handling capacity, which in turn will suggest some
dollars as investment.  In future research, we propose to show how our methodology can help size a security system in terms of
packet handling capacity systematically and thereby help estimate the dollar investment that may be required.

There are certain limitations of our paper.  First, we only focus on the discussion using extreme value theory to characterize the
behavior of attacks.  We do not look at how to operationally decide a corresponding security investment level, nor do we convert
it into a real protection level for a system through the combination of various technology and security policy.  This is an interesting
topic that needs further exploration.  Second, in extreme value analysis we view the system attack as an exogenous variable.  The
causal issues of the attack are not explored.  Third, extreme value analysis, being a statistical approach based on past data has
limited application where the security scenario is evolving such that past data are no longer a reliable indicator of what future
situations may entail.
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