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Abstract

Infor mation technol ogy security investment isreceiving increasing attention in recent years. Various methods
have been proposed to determine the effective level of security investment. In this paper, we introduce an
extreme val ue approach to addresstheissues of effective budgeting and investing in I T security. Inour model,
the security status of a system depends on two factors: system security level, which is measured by the level
of security investment, and system attack level, which reflects the security risk with which the system is
confronted. Security investment level is endogenous to the system, while attack level is exogenous. Extreme
value analysisisused to characterize the stochastic behavior of high-level attacks based on the historical data
and to make inferences on future attacks. Based on these inferences, we determine the effective security
solutions and the level of security investment to modulate the likelihood of system failure. For illustration
purposes, we use an extreme value approach to analyze a set of traffic data collected from a regional bank.

Keywords. Information assurance, security investment, two-factor model, extreme value theory, denial of
service (DoY)

I ntroduction

The importance of effective management of information technology security has increased in recent years due to the increasing
frequency and cost of security breaches (Gordon et al. 2005). While high-risk organizations may adopt security at any price, most
commercial organizations have to consider the cost-benefit tradeoff for such an investment. How to efficiently invest in IT
security is abig challenge. Inthe Ernst & Young Global Information Security Survey (Ernst & Young 2003, 2004), budget
constraintsare listed asone of the main obstaclesto effective information security. Quantification tools, if applied prudently, can
assist in the anticipation and control of direct and indirect computer security cost (Geer et al. 2003; Mercuri 2003).

In this paper, we propose an approach based on extreme value theory (Gumbel 1958) for IT security investment. In our model
the security status of a system depends on two factors. system security level, which is measured by the level of security
investment, and system attack level, which reflects the security risk with which the systemis confronted. Attack level istreated
as an exogenous variable that causes system failure, while security investment level is endogenous, preventing system failure,
and is determined by organizations. The difference between security level and the attack level measures the vulnerability of the
system.
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Security and Assurance

Instead of calculating the expected loss value, we apply extreme value theory to study the extreme attack behavior and address
the issues of effective budgeting and investing in IT security. Extreme value theory is one of the most important statistical
disciplinesfor the applied science, and has found applicationsin engineering (Castillo 1988), insurance and finance (Embrechts
et al. 1997), and management strategy (Dahan and Mendelson 2001), aswell asin environment and biomedical research. Extreme
valuetheory quantifiesthe stochastic behavior of aprocessat unusually large (or small) levels. It isconcerned with probabilistic
and statistical questions related to those extreme events. To our knowledge, this is the first paper to apply the extreme value
theory in security investment decisions. With the application of extreme valuetheory, we attempt to addressthefollowing i ssues:

1. What isthe probability distribution of high-level attacks (i.e., what is the probability that an attack over agiven level will
occur during agiven year)?

2. What security investment is needed so that the probability of potential system failure is below a certain threshold?

3. What arethe factors affecting the behavior of high-level attacks? Arethe nature and causes of high-level attacks changing
over time? Isit a seasonal phenomenon?

By answering these questions, we make inferences on future attacks, thus determining the effective security solutions and
investment level to modulate the likelihood of system failure.

Consider defending against denial of service (DoS) as an example. A DoS attack is an incident in which an organization is
deprived of the services of aresource they would normally expect to have. A Web site can occasionally be forced to temporarily
cease operation when accessed by millions of people. High-level traffic is always regarded as a signal of forthcoming DoS
attacks. Suppose that, as part of our design criteriato defend against DoS, the Web server isrequired to be able serve dl traffic
that it islikely to experience within its projected life span, say 1 year (or more years). Daily traffic is monitored and historical
data might be available for the last 2 years. The challenge is to estimate the traffic level that might occur over the next 1 year
giventhe 2-year history. Extreme valuetheory providesaframework enabling such extrapolations. Using extreme valuetheory,
we may not only estimate the distribution of high-level traffic and the occurrence probability of the traffic over a given level
during agiven year, but also answer such questionsaswhat level of traffic will be exceeded with probability 1/365 in agiven day.
In addition, we may identify factorsthat influence the behavior of high-level traffic with proper regression analyses, thus hel ping
us predict thetrend of traffic with the change of environment and time. Based on the characterization of extremely heavy traffic,
we make inferences on future attacks and determine a proper security solution and the level of investment.

The organization of this paper is asfollows. In the next section, after a literature review, we introduce our two-factor security
model. Wethen present the extreme valuetheory. Weapply extremevalue analysisto aset of daily internal traffic datacollected
from aregional bank for illustrative purposes. Finally, we summarize our study and discuss ideas for future research.

Security Risk and Security | nvestment
Related Literature

Several models have been proposed to determine the effective level of security investment. There are basically two approaches
(Cavusoglu 2004).

1. Using traditional risk or decision analysis framework. Generally these models apply a standard result in optimal-control
theoretic certainty equivalence, which impliesthat only the mean val ues (probability-wei ghted average outcomes) of target
variables matter for an optimal policy setting. Gordon and Loeb (2002) proposed an expected benefits of investment in
information security (EBIS) model. Hoo (2000) used a decision analysis approach to evaluate different policies for IT
security. Longstaff et al. (2000) proposed a hierarchical holographic model (HHM) to assess security risks and provide a
model for assessing the efficacy of risk management.

2. Using game theory to model the strategic interactions between the organizations and attackers. Some researchers argue that
IT security can be treated as a kind of game between organizations and attackers. While the organizations try to cover
vulnerabilities in their systems, attackers race in an effort to exploit them. Security investments not only prevent security
breaches by reducing vulnerabilitiesthat attackers can exploit but also act as adeterrent for attackers by making attacksless
attractive (Schechter and Smith 2003). Longstaff et al. (2000)argued that investment in system risk assessment can reduce
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the likelihood of intrusions, which yields benefits much higher than the investment. Cavusoglu, et al. (2004) constructed a
game tree to describe the interaction between organization and hackers.

There are two main issues in these models.

1. The expected loss value or benefit value cannot fully characterize security failures. Usually security failures are low-
probability events, but once realized, failures can bring hugeloss. Theloss may beintangible and not amenable to accurate
estimation.

2. Rationality of hackersis hard to capture as they may be motivated by a different value system. They may be rational, but
not in our terms. They may be driven by motivations other than money. It is hard for usto know their cost function for
attacking the system.

A Two-Factor Security Model

Security risk assessment determines the level of security risk that exists within the organization. Farahmand et al. (2005)
presented a subjective analysis and probability assessment with a damage evaluation of information security incidents. Geer et
al. (2003) introduced atechnique called business-adjusted risk (BAR) for classifying security defects by their vulnerability type,
degree of risk, and potential businessimpact. In this paper, we define attack level a as a metric, which reflects the threats that
an organization confronts, in the same manner as the temperature reflects the relative warmth and cold of a day and the Dow
Jones Index reflectsthe healthiness of the stock market. Attack level may be evaluated daily or monthly based on theinformation
on haclers worms, virug and other attacl incident. A similar idea is used in the Homeland Security Advisory System
(http://Iwww.dhs.gov/dhspublic/display?theme=29). On a daily basis of monitoring and analyzing threat information, the
government may Issueathreat level toretlect the current situation (severe—red; high—orange; elevated—yellow; guarded—Dbl ue;
and low—green). In defending against DoS, organizations may monitor the daily traffic, and regard the level of traffic as the
attack level on systems.

We define security level sasthe ability of an organization to defend its I T systems from failure resulting from a security attack,
such as the capability that an organization has in defending the system again a DoS attack. The system’s security level is
converted from the organization’s security investment i. By investing in IT security (training security staff; buying new
technologies such as an intrusion detection system, a firewall, etc.; timely installation of software patches; and increasing the
system capacity), the organi zation improves its system security level. For simplicity in our discussion, we assume that the level
of IT security investment is equivalent with the security level system in our model.

Schechter (2004) argued that when attacking a software systemisonly asdifficult asit isto obtain avulnerability to exploit, the
security strength of that system isequivalent to the market price of such vulnerability. He suggested that the strength of asystem’s
security should be quantified from the viewpoint of the attacker rather than the defender, and introduces an approach that security
strength can be measured using a market mechanism. In our paper, we use the difference between security level and the attack
level, whichisthetermi-a, to measure the vulnerability of the system. We assumethat both the investment level i and the attack
level a are continuous.

The security status of information systems is affected only by these two factors. We define a system survival function (the
probability function of system failure) (F) depending on the probability that i — a < v, where v is a certain threshold of
vulnerability; that is,

F = probability of failure=prob. (i—a< v) (1.2)
wherei istheinvestment level and a isthe attack level. F increases when aincreases, and decreases when i increases. When
(i—a) increases, F decreases. If we assume v =0, the probability of system failure depends on the probability thati < a (i.e., the
probability that investment level is less than equal to attack level). a (attack level) is exogenous in the function F, while i

(investment level) isendogenous. An organization followsadynamicinvestment strategy, inwhichit makesinvestment decisions
based on attack level a and the status of the system F; that is,

i=i(a,F) (1.2
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Table 1. Notations
Two-Factor Security Model
F System survival function (the probability function of system failure)
i Security investment level
a System attack level
Extreme Value Theory

X Random observations, x is one observation from X
F Common cumulative distribution function F of random observations

M, Block maxima, M, = max{ X,, X,,...X,} , and nisthe number of observations.

H (x) The limiting distribution of exetrma
H, 0,0 Distribution Parameters of Frechet, Weibull, Gumbel, as well as Generalized Extreme Value
distribution (GEV)

& Shape Parameter of GEV

X, Return Level

)‘(p Estimated Return Level

Up Return Period, p is a probability
u High threshold

Y Y = X —u >0,y isan observation from Y

G Generalized Pareto Distribution (GPD)

Eow Distribution Parameters of GPD
Z The maximum level in time period t

In the example of defending against DoS, the system status depends on the system capacity and the daily traffic experienced by
the system. The probability of system failureisdetermined by the probability that the system capacity islessthanthedaily traffic.
Based on the observed daily traffic, the organization determines proper security solutions.

One of the key requirements for such adynamic investment strategy isto accurately capture and model the dynamic behavior of
attacks. With our two-factor security model, it is important for us to know the behavior of extreme attacks for an effective
investment. To defend against DoS, we need to understand the behavior of high-level traffic so that we can make inferences on
future attacks and design proper defense solutions to prevent the system failure caused by extremely heavy traffic. In the
following section, weintroduce extreme val ue theory, which we use to characterize the stochastic behavior of high-level attacks
and toidentify thefactors (including time) that may influence high-level attacks. Table 1liststhe notationsweuseintheanalysis.

ExtremeValue Analysis

Classic Extreme Value Theory

The principal results of extreme value theory concern the limiting distribution of sample extrema (maxima or minima). Since
in our model the probability of system failure depends on the probability of the exceedance of attack over investment and we are
concerned with the behavior of extreme large attacks, such as the distribution of high-level traffic, we will only discuss sample
maxima here. Supposethat X, X,, ... X, isasequence of independent, identically distributed observations, such as n-day daily
trafficin DoS, with acommon cumulative distribution function F, which is not necessarily known. L et the sample maximum be
denoted by M, = max { X;, X,, ... X.} (M, isalso referred asblock maxima). We are interested in the stochastic behavior of M,
We know

Pr{M_ <x} =F(x)" (1.3
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Result (1.3) isof noimmediate interest, sinceit simply saysthat for any fixed x for which F(x) < 1, wehave Pr{M < x} — 0
asngoestoinfinity. For nontrivial limit results we must renormalize: find a, > 0, b, such that

Pr{M”T_b”s x} =F(a,x+b,) > H(X) (1.4)

where H(X) isthe limiting distribution of F(ax + b,). The fundamental theorem of the extreme value theorem provides three
possible distributions for H(x) as follow:

Theorem 1 (Fisher and Tippett 1928): The only three types of non-degenerate distributions H(x) satisfying Equation
(1.4) are

NESAN
Frechet: H(x)= e( 2 if x=u (1.5)
0 otherwise
1 if Xx>u
Weibull: H (X) = 7(#74]” (1.6)
e ? otherwise
Gumbel: HX=€° " —co<x<eoado>0 (17)

The three extreme-value distributions, normalized to mean and unit variance, are shown in Figure 1 (« = 3.9 for Frechet, and «
= -2 for Weibull). The starsindicate the 99" percentile of the distributions respectively.

Frechet: Thisisthe“long-tailed” case. The underlying attack-level distribution H(x) for Frechet distribution has afat tail (e.g.,
1 -H(x) declines as x%). The attack level confronted by organizations has great upside uncertainty.

Gumbel: Thisis the “medium-tailed” case for which 1 — H(X) decreases exponentially for large x. For this type of attack
distribution, there are no specific limitson the attack level, but the attack level isnot likely to betoo high or too low. Most attack
levels are distributed in a central range.

Weibull: Thisisthe“short-tailed” caseinwhich thedistribution hasafiniteendpoint. Organizationsface predictably finiteattack
levels.

-------- Frechet {alpha= 3.9)

s iz bel

Weibull (zlpha=-2)

o e, and  9oth %-ile of Weibull,
Gumbel and Frechet,
respectively

-3.0 -2.0 -1.0 0.0

Figure1l. Densitiesfor the Three Extreme Value Distributions (p =0, 02 = 1)
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There are severa reasons why there may be different probability distributions for the high-level attack. First, it may be dueto
the nature of digital assets. the perceived value of digital assets and their criticalnessto the public and organizations. Terrorism
or engineered attacks are more attracted to high-valued digital assets, or thedigital assetsthat can cause high-level damageto the
public and/or organizations. Second, different attack types may have different distributions. For example, a violation that is
initiated from a finite number of internal usersin an organization is likely to differ from threats from viruses or worms, which
can originate anywherein theworld. Third, the exposure range of the digital assets may also result in different distributions of
the attack level. Thedigital assets connected with the Internet are morelikely to come under high-level attack, while application
systems having limited access in an isolated environment are less likely to be exposed to same level attack. Fourth, due to
negative externality of attack (Camp and Wolfram 2004), the size of the organization and its network becomesafactor. A larger
organizationismorelikely to suffer an attack than asmaller one. However, empirical exploration of these hypothesesis needed.

The three types may be combined into a single generalized extreme value (GEV) distribution (Coles 20014, p. 48).

. —1/&
H(x)=exp{—{1+§(TﬂH } (1.8

where {X 1+ ¢ (X?Tﬂj > O} , 4 isalocation parameter, o > Ois a scale parameter and £is a shape parameter. The limit

1
¢ — 0 corresponding to the Gumbel distribution, & > 0 to the Frechet distribution with & =—, £ < 0 to the Weibull

3

1
distribution with & = —E .

By inversing the equation (1.8), we obtain

U —%{l—[—log(l— p)]ﬂ:}, for £ 20
u—olog{-logl- p)}, for £ =0

where G(x,) =1—p. Incommon terminology, x, isthereturn level associated withthereturn period 1/p, since, to areasonable
degree of accuracy, the level x; is expected to be once every 1/p periods. In other word, X, is exceeded by the period maximum
in any particular period with probability p.

Exceedances over Thresholds

Extremes are scarce, so model estimations of block maximahave alarge variance (Coles 2001a, p. 66). Modeling block maxima
is a wasteful approach to extreme value analysis especially if one block happens to contain more extreme observations than
another. If an entire time series of, say, hourly or daily observations are available, the data may be better used by avoiding the
procedure of blocking. Exceedances over thresholds provide a aternative way to model extreme value by characterizing an
observation as extreme if it exceeds a high threshold.

Theorem 2 (Coles 20013, p. 75; Smith 2003): Consider the distribution of X conditionally on exceeding some high
thresholdu, andlet Y= X-u,and Y> 0. Weknow

F(u+y)-F(u)

F.(y)=Pr{Y<y|Y>0 = 1- F(u)

As U — @ =sup{x: F(x) <1}, wefound alimit distribution,
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F.(Y) = G(y;:0,.9)

where G is generalized Pareto distribution (GPD)

“1re
G(y;0,¢) =1—[1+f§j (19)

defined on {y:y >0 and (1 + &/0) > 0}

The rigorous connection between exceedances over thresholdsand the classic extreme val ue theory was established by Pickands
(1975). Similar with GEV, GPD has three cases depending on the value of the parameter &

+ Thecase £> 0 isthelong-tailed case, for which 1 — G(x) decays at the same rate as x** for large x. Thisis reminiscent of
the usual Pareto distribution, G(X) =1—cx < .

* For ¢£=0, wehave the exponential distribution with mean o asthe limit

G(y;0,0) =1—exp(—%j

o
*  For £<0, the distribution has finite upper endpoint at ——.

3

Replacing Y = X —u into (1.9), now we have

x—u)™M
Pr{X>x|X>u}=(1+§ - j (1.10

It follows that

_1/¢
Pr{ X >x}=gu£1+§x;uj (L.11)

where ¢, = Pr{ X > u} . By inversing the equation (1.11), we obtain

3
u+%[(%‘j —1], for ££0

p = (1.12)
u+a|ogg—“, for £ =0
p
X, isthe (1/p)-observation return level. Inother word, thelevel x, isexpected to be once every 1/p observationsto areasonable
degree of accuracy , or the probability of an observation to exceed x, is p. Suppose that we have one observation for each day.

Then a 365-observation return level isthe same asa 1-year (or 365-day) return level, which isthe level expected to be exceeded
once every 365 observations (or in ayear).

Factor Analysis

In the above discussion, we do not consider that high-level attacks may systemically change through time, or be influenced by
the changes of other environmental factors. In the context of DoS, the network traffic or server load may increase over time,
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becausethe Internet isexpanding and the e-businessismaturing. The organization’ sinternal traffic may be affected significantly
by the number of employees and the number of enterprise applications. The activities of worms, viruses, or hackers may vary
seasonally. In the following discussion, we introduce the models that capture these changes and influences.

Let GEV(y, 0, §) denotethe GEV distribution with parameters u, 0, and ¢ Let Z, denote the maximum attack level intime period

t. To examine whether the maximum attack level changeslinearly over the observation periods, asuitable model for Z, is(Coles
20014, p. 107)

Z, ~GEV(u(t),0,9)
where

:u(t) = ﬂo + ﬁlt
for coefficients 4, and g,.

To identify other factors that might have significant impact on the maximum attack levels, the model can be extended into a
genera form

By
By

B,

where z(t) are the factors to be examined (e.g., the number of employees and the number of enterprise applications in different
time periods).

u(®) =[1 z(1),....z,(t)]

The seasonal model with k seasons s, S,, ..., S, takesthe form

5,
4 =1,0,1,0, 1,01
5,

where |,(t) is the dummy variable having

Ij(t):{lif s(t) =s, 1k

0, otherwise ’

Using these regression models, we are able to identify whether high-level attacks are changing over time, and/or whether there
isany seasonal effect. We also can identify factors that may influence the maximum attack level. Following the samelogic, we
can also test the factors that might have an impact on the parameters « and & The information hel ps us understand the trend of
attacks and thus make strategic investment in IT security more effectively with the change of environment.

An Empirical Analysis

Malicious traffic from self-propagating worms and denia of service attacks constantly threatens everyday operation of an
organization’s Internet systems. Defending networks from these threats demands appropriate tools to conduct comprehensive
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vulnerability assessments of networked systems (Sommers et a. 2004). The high-level traffic above a certain threshold is
perceived asasignal of attack to IT systems. High-level traffic causes network outage and denial of service. Inthissection, we
analyze daily internal traffic collected from alarge regional bank situated in New Y ork state. With 1 year as the return period,
we estimate the return level of traffic. The return level of traffic provides valuable information, enabling us to design proper
defense strategies and adjust the investment level to prevent network outage and denial of service.

We record the internal traffic from January 16, 2004, to March 20, 2005, daily (see Figure 2). The traffic is comprised by a
number of activities, including

« employeelogin/logout, file/printer access, or any other activity done at network level
* inter-server communication (most of which happens automatically or is scheduled)
»  application access information (only some applications are monitored)

Since a series of daily datais available, “ exceedances over thresholds’ is employed in our extreme value analysis. We use the
maximum-likelihood method to estimate the distribution parameters of generalized Pareto distribution (GPD) with the S-PLUS
functions obtained from the website (Coles 2001b). To use exceedances over thresholds, a proper threshold must be selected.
Themeanresidual life plot (Coles2001a, p. 78) isadiagnostic plot drawn beforefitting any model and gives guidance about what
threshold to use. Figure 3 showsthemean residual life plot with approximate 95 percent confidenceintervalsfor thedaily traffic.
The plotisinitialy linear, but shows substantial curvaturein therange of 1.1 x 10°<u< 1.3 x 10°. For u> 1.3 x 10° the plot
is reasonably linear when judged relative to confidence intervals, suggesting we set u = 1.3 x 10%. (We aso did a sensitivity
analysiswithu= 1.5 x 10°, theresultsdo not have much difference.) The choiceleadsto 149 exceedencesin the seriesof length

430. Thus §,=149/430=0.347 with var(¢,) =5.27x10™*. The maximum likelihood estimators of GPD parameters are

(o, f) =(281972.2,0.09), with standard error 33901.08 and 0.09 respectively. The 95 percent confidenceinterval for £is[-0.09,

0.26] (Figure 4) . Therefore, the maximum likelihood estimate corresponds to an unbounded distribution, although the evidence
is not overwhelming and O lies inside the 95 percent confidence interval.

Diagnostic plots for the fitted GPD are shown in Figure 5. Both the set of the probability plot and of the quantile plot are near
linear, showing thevalidity of thefitted model. Thereturnlevel curve asymptotesto aninfinitelevel. The corresponding density
estimates are roughly consistent with the histogram of the data, but not perfect.
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3,000,000
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Figure 2. Daily Traffic from January 16, 2004, to March 20, 2005
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The GPD model provides a direct method for risk estimation using return level. In our analysis, we use 1 year as our return
period. Sincewe have one observation for each day, the 1-year return level correspondsto the 365-observation return level with

p=1/365. As f > 0, weusethefirst part of equation (1.12) to calculate the return level and have )?p =3.01x10°. Figure6

plotsthe profilelog-likelihood for the 1-year return level. The 95 percent confidenceinterval is[2.6 x 10%, 4.0 x 10°]. Thereturn
level of traffic shows the level of investment we should match for the next year such that the exceeded probability of traffic

at )?p =3.01x10° innext year isless than 1/365 with 95% confidence.

In our model, we have (i - a) asameasure of vulnerability, wherei isthe investment factor and a isthe attack factor. Inthe data
analysis, aisthe packet traffic rate, whilei isthe capacity rate in packets per second that the system can handle. Estimated return

level of traffic )A(p in the data analysis provides an extremal value estimate of packet traffic rate to which the system is subject,
which in turn gives the value of attack factor a.

Taking this value as the system capacity i, and assuming that the security system is a simple serial system of three elements—
connection to the Internet, firewall/router, and the server—we can then specify the bandwidth of the pipe that is connecting to
thefirewall, thefirewall/router’ sfiltration capacity, and the capacity of the server operating systemto handlethat TCP/I Ptraffic,
all in terms of packets per unit of time. Given these capacities, we can estimate what the cost of such a security systemislikely
to be, and decide whether to increase or decrease investment by comparing with current configurations. We may also introduce
intrusion detection systems (IDS) or reconfigure the existing IDS to properly protect the system.

Conclusion

In this paper, we introduce an extreme value approach for security investment. Compared with other methods on determining
the effective level of security investment, our model does not need to cal culate the expected loss due to system failure, nor make
assumptions relating to hackers' behavior. It isadynamic strategy for security investment. With extreme value analysis, the
distribution of high-level attacksisestimated. We may then determine thereturn level of attacksfor acertain return period. The
return level of attacks provides important information for us to design a proper defense capability and make an investment
decision. Usingthedaily traffic data collected fromalargeregional bank, weexaminethedistribution of high-level traffic. Using
oneyear asthereturn period, we estimate the return level of traffic. The methodology provides many avenues of research in the
future. First of al, using the extreme value approach, we can examine whether thereisany differencein the distribution of high-
level attacksfrom different types of attacks, such asdenial of service, maliciouscode, etc, aswell asfrom differentinitiators, such
asinternal employees, hackers, or competitors. Second, the time-effect on the attack level can be examined empirically. With
the extreme val ue approach, we can answer whether the maximum attack level is changing over time, and whether thereis any
seasonal effect. Further we can identify factors that influence the maximum attack level. Thisinformation will help to make
strategic investment in I T security more effective.

A similar analysis can also be done for spam e-mail where we can estimate the capacity of the e-mail system to handle the surge
intraffic dueto spams. Theretoo, wewill get asystem sizeintermsof packet handling capacity, whichin turnwill suggest some
dollarsasinvestment. In future research, we propose to show how our methodol ogy can help size a security system in terms of
packet handling capacity systematically and thereby help estimate the dollar investment that may be required.

There are certain limitations of our paper. First, we only focus on the discussion using extreme value theory to characterize the
behavior of attacks. We do not ook at how to operationally decide a corresponding security investment level, nor do we convert
itintoareal protectionlevel for asystemthrough the combination of varioustechnology and security policy. Thisisaninteresting
topic that needsfurther exploration. Second, in extreme value analysiswe view the system attack as an exogenousvariable. The
causal issues of the attack are not explored. Third, extreme value analysis, being a statistical approach based on past data has
limited application where the security scenario is evolving such that past data are no longer areliable indicator of what future
situations may entail.
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