
Association for Information Systems
AIS Electronic Library (AISeL)

All Sprouts Content Sprouts

11-20-2008

A Teleological Process Theory of Software
Development
Paul Ralph
University of British Columbia, paulralph@gmail.com

Yair Wand
University of British Columbia, yair.wand@ubc.ca

Follow this and additional works at: http://aisel.aisnet.org/sprouts_all

This material is brought to you by the Sprouts at AIS Electronic Library (AISeL). It has been accepted for inclusion in All Sprouts Content by an
authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

Recommended Citation
Ralph, Paul and Wand, Yair, " A Teleological Process Theory of Software Development" (2008). All Sprouts Content. 229.
http://aisel.aisnet.org/sprouts_all/229

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fsprouts_all%2F229&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sprouts_all?utm_source=aisel.aisnet.org%2Fsprouts_all%2F229&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sprouts?utm_source=aisel.aisnet.org%2Fsprouts_all%2F229&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sprouts_all?utm_source=aisel.aisnet.org%2Fsprouts_all%2F229&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sprouts_all/229?utm_source=aisel.aisnet.org%2Fsprouts_all%2F229&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Working Papers on Information Systems ISSN 1535-6078

A Teleological Process Theory of Software Development

Paul Ralph
University of British Columbia, Canada

Yair Wand
University of British Columbia, Canada

Abstract
This paper presents a teleological process theory of software design in organizations. The
proposed theory is compared to the Function-Behavior-Structure (FBS) Framework â�� a
leading process theory of engineering design proposed by John Gero. A positivist, multiple
case study methodology to empirically compare the veracity and predictive power of the two
theories described. Results from a pilot case suggest that the observed behaviors of the
development team are better described by the proposed theory than by the FBS Framework.

Keywords: Software Development, Process Theory, Science of Design, Case Study

Permanent URL: http://sprouts.aisnet.org/8-23

Copyright: Creative Commons Attribution-Noncommercial-No Derivative Works License

Reference: Ralph, P., Wand, Y. (2008). "A Teleological Process Theory of Software
Development," Proceedings > Proceedings of JAIS Theory Development Workshop .
Sprouts: Working Papers on Information Systems, 8(23). http://sprouts.aisnet.org/8-23

 Sprouts - http://sprouts.aisnet.org/8-23

http://creativecommons.org/licenses/by-nc-nd/3.0/

JAIS-TDW08-123

A TELEOLOGICAL PROCESS THEORY OF SOFTWARE
DEVELOPMENT

Paul Ralph and Yair Wand

Sauder School of Business, University of British Columbia

paulralph@gmail.com, yair.wand@ubc.ca

Abstract

This paper presents a teleological process theory of software design in organiza-

tions. The proposed theory is compared to the Function-Behavior-Structure (FBS)

Framework – a leading process theory of engineering design proposed by John

Gero. A positivist, multiple case study methodology to empirically compare the

veracity and predictive power of the two theories described. Results from a pilot

case suggest that the observed behaviors of the development team are better de-

scribed by the proposed theory than by the FBS Framework.

Keywords: Software Development, Process Theory, Science of Design, Case Study

1 Introduction

Software development and maintenance comprise a substantial economic activity: in 2006, the

500 largest software companies employed 2,914,480 and accrued revenues of $394 billion

(Desmond 2007). Yet, software projects have seemingly high failure rates. It is estimated that in

JAIS-TDW08-123

1
 Sprouts - http://sprouts.aisnet.org/8-23

2004, 18% of projects failed outright and 53% of projects were “challenged,” i.e., were delivered

over budget, late, or with a reduced feature set, (Standish Group 2006). One factor that may con-

tribute to project success is the process by which software is created (Baskerville et al. 1992,

Wynekoop and Russo 1995).

Truex et al. (2000) argues that “The history of information systems development is typically in-

terpreted as the history of methods for systems development,” (p. 56, emphasis added). Devel-

opment has traditionally been conceived of as a series of phases, each phase dominated by a par-

ticular activity; e.g., in the waterfall method (Royce 1970), phases include “analysis,” “design,”

“coding,” and “testing.”1 Later perspectives on development included many of the same activity-

centric phases organized into different sequences (e.g. the Spiral Model, discussed below), and

the replacement of specific activity sequences by values and practices (i.e. Agile methods, dis-

cussed below).

In practice, however, the software developer is faced with a myriad of methodical choices: s/he

can choose to follow one method completely or partially, combine aspects of two or more differ-

ent methods, or follow no method at all. In this sense, the software developer enacts some, possi-

bly unique, process. For the purposes of this paper, a software development process is a sequence

of actions taken by an agent to create or modify a software product. This process may or may not

resemble the particular set of prescriptions associated with a known software development

method, which is a set of prescriptions regarding how to create or modify software. The Rational

Unified Process (RUP) and Extreme Programming (XP) are methods. What a team of developers

1 However, design “begins when the design agent begins specifying the properties of the object, and stops when the
agent stops” (Ralph and Wand 2008). Therefore, whether software design begins at problem identification or follow-
ing requirements analysis, and ends before testing or continues through maintenance, is an empirical question.
Hence, this paper examines research on both design and, more generally, development.

JAIS-TDW08-123

2
 Sprouts - http://sprouts.aisnet.org/8-23

actually does is a process. This distinction is not standard; it is adopted to clarify the discussion

in the next section.

From the perspective of the software developer, neither existing methods nor existing process

models explain the full spectrum of software development phenomena (see Section 2, Baskerville

et al. 1992, 2004, Truex et al. 2000, Wynekoop and Russo 1995). This raises our primary re-

search question: how do people develop software?

One way to address this question is to develop and test a process theory of software develop-

ment. A process theory is simply an explanation of how, and possibly why, something happens. A

process theory’s quality is determined by the accuracy of this explanation, i.e., it’s empirical ve-

racity. For example, in the case of software development, a process theory could explain the fol-

lowing transition. At time t0, domain d contains an agent who intends to create a software prod-

uct. At time t1, d contains an agent and a software product. The proximate cause of this transition

is the agent’s intention to create the software; however, a process theory is needed to explain how

the agents intention leads to a particular software product. The purpose of this paper is to de-

velop a process theory that accurately represents how the an agent develops a software product.

By “develop,” we mean creating a new software from scratch or by modify existing software.

If the software development process can be described theoretically, it could be useful for devel-

oping, refining and evaluating software design methodologies, tools and practices, from the per-

spectives of both researchers and practitioners. Additionally, a theoretical understanding of this

process could form an essential component of Simon’s (1996) science of design curriculum.

JAIS-TDW08-123

3
 Sprouts - http://sprouts.aisnet.org/8-23

To this end, Section Two reviews existing literature that attempts to prescribe or explain the

process of software development. Section Three describes the genesis of a process theory of

software design and situates its concepts and relationships in existing literature. Our empirical

approach (a multiple-case design) for evaluating the proposed process theory is elucidated in

Section Four. Section Five describes a pilot case we undertook to validate our empirical ap-

proach and summarizes its results. We conclude with a discussion of the possible contributions of

the new theory (Section Six).

2 The Quest for a Theory of Software Design

We reviewed the literature on software methods and processes with two goals in mind. The pri-

mary goal was to identify an empirically tested theory of software development that could guide

research. If such a theory was not available, the secondary goal was to identify theories, models

or methods that could be co-opted as or adapted into a theory of software development. Since no

tested theory of software development was found, we review the methods and process models we

we identified and suggest why each is insufficient to describe the full spectrum of software de-

velopment phenomena.

2.1 Common Software Development Process Models

Code-and-fix. The code-and-fix model (cf. Boehm 1988) is perhaps the simplest software de-

velopment process model. In this model, the developer iterates between writing code and fixing

code, where fixing code includes eliminating syntactic and logical errors and re-factoring. While

coding and fixing code may be essential to software development, this model obviously has lim-

ited potential to explain design choices, team interactions, etc.

JAIS-TDW08-123

4
 Sprouts - http://sprouts.aisnet.org/8-23

Waterfall. The waterfall model (Royce 1970) is a label given to several models that share a

common core of activities, including requirements elicitation, systems design, coding, implemen-

tation and maintenance. Ironically, the term “waterfall model” quickly came to refer to the no-

backtracking version that Royce was criticizing rather than the more iterative model he was pro-

posing. Regardless of the exact sequence prescribed, the waterfall model does not effectively ex-

plain the process engaged in by an agile development team (cf. Beck 2005), in which the re-

quirements and the design emerge through the development process.

Spiral. The spiral model (Boehm 1988) combines many of the activities from the waterfall

model with the iterative nature of the code-and-fix model and a predominant focus on risk. A

team using the spiral model iterates between three basic activities: risk analysis, prototyping and

planning, with requirements analysis, design, testing and implementation interspersed between

them, depending on the sophistication of the prototype. Like the code and fix and waterfall mod-

els, the spiral model is comprised of a set of specific prescriptions about how developers ought to

design software. Thus, it can be used to explain only the behavior of developers who follow

these specific prescriptions.

Soft Systems Methodology. “Soft Systems Methodology (SSM) is an organized way of tackling

social situations perceived as problematical. It is action-oriented. It organizes thinking about

such situations so that action to bring about improvement can be taken,” (Checkland and Poulter

2006, p. xv). While SSM is not specific to software development, it can be applied in this con-

text. The SSM practitioner makes models of purposeful activity as perceived by different people

with different worldviews and uses them to structure discussion in which desirable and feasible

JAIS-TDW08-123

5
 Sprouts - http://sprouts.aisnet.org/8-23

changes are identified. Again, SSM can be used to explain only the behavior of developers who

adopt it.

RUP and USP. Some software development methods, such as the Rational Unified Process

(RUP, Kruchten 2003) and The Unified Software Process (USP, Jacobson et al. 1999), contain

specific process models. The activities of these models overlap with the steps of the waterfall

method; however, the sequencing is more sophisticated with many activities occurring in paral-

lel. Again, these models explain only the behavior of developers who adopt them.

Agile Methods. In extreme programming (Beck 2005) and other agile methods (cf. Abrahams-

son et al. 2002), a precise activity sequence is abandoned in favor of a set of guiding values (e.g.

simplicity), principles (e.g. accepting responsibility) and practices (e.g. pair programming). The

software, and thereby the software design, are assumed to emerge from the actions of competent

people employing these values, principles and practices. Agile methods cannot greatly inform

theory generation, because the prescriptions comprising agile methods do not include a process

model.

Summary. Each of the models discussed above is composed of a set of prescriptions about how

developers ought to create software. Although an exhaustive list of methods is not provided, the

above sample of methods is intended to demonstrate the analytical generalization prescriptions

for how development ought to occur cannot effectively represent the apparent diversity of soft-

ware development behaviors. However, these models were not intended to describe all software

development, we are not criticizing them by pointing this out, but merely evaluating whether

they can be co-opted for a different purpose. Moreover, these models and methods can be useful

as test cases for evaluating a process theory of software development. For example, since it is

JAIS-TDW08-123

6
 Sprouts - http://sprouts.aisnet.org/8-23

possible for a developer to use RUP to create software, a good process theory would be capable

of describing the process implied by RUP.

2.2 The Case Against Methods

In attempting to explain software development, it is tempting to assume that software develop-

ment is inherently a controlled, methodical process. This section presence evidence that some

software development may neither use a method nor be methodical.

Many studies have suggested that software development methods are neither effectively nor ex-

tensively used (Avgerou and Cornford 1993, Bansler and Bødker 1993, Dobing and Parsons

2006, Whitley 1998). More specifically, in a study of “a large scale system development effort,”

Zheng et al. 2007 found that “home-gown methods and ad hoc activities appear to dominate the

day-to-day practices of systems development,” (p. 1). Turner (1987) found that similar methods

applied in similar settings led to contrasting results. Bansler & Bødker (1993) found that devel-

opers may claim to follow a method while practically ignoring it. Furthermore, some evidence

indicates that methods can be unsuitable for certain individuals (Naur 1993). Baskerville et al.

(1992) demonstrated how organizations can change so quickly that long-term information

systems development methods become ineffective. Meanwhile, Parnas and Clements (1986) ar-

gue that methodologies are “faked” and Nandhakumar and Avison (1999) argue that methodolo-

gies are used as “fiction” to make sense of actual practice. Truex et al. (2000) summarize the ar-

gument by asking “are such methods merely unattainable ideals and hypothetical “straw men”

that provide normative guidance to utopian development situations?” (p. 53).

More fundamentally, Truex et al. (2000) argues that “the concept of method ... occupies an ex-

tremely privileged status in formal information systems development thought even though its

JAIS-TDW08-123

7
 Sprouts - http://sprouts.aisnet.org/8-23

origin is unstated” (p. 54), while “the possibility that amethodical development might be the

normal way in which the building of these systems actually occurs in reality,” has “Almost en-

tirely elud[ed] the systems development literature,” (p.58, emphasis added). “Amethodical

systems building implies management and orchestration of systems development without a pre-

defined sequence, control, rationality, or claims to universality. An amethodical development ac-

tivity is so unique and unpredictable for each information systems requirement that even the cri-

teria of contingent development methods are irrelevant” (Truex et al. 2000, p. 54). Baskerville et

al. (1992, 2004) found evidence of amethodical systems development in several case studies of

software developers. The developers were led by practices and principles, similar to those of ag-

ile development; however, agile development “may be better described as “methodical-lite”

rather than amethodical,” (Zheng et al. 2007, p. 2).

In summary, the above evidence further supports the conclusion of §2.1 that some development

phenomena cannot be explained using existing software development process models. Further-

more, this evidence indicates that not all software development is as structured as it may appear

from the software development literature, or even from observing practice itself.

2.3 Explanatory Models of Design

Our review of the literature also revealed general models of design (not specific to software).

Unlike the models discussed above, these are process theories intended to describe and explain

how design occurs in practice.

Alexander (1964) differentiates form (the object being designed) from context (the object’s envi-

ronment) and argues that a design’s quality is a result of the fit between its form and context. He

then suggests three classes of design process. In the “unselfconscious process,” the designer di-

JAIS-TDW08-123

8
 Sprouts - http://sprouts.aisnet.org/8-23

rectly manipulates tangible objects to eliminate misfits. (This does not apply to software design

because software is intangible.) In the “selfconscious process,” (Figure 1) the designer compares

his or her mental pictures of form and context to eliminate misfits mentally before or while im-

plementing the artifact. In the unnamed third process, the designer generates formal, written pic-

tures of his or her mental pictures to structure the design and eliminate biases.

C1

C2 F2

F1 Actual World

Mental Picture

Notes
C = context
F = form
arrows indicate transitions

Figure 1: Self-Conscious Design Process (adapted from Alexander 1964)

Either of the latter two processes may describe software design. A potential criticism of Alexan-

der’s models, however, is that they are too simple to capture the full phenomena of software

design. For example, software development may include testing the software product against a

set of requirements, an activity difficult to map onto Alexander’s models. Therefore, although

Alexander’s models cannot serve as a process theory of design in their current form, they may

inform such a theory. A second criticism is that the transitions are neither well defined nor well

understood. Despite these criticisms, Alexander’s models contain important insights that may

inform a process theory of software design.

Maher et al. (1995) suggest a process model of creative design (Figure 2) characterized by co-

evolution of problem and solution spaces; i.e., the designer iterates between his or her ideas

about the problem space (context) and solution space (form), revising both in parallel. Their

principle result (co-evolution) has been supported by a protocol study of industrial designers

JAIS-TDW08-123

9
 Sprouts - http://sprouts.aisnet.org/8-23

(Dorst and Cross 2001) and a similar study of software designers using object-oriented methods

(Purao et al. 2002).

Notes
P(t) = problem at time
t; S(t) = situation at a
time t; dashed line
indicates situation
refocusing problem;
diagonal downward
movement indicates a
search process

 Figure 2: Problem-Design Exploration Model (adapted from Maher et al. 1995)

Maher et al.’s model is somewhat consistent with Alexander’s models in the sense that both sepa-

rate the problem space or context from the solution space or form, and focus on the transitions

between. Furthermore, Maher et al.’s coevolution concept is similar to the mental picture com-

parison in Alexander’s “self-conscious process.” One criticism of Maher et al.’s model is possi-

ble: while designing software may involve a search process, we can find examples in which

search is not the primary activity. For instance, in designing the first version of the online social

networking application Facebook, creator Mark Zuckerberg was driven by an inspiration for an

online community rather than a conceptualization of the problem (Kessler 2007). Again, while

Maher et al.’s model is not adequate to describe the full scope of software development, it con-

tains important insights that may inform a process theory of software design.

Based on a survey of the design literature, Ralph and Wand (2008) define to design as “to create

a design, in an environment (where the designer operates),” where a design is “a specification of

JAIS-TDW08-123

10
 Sprouts - http://sprouts.aisnet.org/8-23

an object, manifested by an agent, intended to accomplish goals, in a particular environment, us-

ing a set of primitive components, satisfying a set of requirements, subject to constraints.” They

further present the black-box model of the design process shown in Figure 3. This seems broadly

consistent with the conception of design espoused by both Alexander and Maher et al.

Specification
of ObjectDesign

Requirements

Constraints

Primitives

Environment

Intentions

Agent

enacted by

Goals

Type of Object

input to

modified based on design

always available before design begins

might not be available before design begins

results in

evolve into

Figure 3. Conceptual Model of Design Process (adapted from Ralph and Wand 2008)

Gero (1990) suggests an engineering design meta-process, the Function-Behavior-Structure

(FBS) Framework. The FBS Framework (Figure 4) describes how engineers design products us-

ing five intermediate artifacts (Table 1). It includes eight possible transformations of or opera-

tions on these artifacts (Table 2). In this model, all design proceeds from the required set of func-

tions to a design description that is sufficiently detailed to make manufacturing possible.

The FBS Framework purports to describe how engineering design occurs (Vermaas and Dorst

2007). If one allows that software development is a kind of engineering design, then it seems

reasonable to hypothesize that the FBS Framework can be used to describe software develop-

JAIS-TDW08-123

11
 Sprouts - http://sprouts.aisnet.org/8-23

ment. Kruchten (2005) makes a similar argument and demonstrates how can be “cast” in the FBS

Framework.

Notes

—> = Transformation,

- - > = Occasional Transformation

<—> = Comparison

Figure 4. The Function-Behavior-Structure-Framework (adapted from Gero 1990)

Table 1. Artifacts of the FBS Framework (adapted from Gero 1990)

Symbol Meaning

F “the expectations of the purposes of the resulting artefact,” (p. 2)

S “the artefact's elements and their relationships,” (p. 2)

Be the expected, or desired, behavior of the structure

Bs “the [predicted] behavior of the structure,” (p. 3)

D a graphically, numerically and/or textually represented model that transfers “sufficient
information about the designed artefact so that it can be manufactured, fabricated or
constructed,” (p. 2)

However, several limitations of the FBS Framework (applied to software development) are ap-

parent. First, it is not clear how the software structure, design description and the software prod-

uct are distinguishable. Second, the FBS Framework assumes that designers are capable of pre-

dicting the behavior of an artifact from its structural description (whether developers are capable

of this is an empirical question). Third, though it includes reformulation of the set of functions

based on the structure, it does not describe where the functions come from. To its credit, how-

JAIS-TDW08-123

12
 Sprouts - http://sprouts.aisnet.org/8-23

ever, the FBS Framework is significantly more specific about the artifacts and processes of soft-

ware design than Alexander’s or Maher et al.’s models.

Table 2. Operations/Transformations of the FBS Framework (from Gero 1990)

Activity Definition or Description Inputs Outputs

Formulation deriving expected (desired) behaviors from the set of
functions

F Be

Synthesis “expected behavior is used in the selection and
combination of structure based on a knowledge of the
behaviors produced by that structure,” (p. 3)

Be S & Be

Analysis the process of deriving the behavior of a structure S Bs

Evaluation comparing predicted behavior to expected behavior and
determining whether the structure is capable of
producing the functions

Bs &
Be

Differences
Between Bs
and Be

Reformulation changing the set of functions or expected behaviors
based on the structure and its predicted behaviors

S, Bs
& Be

F, Be

Production of
Design
Documentation

transforming the structure into a design description that
is suitable for manufacturing

S D

Catalog Lookup selecting a known structure that performs the required
function

F S

Gero (2002) extends the FBS Framework, creating the (more complex) Situated FBS Frame-

work. The Situated FBS Framework contains all the artifacts in the original, simpler model.

Therefore, if these artifacts are not supported by an empirical test, both the original and situated

FBS Framework are not supported. Given the limitations of the FBS Framework discussed

above, it seems reasonable to test the original first and leave examination of the Situated FBS

Framework to future work.

In summary, while each of the process models discussed in this section provides important in-

sights for developing a (descriptive) process theory of software development, none is adequate to

describe and explain the full spectrum of design phenomena in its current form. Therefore, it may

JAIS-TDW08-123

13
 Sprouts - http://sprouts.aisnet.org/8-23

be helpful to devise a new process theory. Moreover, the conceptualizations of design presented

by Alexander (1964), Maher et al. (1995) and Ralph and Wand (2008) all seem compatible, while

Gero’s (1990) FBS Framework embodies an alternative view.

3 The Generalized Teleological Theory of Software Development (GTTSD)

To create a process theory for software design, we can draw on several resources including the

models discussed in the previous section and the management literature on process theories.

3.1 A Teleological Basis

Van de Ven and Poole (1995) identify four types of process theories: life cycle, dialectic, evolu-

tionary, and teleological, and argue that all four types can be applied to the same phenomena.

The Software Development Life Cycle model (Bourque and R. Dupuis 2004) represents an exist-

ing life cycle process theory of software development. However, this view has been considered

harmful for more than a quarter of a century (McCracken and Jackson 1982). In a dialectic proc-

ess model, “stability and change are explained by reference to the balance of power between op-

posing entities,” (Van de Ven and Poole 1995, p. 517). This perspective would be problematic in

describing agile software development which is based on the principle that the two main entities,

Business and Development, do not oppose each other (Beck et al. 2001, Beck 2004). The evolu-

tionary perspective might apply to either design done by evolution (e.g., using an evolutionary

algorithm to design a processor chip), or to the success or adoption of a population of software

products. However, explaining the development of a single product by a human design team

might stretch the evolutionary perspective – it is unclear here what the population is or how indi-

viduals expire or survive and proliferate. In summary, applying three of the four types of process

theories (life cycle, dialectic and evolutionary) to software development seems problematic.

JAIS-TDW08-123

14
 Sprouts - http://sprouts.aisnet.org/8-23

Merriam-Webster defines teleological as “exhibiting or relating to design or purpose especially

in nature.”2 In a teleological theory, an agent “constructs an envisioned end state, takes action to

reach it and monitors the progress,” (p. 516). In other words, teleological theories explain the

behavior of agents taking steps to reach a purpose or goal. Prima facie, this is consistent with

software development: the agent is the development team; the end state involves a software

product; the development team takes actions such as coding and testing and the project manager

monitors performance. Furthermore, agents and goals are essential aspects of design (Alexander

1964, Churchman 1971, Eekels 2000, van Lamsweerde 2004, Ralph and Wand 2008). Moreover,

the above characterization of teleological theories is consistent with Alexander’s self-conscious

process, Maher et al.’s co-evolutionary process and Gero’s FBS Framework (described in §2.3).

Therefore, it seems plausible that software development may be effectively described by a teleo-

logical process theory.

3.2 Constructing a Process Theory

In this section we present the rationale behind the construction of the proposed teleological proc-

ess model of design. We begin with an intuitive explanation of the theory’s genesis and conclude

with more precise definitions of each concept and relationship.

Alexander’s (1964) self-conscious process (Figure 1, §2.3) provides a possible starting point.

The first step is to give the four symbols and three relationships more descriptive names (Figure

5). Starting with the symbols, we use “Environment” for C1 and “Design Object” for F1. The

labels for C2 and F2 follow Alexander’s “Mental Picture of” diction. The relationship wherein

the mental picture of the design object is realized in the actual design object is denoted “Imple-

2 http://www.merriam-webster.com/dictionary/teleological

JAIS-TDW08-123

15
 Sprouts - http://sprouts.aisnet.org/8-23

mentation” for consistency with previous literature on software design (e.g., Beck 2005, Bourque

and Dupuis 2004, Kruchten 2003). The relationship wherein the mental pictures of the environ-

ment and design object coevolve (as in Maher et al.’s theory) is labeled “Iterative Mutual Re-

finement.” This draws attention both to iteration, which is central to software development (Ber-

ente and Lyytinen 2006) and to the idea that the mental pictures are refined mutually, that is, the

mental picture of the design object is refined based on the mental picture of the environment, and

vice versa. “To convert a problematic situation to a problem, a practitioner must … make sense

of an uncertain situation that initially makes no sense,” (Schön 1983, p. 40). The process by

which the designer organizes perceptions of the environment to create a meaningful mental pic-

ture of the environment is labeled Sensemaking. Sensemaking refers to “The process by which

individuals (or organizations) create an understanding so that they can act in a principled and in-

formed manner,” (Glossary of Sensemaking Terms, 2008).

Mental
Picture of

Environment

Sensemaking

Mental Picture
of Design

Object

Implementation

Design Object

Iterative Mutual
Refinement

Environment

Figure 5: Teleological Theory of Software Design - Step 1

JAIS-TDW08-123

16
 Sprouts - http://sprouts.aisnet.org/8-23

Since the activities in the model are clearly executed my some agent, we add the design agent

explicitly (Figure 6). This requires a refinement of the environment construct: the environment of

the designer is not necessarily equivalent to that of the design object, especially if the designer is

a person and the design object is software: one operates in a physical world, the other in a virtual

world. The Design Agent is situated and operates in the Designer’s environment. The Design Ob-

ject exists in the Design’s Environment, which (we assume) is also part of the agent’s environ-

ment (otherwise the designer would not be capable of perceiving it).

Mental
Picture of

Environment

Sensemaking

Designer's
Environment

Design
Agent

Mental Picture
of Design

Object

Implementation

Design Object

Iterative Mutual
Refinement

Design's
Environment

engages in

engages in

engages in

Figure 6: Teleological Theory of Software Design - Step 2

Next, we add two further concepts integral to software development: goals and primitives. Goals,

of course, are also central to teleological process theories. Primitives are the objects from which

the design object is constructed (Ralph and Wand 2008). Finally, since each activity involves

several concepts, we give labels to the connecting lines to increase readability and provide more

specific semantics. This results in The Generalized Teleological Theory of Software Development

(GTTSD) shown in Figure 7.

JAIS-TDW08-123

17
 Sprouts - http://sprouts.aisnet.org/8-23

Mental
Picture of

Environment

Sensemaking

Goals

Designer's
Environment

Design
Agent

Mental Picture
of Design

Object

Implementation

Design Object

Primitives

Iterative Mutual
Refinement

Design's
Environment

engages in

engages in

engages in

creates/modifies

uses

realizes

situated in

situated in

refinesrefines

organizes

perceives

Figure 7. The Generalized Teleological Theory of Software Development

Explanation of Symbols: clouds indicate domains; diamonds indicate process; rectangles indicate
objects; rounded rectangles indicate mental objects; stickfigures indicate agents.

To clarify, the GTTSD contains only three activities: Sensemaking, Iterative Mutual Refinement

and Implementation. The labels on the lines connecting these activities to other concepts simply

add details of how the concepts relate. For instance, the design agent engages in Sensemaking by

organizing perceptions of the environment into a mental picture of the design.

Since the Mental Picture of the Design Object is an input to Implementation, the Iterative Mutual

Refinement process, which initially creates the Mental Picture of the Design Object, must pre-

cede Implementation. Similarly, Sensemaking, which creates the Mental Picture of the Environ-

ment, must precede Iterative Mutual Refinement. However, once the initial mental pictures have

been formed, the activities can occur in any order.

The GTTSD is not a comprehensive enumeration of all activities in which a designer might en-

gage. For instance, designers might create formal models of their mental pictures (Alexander

JAIS-TDW08-123

18
 Sprouts - http://sprouts.aisnet.org/8-23

1964). To create a parsimonious theory, we instead focused on the core development activities –

those that we hypothesize are inherent to software development. Table 3 defines each of the con-

cepts and relationships in the GTTSD.

Table 3: Concepts and Relationships of the GTTSD

Concept Meaning Source

Design Agent the entity (e.g. group or team) that creates, or attempts
to create, the design

Alexander (1964), Eek-
les (2000), Ralph and
Wand 2008

Design’s Envi-
ronment

the context or scenario in which the design object is in-
tended to be exist or operate

Alexander (1964), Ralph
and Wand 2008,

Designer’s En-
vironment

the totality of the physical, organizational and concep-
tual surroundings of the designer

Checkland (1999), Ralph
and Wand 2008

Design Object a (possibly incomplete) manifestation of the mental pic-
ture of the design, composed of primitives, in the de-
sign’s environment

Alexander (1964), Eek-
les (2000), Ralph and
Wand 2008

Goals optative statements (which may exist at varying levels
of abstraction) about the effects the design object should
have on its environment. Goals are part of the Design
Agent’s Mental Picture of the Environment.

Churchman (1971), van
Lamsweerde (2004),
Ralph and Wand 2008

Implementation the process, situated in the designer’s environment, by
which the design agent realizes its mental picture of the
design as a design object, composed of primitives, in the
design’s environment

Alexander (1964), Bour-
que and Dupuis (2004),
Royce (1970)

Iterative mutual
refinement

the process, situated in the designer’s environment, by
which the design agent simultaneously refines its Men-
tal Picture of the Design Object based on its Mental Pic-
ture of the Environment, and vice versa

Alexander (1964), Dorst
and Cross (2001), Maher
et al. (1995), Purao et al.
(2002), Schön (1983)

Mental Picture
of Environment

the collection of all beliefs, held by the design agent,
regarding the designer's environment

Alexander (1964)

Mental Picture
of Design

the collection of all beliefs and decisions, held or made
by the design agent, concerning the design object

Alexander (1964)

Primitives the set of elements from which the subject may be com-
posed

Ralph and Wand (2008)

Sensemaking the process by which the agent perceives its environ-
ment and organizes these perceptions to create and re-
fine its mental picture of that environment

Schon (1983), Weick
(1995), Weick et al.
(2005)

JAIS-TDW08-123

19
 Sprouts - http://sprouts.aisnet.org/8-23

4 Case Study Design

The original research question was, how is software designed? This can now be operationalized

as, to what extent does the Generalized Teleological Theory of Software Design explain software

design practice? To determine how well the proposed process theory describes real-world devel-

opment behavior, a case study approach is preferable for three reasons (Yin 2003):

1. We are interested in how things are done in practice.

2. The research focuses on contemporary events.

3. To observe real development behavior, we cannot apply behavioral manipulation.

Furthermore, the case study approach can be strengthened in at least three ways (Yin 2003):

1. testing rival theories (§4.1)

2. investigating multiple cases (§4.2)

3. running a pilot case (§5)

4.1 The FBS Framework: A Rival Theory

One hazard of a case study approach is the possibility of cherry-picking evidence to support the

theory being tested. To avoid this weakness, we propose testing the GTTSD against a rival proc-

ess theory; i.e., an alternative explanatory model of software development phenomena. For this

comparison to be meaningful, the rival theory must be plausible and not simply a rhetorical

strawman selected to highlight the strengths of the GTTSD.

A number of possible alternative explanations were discussed in Section 2. In selecting an ap-

propriate rival theory, we can immediately eliminate all prescriptive process models and methods

because these models obviously do not explain all software development (§2.1). Moreover, since

JAIS-TDW08-123

20
 Sprouts - http://sprouts.aisnet.org/8-23

the GTTSD extends both Alexander’s and Maher et al.’s contributions (§2.3), these would make

questionable rivals.

In contrast, Gero’s FBS Framework remains a plausible mechanism to explain a wide variety of

software development phenomena. Kruchten (2005) showed how the Rational Unified Process

and the waterfall model can both be mapped into the FBS Framework. He further argues that it-

erative and agile development can be at least partially explained by focusing on the reformula-

tion process in the FBS Framework. While some criticism of the FBS Framework can be made

(§2.3), this criticism is not sufficient to reject it out of hand, or reduce the FBS Framework to a

theoretical strawman. In summary, we conclude that, of the software development process mod-

els we have identified, the FBS Framework is the most compelling alternative to use as a rival

theory.

4.2 Multiple Case Design

We propose a multiple case design to test the GTTSD against the FBS Framework.

Hypothesis. The primary hypothesis of the study is that the GTTSD provides a more accurate

explanation of how people develop software than the FBS Framework. This hypothesis is based

on the limitations of the FBS Framework (Section 2.3), which do not apply to the GTTSD. Be-

cause the two theories in question are process theories, the hypothesis is stated holistically (at the

level of the theories themselves) rather than at the level of particular causal chains. Here, we seek

evidence of particular concepts and activities rather than causal relationships.

Case Selection. Case studies use replication logic, not sampling logic (Yin 2003). Cases where

we predict similar results are called literal replications. Since we are testing the extent to which

the process theories explain all software development, any study of software development would

JAIS-TDW08-123

21
 Sprouts - http://sprouts.aisnet.org/8-23

be a literal replication. Cases where we predict “contrasting results but for predictable reasons”

(p. 47) are called theoretical replications. For instance studies of a mechanical engineering

design team and a software development team would be theoretical replications (since we would

expect the FBS Framework to better explain the process of the former and the GTTSD to better

explain the process of the latter). Ideally, a multiple-case study will involve both literal and theo-

retical replications.

For literal replications, the strongest test will be studying diverse development situations, for in-

stance, a team from a small, agile-oriented project for the first case, and a team from a larger,

plan- or document-driven project for the second case. A theoretical replication would also be

beneficial, specifically a case on a non-software design project (e.g. architecture).

Data Collection. Data collection will consist of:

1. Interviews of participants

2. Observations of participants’ activities (recorded by the researchers in a logbook)

3. Copies of artifacts produced by participants (e.g. software diagrams, prototypes)

4. Audio or video recordings of meetings

5. Photographs or video recordings of the work environment

The initial interview will determine the project’s nature, participants’ roles and their perceptions

of activities and sequences. We will then follow the project and document or record participants’

activities, meetings and workspace. Follow-up interviews will be used to clarify issues that arose

in data collection and validate findings.

Coding and Analysis. The strategy here is to map observations, artifacts and statements of par-

ticipants into the concepts and relationships posited by each process theory, thus creating a body

JAIS-TDW08-123

22
 Sprouts - http://sprouts.aisnet.org/8-23

of evidence for each component of each theory. Evidence may either support or discredit a par-

ticular concept. For instance, finding a requirements document and observing developers refer-

ring to that document would support the functions artifact in the FBS Framework. Finding that

developers could not articulate beliefs about the design object’s environment would discredit the

mental picture of environment concept in the GTTSD.

Coding will proceed in parallel with the direct observations, and direct observation will end

when new observations cease to provide new insights for the theories being tested. Ideally, two

coders will code the data independently, allowing for measurement of inter-coder reliability. If

the cost of a second coder becomes prohibitive due to the amount of data collected, inter-coder

reliability can be estimated by having a second coder analyze a subset of the data collected. Cod-

ing will follow a three-step pattern matching strategy, as shown in Section 5.

Once coding is complete and conclusions have been drawn, interviews with selected participants

can help to validate the findings. These follow-up interviews may be conducted a few weeks af-

ter direct observation ends. When these interviews are complete, so is the case.

5 Pilot Case and Preliminary Results

As mentioned above, running a pilot case is an important, formative step – “assisting you to de-

velop relevant lines of questions – possibly even providing some conceptual clarification for the

research design as well,” (Yin 2003, p.79). Although the pilot case described below provided

substantial evidence regarding the validity of both process theories, we note that the purpose of a

pilot is to optimize the research protocol; supporting evidence is merely a beneficial side effect.

Therefore, the data presented is intended as an illustration of the research method, not as com-

prehensive or conclusive evidence.

JAIS-TDW08-123

23
 Sprouts - http://sprouts.aisnet.org/8-23

5.1 The Site

We conducted a pilot study with Constructive Media Inc. (CMI), a software services and devel-

opment company in Vancouver, Canada. We chose CMI because the organization was familiar,

accommodating and would tolerate uncertainties and experimentation. The particular team we

studied had five members. A.C. and D.A. were professional web developers; J.H. was a com-

puter science co-op student assisting with development; M.G. was the “product owner,” and T.B.

was a “quality assurance analyst.” The team was building a web application called “Partnerpe-

dia” (www.partnerpedia.com). More specifically, Partnerpedia is an online partner management

community where businesses can find and build relationships with potential partner organiza-

tions, such as suppliers and distributors. The project was, and at the time of writing still is, on

schedule and on budget, and the beta program met with significant enthusiasm from potential

users.

The team takes a broadly agile approach to development and employs the SCRUM project man-

agement framework (Schwaber and Beedle 2001). In SCRUM, desired changes to the software

are represented as user stories (Beck 2005), which are prioritized into a “product backlog.” De-

velopment occurs in time-boxed iterations called “sprints” – in this case, sprints are typically two

weeks. In each sprint, the team implements and tests a selection of stories chosen by the product

owner.

5.2 Data Analysis and Results

Before continuing, we note that the primary purpose of this section is to illustrate the method,

not to present conclusive evidence. The evidence gathered from the case supported only one of

the five artifacts comprising the FBS Framework, expected behavior (see Table 4). The complete

JAIS-TDW08-123

24
 Sprouts - http://sprouts.aisnet.org/8-23

analysis of evidence for each artifact is provided in the Appendix. Because only one artifact was

supported, analysis of the transitions between and operations on the artifacts was not meaningful.

Table 5 summarizes the degree to which each concept and relationship hypothesized by the

GTTSD was supported. The complete analysis of evidence for each artifact is provided in the

Appendix.

Table 4. Summary of Support for Artifacts of the FBS Framework

Symbol Meaning Level of Support

F The Set of Functions Not Supported

S The Design Object’s Structure Not Supported

Be Expected (desired) behavior Medium

Bs Predicted behavior of the Structure Not Supported

D Design Description Not Supported

For the purposes of the pilot, one coder (the first author) did all of the analysis, and one of the

participants thoroughly review that analysis, which was revised based on her suggestions. The

coder began with the list of constructs and then identified as many relevant items of evidence as

possible (shown in the Appendix). Second, the coder sorted constructs into an unlimited number

of categories, depending on the level of support. Apart from constructs that were not supported,

three categories emerged, which we refer to as weak, medium and strong in Tables 4 and 5.

Third, the two rival theories were compared based on the level of support assigned to their re-

spective concepts and relationships. This coding process follows a pattern matching logic (Tro-

chim 1989), which Yin (2003) calls “one of the most desirable techniques” for case analysis

(p.116).

JAIS-TDW08-123

25
 Sprouts - http://sprouts.aisnet.org/8-23

Since some support was found for all concepts and relationships hypothesized by the GTTSD,

and only one of the artifacts hypothesized by the FBS Framework, in this case the GTTSD more

accurately described the behavior of the development team than the FBS Framework.

5.3 Lessons Learned From the Pilot Case

The primary results of a pilot case are not the empirical findings but lessons and improvements

to the research design (Yin 2003) – this pilot provided five. First, we found that it was necessary

to make audio recordings of meetings because important development activities occurred during

meetings, sometimes too quickly to record by hand. Second, asking more direct questions about

concepts and relationships from the two theories in interviews may have resulted in more direct

evidence. Third, as the activities we are studying are largely cognitive, we were concerned that

they would be difficult to observe; however, participants’ interactions provided many clues as to

their cognitive processes. To an extent, interviews can provide some confirmation of the ideas

generated by these observations. Fourth, the pilot allowed us to refine our data analysis ap-

proach, resulting in the three-step pattern-matching strategy described in the previous subsection.

Fifth, lack of details may make our inferences difficult for the reader to follow in some cases,

e.g., during the sprint planning meeting, the team discussed how each story might be imple-

mented. Had more details of this discussion been recorded, it might have provided more convinc-

ing evidence of Iterative Mutual Refinement. Based on these insights, in future cases we intend

to record meetings, ask more concept-inspired questions and pay increased attention to interac-

tions between participants.

JAIS-TDW08-123

26
 Sprouts - http://sprouts.aisnet.org/8-23

6 Conclusion

This paper reviewed existing process models models that may have been used to describe soft-

ware design. Finding no model entirely adequate, we synthesized the Generalized Teleological

Theory of Software Design by combining and extending previous models. The primary contribu-

tion of this paper is the GTTSD, which explains how an agent creates or modifies software. We

further proposed a multiple-case research design to test the GTTSD against its most credible ri-

val theory, the Function-Behavior-Structure Framework of engineering design (Gero 1990). To

refine the case protocol, we conducted a pilot case, which provided some evidence that the

GTTSD better explains software development.

The purpose of the pilot case was to refine and test the research method. It was successful in

both respects. First, it generated several insights for improving the research method (§5.3). Sec-

ond, the pilot case proved by example that the proposed method is capable of discriminating

among the GTTSD and the FBS framework in terms of accuracy.

The particular results of the case are promising but inconclusive – they are based on the process

of a single development team, analyzed by a single coder. Furthermore, the research design was

still evolving (which is partly why a pilot is useful). Therefore, the results should not be inter-

preted as conclusive evidence, or generalized to dissimilar contexts. However, the case does

demonstrate that there exists a team of software developers whose process cannot be accurately

described using the FBS Framework but can be described using the GTTSD. This motivates fur-

ther study of the GTTSD and more comparison to rival process theories (§4.2).

If veracious, the GTTSD may be useful in several ways. First, it can be useful for developing and

refining software design methodologies, tools and practices – the processes engaged in by all

JAIS-TDW08-123

27
 Sprouts - http://sprouts.aisnet.org/8-23

software designers are precisely what need guidance from methodologies, support from tools and

addressing by development practices. For example, if a design methodology provided advice on

Iterative Mutual Refinement and Implementation, but not Sensemaking, improving advice on

Sensemaking may be beneficial. Second, the GTTSD can provide practitioners a lens through

which to evaluate design methodologies, practices and tools. If, for example, a new tool or activ-

ity does not seem to facilitate any of the core design activities, this should raise suspicion as to

the real value of the tool.

Third, Beck (2005) points out:

People develop software. This simple, inescapable fact invalidates most of the avail-

able methodological advice. Often, software development doesn't meet human needs,

acknowledge human frailty, and leverage human strength. Acting like software isn't

written by people exacts a high cost on participants, their humanity ground away by

an inhumane process that doesn't acknowledge their needs. This isn't good for busi-

ness either, with the cost and disruption of high turnover and missed opportunities

for creative action, (p. 24).

One area of methodological advice Beck may be referring to is the life-cycle view of software

development (Bourque and Dupuis 2004), a view long considered harmful (McCracken and

Jackson 1982). One interesting finding of the pilot was how the development team proceeded

from an intuitive picture of a problematic environment rather than a set of functional require-

ments, a fact diametrically opposed to the lifecycle view. However, noting problems with the

life-cycle perspective is of limited value in the absence of another perspective. The teleological

perspective embodied by the GTTSD is intended to fill this gap.

JAIS-TDW08-123

28
 Sprouts - http://sprouts.aisnet.org/8-23

From an academic perspective, the GTTSD extends or augments previous contributions by Alex-

ander (1964), Maher et al. (2005), Ralph and Wand (2008), and Van de Ven and Poole (1995). If

accurate, this model explains an important organizational activity, and provides a mechanism for

unifying diverse thought on design and a foundation on which to create, evaluate and improve

design methodologies, practices and tools.

Many academics and practitioners have written prescriptive accounts of how software should be

designed (Wynecoop and Russo 1997), yet, how software is designed remains largely unknown

(Freeman and Hart 2004, Truex et al. 2000, Wynecoop and Russo 1993, 1995). This research

flows from the commonsense premise that it may be useful to describe what design teams actu-

ally do before trying to prescribe what they should do. The ubiquity of design behooves social

scientists to study it empirically. As such, our next step is to examine the relative explanatory

power of the FBS Framework and the Generalized Teleological Theory of Software Design in

several more cases.

References

Abrahamsson, P., Salo, O., Ronkainen, J., and Warsta, J. Agile software dfevelopment methods:
Review and analysis. VTT Publications, Espoo, 2002.

Alexander, C. W. Notes on the synthesis of form. Harvard University Press, 1964.
Avgerou, C., and Cornford, T. A review of the methodologies movement. Journal of Information

Technology 8, 4 (1993), 277–286.
Bansler, J., . B. K. A reappraisal of structured analysis: design in an organizational context. ACM

Transactions on Information Systems 11, 2 (1993), 165–193.
Baskerville, R., and Pries-Heje, J. Short cycle time systems development. Information Systems

Journal 14, 3 (2004), 237–264.
Baskerville, R., Travis, J., and Truex, D. P. Systems without method: The impact of new

technologies on information systems development projects. In Proceedings of the IFIP
WG8.2 Working Conference on The Impact of Computer Supported Technologies in
Information Systems Development (Amsterdam, The Netherlands, 1992), North-Holland
Publishing Co., pp. 241–269.

Beck, K. Extreme programming eXplained : embrace change, 2nd ed. The XP Series. Addison
Wesley, Boston, MA, USA, 2005.

JAIS-TDW08-123

29
 Sprouts - http://sprouts.aisnet.org/8-23

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., Grenning,
J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R. C., Mellor, S.,
Schwaber, K., Sutherland, J., and Thomas, D. Manifesto for agile software development,
http://www.agilemanifesto.org/

Berente, N., and Lyytinen, K. The iterating artifact as a fundamental construct for information
system design. 1st International Conference on Design Science in Information Systems and
Technology Claremont, CA, USA (February 2006).

Boehm, B. A Spiral model of software development and enhancement. IEEE Computer 21, 5
(May 1988), 61–72.

Bourque, P., and Dupuis, R., Eds. Guide to the software engineering body of knowledge
(SWEBOK). IEEE Computer Society Press, 2004.

Checkland, P. Systems Thinking, Systems Practice. John Wiley & Sons, Ltd, Chichester, 1999.
Checkland, P., and Poulter, J. Learning for Action. Wiley, 2006.
Churchman, C. W. The design of inquiring systems: Basic concepts of systems and organization.

Basic Books, New York, 1971.
Desmond, J. P. The Software 500: Applications go worldwide. Software Magazine (Oct. 2007).
Dobing, B., and Parsons, J. How uml is used. Communications of the ACM 49, 5 (May 2006),

109–113.
Dorst, K., and Cross, N. Creativity in the design process: co-evolution of problem-solution.

Design Studies 22 (September 2001), 425–437.
Eekels, J. On the fundamentals of engineering design science: The geography of engineering

design science. part 1. Journal of Engineering Design 11 (December 2000), 377–397.
Freeman, P., and Hart, D. A science of design for software-intensive systems. Communications of

the ACM 47, 8 (2004), 19—21.
Gero, J. S. Design prototypes: A knowledge representation schema for design. AI Magazine 11, 4

(1990), 26–36.
Gero, J. S., and Kannengiesser, U. The situated function-behaviour-structure framework. In

Artificial Intelligence in Design (Dordrecht, the Netherlands, 2002), J. S. Gero, Ed., Kluwer
Academic Publishers, pp. 89–104.

Glossary of sensemaking terms, http://www2.parc.com/istl/groups/hdi/sensemaking/glossary.htm
Jacobson, I., Booch, G., and Rumbaugh, J. The unified software development process.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.
Kessler, A. Wsj: Weekend interview with facebook’s mark zuckerberg.
Kruchten, P. The rational unified process: An introduction, 3rd ed. Addison-Wesley Professional,

2003.
Kruchten, P. Casting software design in the function-behavior-structure framework. IEEE

Software 22, 2 (2005), 52–58.
Maher, M., Poon, J., and Boulanger, S. Formalising design exploration as co-evolution: A

combined gene approach. In Preprints of the Second IFIP WG5.2 Workshop on Advances in
Formal Design Methods for CAD (Key Centre of Design Computing, 1995), J. S. G. . F.
Sudweeks, Ed., pp. 1–28.

McCracken, D. D., and Jackson, M. A. Life cycle concept considered harmful. SIGSOFT Softw.
Eng. Notes 7, 2 (1982), 29–32.

JAIS-TDW08-123

30
 Sprouts - http://sprouts.aisnet.org/8-23

Nandhakumar, J., and Avison, D. The fiction of methodological development: a field study of
information systems development. Information Technology & People 12, 2 (February 1999),
176–191.

Naur, P. Understanding turing’s universal machine: personal style in program description. The
Computer Journal 36, 4 (1993), 351–372.

Parnas, D. L., and Clements, P. C. A rational design process: How and why to fake it. IEEE
Trans. Softw. Eng. 12, 2 (1986), 251–257.

Purao, S., Rossi, M., and Bush, A. Towards an understanding of problem and design spaces
during object-oriented systems development. Information and Organizations 12, 4 (2002),
249–281.

Ralph, P., and Wand, Y. A proposal for a formal definition of the design concept. In Design
Requirements Engineering: A Multi-Disciplinary Perspective for the Next Decade,
K. Lyytinen, P. Loucopoulos, J. Mylopoulos, and W. Robinson, Eds., Lecture Notes on
Business Information Processing. Springer, 2008 (to appear).

Royce, W. W. Managing the development of large software systems: concepts and techniques. In
Proceedings of Wescon (1970).

Schön, D. A. The reflective practitioner: how professionals think in action. Basic Books, USA,
1983.

Schwaber, K., and Beedle, M. Agile Software Development with SCRUM. Series in Agile
Software Development. Prentice Hall, 2001.

Simon, H. A. The Sciences of the Artificial, 3rd ed. MIT Press, Cambridge, MA, USA, 1996.
Standish Group, The. Chaos database: Chaos surveys conducted from 1994 to fall 2004, 2006.
Trochim, W. Outcome pattern matching and program theory. Evaluation and Program Planning

12 (1989), 355–366.
Truex, D., Baskerville, R., and Travis, J. Amethodical systems development: the deferred

meaning of systems development methods. Accounting, Management and Information
Technologies 10, 1 (2000), 53–79.

Turner, J. Understanding the elements of system design. In Critical issues in information systems
research (Chichester, UK, 1987), R. J. Boland and R. A. Hirschheim, Eds., Wiley, pp. 97–
111.

Van de Ven, A. H., and Poole, M. S. Explaining development and change in organizations. The
Academy of Management Review 20, 3 (July 1995), 510–540.

van Lamsweerde, A. Goal-oriented requirements enginering: a roundtrip from research to
practice. pp. 4–7.

Vermaas, P. E., and Dorst, K. On the conceptual framework of john gero’s fbs-model and the
prescriptive aims of design methodology. Design Studies 28, 2 (2007), 133–157.

Weick, K. Sensemaking in Organizations. Sage, Thousand Oaks, CA, USA, 1995.
Weick, K. E., Sutcliffe, K. M., and Obstfeld, D. Organizing and the process of sensemaking.

Organization Science 16, 4 (2005), 409–421.
Whitley, E. Method-ism in practice: Investigating the relationship between method and

understanding in web page design. In Proceedings of the 19th International Conference on
Information Systems (ICIS) (Helsinki, Finland, 1998), pp. 68–75.

Wynekoop, J., and Russo, N. System development methodologies: unanswered questions and the
research–practice gap. In the 14th International Conference on Information Systems
(Orlando, FL, 1993).

JAIS-TDW08-123

31
 Sprouts - http://sprouts.aisnet.org/8-23

Wynekoop, J., and Russo, N. Studying system development methodologies: an examination of
research methods. Information Systems Journal 7 (January 1997), 47–65.

Wynekoop, J. L., and Russo, N. L. Systems development methodologies: unanswered questions.
Journal of Information Technology 10, 2 (June 1995).

Y. Zheng, W. Venters, T. C. Agility, improvisation on enacted emergence. In International
Conference on Information Systems (Montreal, Canada, December 2007).

Yin, R. Case study research: Design and methods, 3rd ed. Sage Publications, California, USA,
2003.

JAIS-TDW08-123

32
 Sprouts - http://sprouts.aisnet.org/8-23

Appendix: Data Analysis

Table 6. Summary of Support for FBS Framework Artifacts
Concept Level of

Support
Example Evidence Interpretation

Set of
Functions

Not
Supported

Asked explicitly if Partnerpedia could be seen
as a set of functions, M.G. replied “it’s a com-
munity... [comprised of] technology companies
and individuals in them.”

This clearly indicates that M.G. (the project manager) does not see
the product as a set of functions. The development team appears to
view the product as a holistic entity that addresses certain goals,
rather than a set of functions that addresses specific requirements.

A.C. and D.A. consistently refer to “features.”
“The content management system,” a “wiki” and
“registration” were all given as example of fea-
tures during interviews.

Although “feature” is the closest concept to “function” encountered,
the two are significantly different. Features include whole subsys-
tems like the content management system and non-functional char-
acteristics like an attractive interface.

Both M.G. and A.C. defined stories as “a prom-
ise of a future conversation,” rather than as
functions.

User stories are the artifacts closest to features; however, as this
quotation demonstrates, the development team does not view user
stories as representing features.

T.B.: “we don’t have requirements… I don’t have
acceptance criteria, I don’t have functional
specifications.”

One might expect the set of functions to exist implicitly in a re-
quirements document or a functional specification. T.B. clearly ex-
presses the lack of such a document.

Expected
(Desired)
Behavior

Medium A.C.: “I’ll have to tell her what it’s supposed to
do, the expected behavior, etc.”

Here A.C. explicitly refers to communicating the expected behavior
of the product.

The unit test suite. A unit tests passes when the design object produces the behavior
encoded in the test. Therefore, unit tests represent expected behav-
iors.

(Pre-
dicted)
Behavior
of Struc-
ture

Not
Supported

Inspecting J.H.’s code, A.C. accurately pre-
dicted why it would fail and how to fix it.

This example indicates that developers form predictions of how
code will behave. However, since code is not structure (see Struc-
ture row), this does not strictly support the Predicted Behavior of
Structure artifact.

D.A. indicated that she cannot simply imagine
how repositioning a GUI element will affect the
other elements; she has to change the code and
view the design object to discover behavior.

This observation illustrates how developers sometimes pursue a
guess-and-check strategy that does not map into the FBS Frame-
work.

JAIS-TDW08-123

33
 Sprouts - http://sprouts.aisnet.org/8-23

Concept Level of
Support

Example Evidence Interpretation

Structure Not
Supported

The primary artifacts created by the team are call reports, the market requirements document, user stories, the test
suite, and the source code. The first four of these include details about what the design object is supposed to accom-
plish, but not its “elements and their relationships.” None of these four alone or together in combination could be the
design description, because they do not contain sufficient information to generate the design object. Furthermore,
since the software is written in Ruby, an interpreted language, the source code is the software (the design object).
Moreover there is no artifact that represents the structure of the design object outside of the design object itself.

Design
Descrip-
tion

Not
Supported

Table 7. Summary of Support for Generalized Teleological Model of Software Development Concepts
Concept Level of

Support
Example Evidence Interpretation

Design
Agent

Weak In the planning meeting, all team members discuss upcoming
design decisions

The fact that all team members participate in the design
process together indicates their shared agency.

Retrospective meeting: D.A. says “we usually depend on
[T.B.]’s feedback”

Since T.B. depends on the stories and code written by
A.C. and D.A., D.A.’s statement indicates interdepend-
ence between team members.

Design’s
Envi-
ronment

Medium Production server and the Internet The Design Object exists within the production server,
which is connected to the community of users through
the Internet.

De-
signer’s
Envi-
ronment

Strong The building in which the team works. The Design Agent (the team) is physically located in of-
fice space in a commercial building. This environment
includes both physical and conceptual artifacts.Conceptual artifacts such as the development schedule and

mingle project management software

Physical artifacts such as development workstations, desks,
chairs, bulletin boards and the staging server

Design
Object

Medium Source code and Partnerpedia website The design object is a web application called Partnerpe-
dia (www.partnerpedia.com).

Mental
Picture
of Envi-
ronment

Medium In the planning meeting, the team works from memory of hot-
mail and gmail to evaluate the reasonableness of an idea

Since the team members do not have to look at the hot-
mail or gmail websites to reason using these examples,
this indicates that they have organized mental pictures of
these aspects of their environment.

M.G.: “it’s hard for me to separate what my ideas are from
what I’ve heard from the market”

This shows that M.G. has beliefs and ideas about “the
market” (part of her environment).

Mental
Picture
of
Design

Strong D.A. compares assumptions of stories to her memory of Part-
nerpedia and realizes that a story is no longer relevant.

The team members’ ability to reason from memory of the
design object demonstrates that they each have a men-
tal picture of it.

During discussion about whether something is a bug or inten-
tional, A.C. works from memory, without looking at the design
artifact.

T.B. identified new features in a new build of the software by
comparing it to her memory of the old build

JAIS-TDW08-123

34
 Sprouts - http://sprouts.aisnet.org/8-23

Concept Level of
Support

Example Evidence Interpretation

Design
Agent

Weak In the planning meeting, all team members discuss upcoming
design decisions

The fact that all team members participate in the design
process together indicates their shared agency.

Retrospective meeting: D.A. says “we usually depend on
[T.B.]’s feedback”

Since T.B. depends on the stories and code written by
A.C. and D.A., D.A.’s statement indicates interdepend-
ence between team members.

Design’s
Envi-
ronment

Medium Production server and the Internet The Design Object exists within the production server,
which is connected to the community of users through
the Internet.

De-
signer’s
Envi-
ronment

Strong The building in which the team works. The Design Agent (the team) is physically located in of-
fice space in a commercial building. This environment
includes both physical and conceptual artifacts.Conceptual artifacts such as the development schedule and

mingle project management software

Physical artifacts such as development workstations, desks,
chairs, bulletin boards and the staging server

Design
Object

Medium Source code and Partnerpedia website The design object is a web application called Partnerpe-
dia (www.partnerpedia.com).

Mental
Picture
of Envi-
ronment

Medium In the planning meeting, the team works from memory of hot-
mail and gmail to evaluate the reasonableness of an idea

Since the team members do not have to look at the hot-
mail or gmail websites to reason using these examples,
this indicates that they have organized mental pictures of
these aspects of their environment.

M.G.: “it’s hard for me to separate what my ideas are from
what I’ve heard from the market”

This shows that M.G. has beliefs and ideas about “the
market” (part of her environment).

Mental
Picture
of
Design

Strong D.A. compares assumptions of stories to her memory of Part-
nerpedia and realizes that a story is no longer relevant.

The team members’ ability to reason from memory of the
design object demonstrates that they each have a men-
tal picture of it.

During discussion about whether something is a bug or inten-
tional, A.C. works from memory, without looking at the design
artifact.

T.B. identified new features in a new build of the software by
comparing it to her memory of the old build

JAIS-TDW08-123

35
 Sprouts - http://sprouts.aisnet.org/8-23

Table 8. Summary of Support for Generalized Teleological Model of Software Development Relationships
Con-
cept

Level of
Support

Example Evidence Interpretation

Imple-
menta-
tion

Medium A.C., D.A. and J.M. were observed writing and modifying
code on each day of the study. The code is “pushed live” at
the end of each sprint.

Implementation includes the creation and modification of
source code and the process of transferring that code to its
intended environment (the production server). The develop-
ers refer to the last two steps as “pushing it live.”

Sen-
semak-
ing

Strong M.G.: “I wrote call reports... every meeting I had I wrote a
call report, just based on the information about the person,
their name, where they’re from, e-mail phone number facts
etc.... I put the answers to specific questions, and just extra
notes... and then I took an Excel spreadsheet and identified
the market problems and found out how many people had
this problem, how important is it... so that’s how I organized
that at first...”

M.G. used Call Reports to help her organize her thoughts
about users and their needs. Given the complexity of the
environment, the call reports act as an external cognitive aid
to her sensemaking process.

During a sprint review meeting, someone outside the team
gives an example of a client’s partner program organization
that did not fit the developers’ view of the environment. The
team then discussed this example and its implications for
the software.

The example that did not fit the team’s mental picture of the
environment triggered the sensemaking activity. During the
discussion that followed, the team revised its mental picture
of the environment to incorporate the new example.

Apr 16 - J.M. begins task of fixing a file-upload bug. At first,
he thinks he knows how to fix it, and tries a solution based
on tag filters. When this doesn’t work, he “googled it” and
found out why: browsers don’t support it. He then moves on
to a second approach that he intuits.

J.M.’s mental picture of his environment includes his beliefs
about how his tools andn the prototype function. When the
software does not function as expected, he searches for an
explanation to make sense of the situation.

In the Planning Meeting, M.G. comments that organizing
story cards into piles changes the way the participants think
about them

This implies that M.G. reformulates her mental picture of her
environment based on cognitive cues, and that how the story
cards (cues) are laid out affects her cognition.

JAIS-TDW08-123

36
 Sprouts - http://sprouts.aisnet.org/8-23

Con-
cept

Level of
Support

Example Evidence Interpretation

Iterative
mutual
refine-
ment

Strong Apr 15 - D.A. and A.C. discuss the relationship between
“partner applications” in the domain and in the product
while cooperatively drawing a diagram to facilitate their dis-
cussion.

By the end of this discussion, D.A. and A.C. had revised their
conceptions of both the environment and the design of Part-
nerpedia, suggesting that the two mental pictures were re-
vised mutually. Furthermore, the refinement seem to occur in
a stepwise fashion.

Apr 15 (Sprint planning meeting): While trying to estimate
the effort required by each story, the team discusses how
each story might be implemented. They compare their
memories of what has been built to their beliefs about de-
sired characteristics of the site. Through their discussion,
their ideas about the features become more concrete and
detailed.

Through the process of agreeing on how stories should be
implemented, the team makes numerous design decisions,
clarifying and modifying their mental pictures of the design
object. At the same time, they share and discuss ideas about
potential users and their needs, clarifying and modifying their
mental pictures of the environment.

Apr 22 - T.B. asks M.G. about a story calling for the user to
be able to edit an application after submitting. D.A. and
M.G. discuss this and decide that this story doesn’t make
sense because the application now belongs to whoever it
was submitted to.

The transfer of ownership of an application is an ontological
question – one dealing with the beliefs of users. Thus, in this
example, a design alternative embedded in a user story (a
representation of the team’s mental picture of the design
object) prompted a discussion leading to a refinement of the
team’s mental picture of the environment.

JAIS-TDW08-123

37
 Sprouts - http://sprouts.aisnet.org/8-23

 Working Papers on Information Systems | ISSN 1535-6078

Editors:
Michel Avital, University of Amsterdam
Kevin Crowston, Syracuse University

Advisory Board:
Kalle Lyytinen, Case Western Reserve University
Roger Clarke, Australian National University
Sue Conger, University of Dallas
Marco De Marco, Universita’ Cattolica di Milano
Guy Fitzgerald, Brunel University
Rudy Hirschheim, Louisiana State University
Blake Ives, University of Houston
Sirkka Jarvenpaa, University of Texas at Austin
John King, University of Michigan
Rik Maes, University of Amsterdam
Dan Robey, Georgia State University
Frantz Rowe, University of Nantes
Detmar Straub, Georgia State University
Richard T. Watson, University of Georgia
Ron Weber, Monash University
Kwok Kee Wei, City University of Hong Kong

Sponsors:
Association for Information Systems (AIS)
AIM
itAIS
Addis Ababa University, Ethiopia
American University, USA
Case Western Reserve University, USA
City University of Hong Kong, China
Copenhagen Business School, Denmark
Hanken School of Economics, Finland
Helsinki School of Economics, Finland
Indiana University, USA
Katholieke Universiteit Leuven, Belgium
Lancaster University, UK
Leeds Metropolitan University, UK
National University of Ireland Galway, Ireland
New York University, USA
Pennsylvania State University, USA
Pepperdine University, USA
Syracuse University, USA
University of Amsterdam, Netherlands
University of Dallas, USA
University of Georgia, USA
University of Groningen, Netherlands
University of Limerick, Ireland
University of Oslo, Norway
University of San Francisco, USA
University of Washington, USA
Victoria University of Wellington, New Zealand
Viktoria Institute, Sweden

Editorial Board:
Margunn Aanestad, University of Oslo
Steven Alter, University of San Francisco
Egon Berghout, University of Groningen
Bo-Christer Bjork, Hanken School of Economics
Tony Bryant, Leeds Metropolitan University
Erran Carmel, American University
Kieran Conboy, National U. of Ireland Galway
Jan Damsgaard, Copenhagen Business School
Robert Davison, City University of Hong Kong
Guido Dedene, Katholieke Universiteit Leuven
Alan Dennis, Indiana University
Brian Fitzgerald, University of Limerick
Ole Hanseth, University of Oslo
Ola Henfridsson, Viktoria Institute
Sid Huff, Victoria University of Wellington
Ard Huizing, University of Amsterdam
Lucas Introna, Lancaster University
Panos Ipeirotis, New York University
Robert Mason, University of Washington
John Mooney, Pepperdine University
Steve Sawyer, Pennsylvania State University
Virpi Tuunainen, Helsinki School of Economics
Francesco Virili, Universita' degli Studi di Cassino

Managing Editor:
Bas Smit, University of Amsterdam

Office:
Sprouts
University of Amsterdam
Roetersstraat 11, Room E 2.74
1018 WB Amsterdam, Netherlands
Email: admin@sprouts.aisnet.org

	Association for Information Systems
	AIS Electronic Library (AISeL)
	11-20-2008

	A Teleological Process Theory of Software Development
	Paul Ralph
	Yair Wand
	Recommended Citation

	htmldoc980.html

