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Abstract

In this paper, we present a scheme of fully localized
voltage regulation in distribution grids through reactive
power compensation using photovoltaic (PV) inverters.
We employ quasi-steady state representation of the
effect of incremental changes in reactive power on
voltage, in the form of discrete-time dynamics. We
prove using this representation that nodal voltages may
be regulated with guaranteed stability in the sense of
Lyapunov without any node-to-node communication. We
present properties of this communication-free control,
such as guarantees on when it works and when it
fails. Numerical studies based on realistic distribution
network parameters are conducted to illustrate the
performance and robustness of this proposed method
with respect to changes of operating conditions and
system parameters.

Nomenclature

pPV
i (t) Active power injected/provided by PV at

node i, at time t

qPV
i (t) Reactive power injected by PV inverter

(input) at node i, at time t

vi(t) Squared voltage (output) at node i, at time t

eΩ(t) Voltage tracking error vector at time t,
corresponding only to nodes in set Ω

gi Feedback gain (control policy) at node i

θi Risk factor adopted at node i

C.F.Ω Communication-free system where gi = 0
(inactive) for all nodes i /∈ Ω.

XΩ System parameter sub-matrix, with rows and
columns corresponding only to nodes in set Ω

GΩ Diagonal control gain matrix corresponding
only to nodes in set Ω.

1. Introduction

Distribution power grids are experiencing increasing
levels of solar photovoltaic (PV) penetration. One
of the key operational challenges is how to regulate
system-wide voltage performance over a wide range
of net load variations. While PV introduces much
intermittency in real power production, the inverters
amounted alongside with the PV panels offer a
tremendous opportunity to conduct voltage regulation
in distribution systems. Compared with conventional
voltage regulation through capacitor banks at the
substations, PV inverters offer a much faster response
and a possible localized solution [1–3]. Moreover,
the localized voltage regulation through PV inverters
are less vulnerable to cyberattacks under limited
communication, and in this paper, we propose a controls
framework that eleminates the need for communication
entirely.

Recent work [4–7] focus on voltage control of radial
networks under limited communication, and present
objectives for optimal control. These results heavily rely
on a communication layer between neighboring nodes in
the grid. The appealing features of these results are that
they are robust to communication delay and parameter
estimation error. In [8], the model of the inverter
capacity is updated from quadratic constraints to linear
constraints, and an uncertainty model is provided for the
local active power injections by the PV. It is suggested
in IEEE Standard 1547-2018 to use droop control as a
default scheme for VAR control. This method is tested
in [9], and an improved scaled VAR control scheme is
introduced with results that show better convergence
of local voltages to their nominal values than with the
default droop control.

Advances in reinforcement learning and deep
learning have inspired application of these domains into
electric power systems, and a review of recent and past
research is presented in [10]. To specifically tackle the
Volt-VAR problem, distributed Q-learning is adopted
in [11] where the state and action space is discretized,



and a state-action value table is updated in the learning
process. In [12], deep learning is used for reactive
power compensation, in a two-timescale representation
of control, one for capacitor configuration and the other
for inverter optimization.

Similar work on two-time-scale representation is
presented in [13], where the objective is to minimize
total line losses. In reference [13], the voltage regulation
problem is reformulated to be solved by an equivalent
semidefinite programming problem (SDP). It is shown
that over a radial network, the algorithm applies to a
decentralized setting and it is robust to communication
failure. In our paper, we do not propose to minimize line
losses but we do not require any communication at any
time.

Most of the available methods on Volt-VAR control
are based on steady state approximations of a radial
network, and those which claim decentralized control
still rely on communication at least between 1-hop-away
neighbors. It is highlighted in [14] that cybersecurity
issues in distribution grids with PV are not much
explored, especially the effect of data manipulation.

Our main contribution in this paper is two-fold.
First, we employ a quasi-steady state representation
of how incremental changes in reactive power
injection/consumption affect nodal voltages. This
enables us to represent the network as a linear
discrete-time system. We use the same linearized power
flow model as the one assumed and extensively used
in the body of literature. It should be noted that this
linearized model is indeed valid across a wide range of
operating conditions. Second, we provide a scheme for
communication-free control, in which all measurements
and actions are taken locally at the same node (i.e.
0-hop-away and no communication). We prove when
this scheme works and when it fails by providing a
closed-form representation of the set of control policies
that can achieve stability in the sense of Lyapunov.

The rest of this paper is organized as follows. In
Section 2, the problem of voltage regulation by reactive
power compensation is formulated. Section 3 details one
of our main contributions, the guarantees on stability
and where the communication-free scheme fails. In
Section 4 we propose a way to select control policies
at every node from the region of feasible policies, and
introduce a risk factor to do so. In Section 5, the theory
is tested on a 56-bus distribution network where there is
PV penetration at all nodes, and in Section 6 we provide
concluding remarks.

2. Problem formulation

In this section, we introduce a commonly used
power flow model for radial networks, we present our
system in the form of a quasi-steady state discrete-time
dynamical system, and we state the control objective.
Although a linearized model is assumed in this section
(Eq. (3)), we conduct simulations in Section 5 on the
full non-linearized AC model of a radial distribution
network (Eq. (1)).

2.1. Linearized power flow model for radial
networks

A three-phase balanced radial network is assumed in
this model of a distribution grid, with a single substation
acting as the slack bus. The following formulation is
proposed and used in [3–9, 12–15].

LetN = {0, 1, 2, . . . , n} be the set of nodes (buses),
with 0 representing the substation node (slack bus), and
L ⊂ N ×N be the set of lines connecting these nodes.
That is, for each pair of nodes, i, j ∈ N , there is a line
connecting them iff (i, j) ∈ L. As a convention, let
(i, i) /∈ L ∀i ∈ N . The complex impedance of line
(i, j) is given by zij = rij + ixij , where i =

√
−1.

The complex current and complex power flowing from
node i to node j are given respectively as Iij and Sij =
Pij+iQij . The complex voltage and the complex power
injection at node i are given respectively as Vi and si =
pi + iqi. Furthermore, let Kj,i ⊂ N be the set of all
nodes connected directly to node j, excluding node i
(and j). That is, Kj,i = {k | (j, k) ∈ L, k 6= i}.

Therefore, the power flow equations are derived as
follows:

Pij =
X

k2Kj;i

Pjk + rij |Iij |2 − pj ∀(i, j) ∈ L (1a)

Qij =
X

k2Kj;i

Qjk + xij |Iij |2 − qj ∀(i, j) ∈ L (1b)

|Vj |2 = |Vi|2 − 2 (rijPij + xijQij)

+
�
r2
ij + x2

ij

�
|Iij |2 ∀(i, j) ∈ L (1c)

|Iij |2 =
P 2
ij +Q2

ij

|Vi|2
∀(i, j) ∈ L (1d)

For clarity, Eq. (1a) is depicted in Fig. 1. A
linearization of Eq. (1), known as Simplified Distflow
[4], is to approximate the squared current magnitudes,
|Iij |2, as zero, implying that line losses are negligible
compared to power flowing on the lines. While this
assumption is used in the theoretical derivation, the
simulations we present in this paper include more



realistic lossy line scenarios (|Iij |2 6= 0). Setting
|Iij |2 = 0 ∀(i, j) ∈ L yields Eq. (2) in which changes
in power (p or q) have a linear impact on changes in
squared voltage.

Pij =
X

k2Kj;i

Pjk − pj ∀(i, j) ∈ L (2a)

Qij =
X

k2Kj;i

Qjk − qj ∀(i, j) ∈ L (2b)

|Vj |2 = |Vi|2 − 2 (rijPij + xijQij) ∀(i, j) ∈ L (2c)
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Figure 1. Depiction of Eq. (1a). Local power

injection, pj . Node i is unique ‘parent’ to node j.

Let vi := |Vi|2, and define the following vectors:
v = [v1, v2, . . . , vn]T , v0 = [v0, v0, . . . , v0]T , p =
[p1, p2, . . . , pn]T , and q = [q1, q2, . . . , qn]T . Since the
network is radial, each node has only one parent node
(connecting back to the substation) and hence a unique
path to node 0. It can be shown by induction that

v = Rp +Xq + v0 (3)

where the entries of matrices R and X at ith row and
jth column are given in Eq. (4)

Rij := 2
X

(h,k)2Pi\Pj

rhk (4a)

Xij := 2
X

(h,k)2Pi\Pj

xhk (4b)

and Pi ⊂ L is the unique set of lines (or “path”)
connecting node i all the way back to node 0. That
is, if we call Pi and Pj the set of ‘ancestor nodes’ to
nodes i and j respectively, then Pi ∩ Pj is the set of
common ancestor nodes. From this, it is evident that
Xij = Xkk where node k is the first (or ‘youngest’)
common ancestor of nodes i and j. This is illustrated in
Fig. 2.

It can be seen also in Fig. 2 that even if two nodes
are far apart (top sub-figure), they can still share many
ancestors in common, as opposed to what is seen in the
bottom sub-figure. Xkk is larger for the former than it is

Pi \ Pj

0 k

i

j

Pi \ Pj

0 k
i

j

Figure 2. Illustration of Pi \ Pj : nodes i and j share

many (top) vs. a few (bottom) ancestor nodes.

for the latter, thus Xij is also as such, even though they
seem closer in the bottom one.

We compare the size of Xij for different
pairs of nodes i and j to highlight the fact that
injecting/consuming reactive power at node i will have
a higher impact on the voltage at node j if they share
more ancestor nodes than if they share less. This is
justified in Eq. (3 & 4).

What is also implied by Eq. (4) is that neighboring
nodes have a stronger effect on one another the deeper
they are into the network. From an intuitive point of
view, we know that in distribution grids, voltage tends
to sag more for nodes farther away from the substation.
This aligns well with the properties of the linearized
model given in Eq. (3 & 4) and illustrated in Fig. 2.

2.2. Quasi-steady state dynamical system

Let q = qPV +qother and p = pPV +pother. To isolate
the effect of PV penetration and inverter control on the
nodal voltages, define vother := Rpother +Xqother + v0.
Eq. (3) can thus be rephrased as

v = RpPV +XqPV + vother (5)

Here, pPV is the vector of active powers
injected/provided by the PV modules at all nodes.
On the other hand, qPV is the vector of reactive powers
injected by the PV inverters at all nodes, and it is the
control input in this paper. For generality, if there is no
PV module at node i, then pPV

i = qPV
i = 0.

Eq. (5) represents a steady-state algebraic
relationship between nodal power injections and squared
nodal voltages. However, if we define a discrete-time
system with a sufficiently large time step, we may
express the system of Eq. (5) as a quasi-steady-state
system, where all the terms update at every discrete time
step. That is, for every time step t, each PV unit at node
i injects pPV

i (t) and qPV
i (t), and the squared voltage at

node j settles at time step t + 1 to vi(t + 1). Thus, the
following holds true:

v(t+ 1) = RpPV(t) +XqPV(t) + vother(t) (6)



from which Eq. (7) below can be derived as
a discrete-time dynamical equation which captures
incremental updates in nodal voltages. Please note that
we assume the PV inverters are capable of switching fast
enough such that changes in the real power injected by
the PV modules does not change as quickly.

v(t+ 1) = v(t) +R
�
pPV(t)− pPV(t− 1)

�
+X

�
qPV(t)− qPV(t− 1)

�
+
�
vother(t)− vother(t− 1)

�
(7)

In the communication-free control proposed in this
paper, we assume that at each node i, only vi(t) is
observed and only qi(t) can be controlled, so from the
perspective of the controller at node i, Eq. (7) is seen as:

vi(t+ 1) = vi(t) +X
�
qPV
i (t)− qPV

i (t− 1)
�

+ unknowni(t) (8)

Note also that the difference terms of pPV and vother in
Eq. (7) might be approximated to zero in general in a
small time-scale if the control time of qPV is relatively
small. As an example, the power delivered due to
sunlight would generally not change as quickly as the
PV inverter’s control time. This makes the unknown
term in Eq. (8) relatively small.

2.3. Inverter capacity model

As per IEEE Standard 1547-2018 [16], each PV
inverter is “capable at all times to absorb or inject
reactive power, to the full extent of the reactive power
capability ranges”. These ranges are defined in the
document, e.g. 44% of nameplate capacity.

As modelled in [1–3] and many more recent papers
as well, the capacity of qPV

i (t) is bounded in magnitude

by
q
|smax|2 −

�
pPV
i (t)

�2
and this is depicted in Fig.

3. This means that if there is less sunlight, there
is more reactive capacity available, with maximum
inverter capacity |smax|.

2.4. Objective formulation

The objective of the local controller at each node i is
to minimize the magnitude of ei(t), where

ei(t) := 1− vi(t) (9)

is the local squared voltage deviation from the nominal
value of 1 p.u..

To generalize for all controllers, and to formulate an
objective statement, all that matters is voltage deviation

44%

−44%

jsmaxj

−jsmaxj

0
jsmaxjpPV

max

pPV (t)

(

pPV (t); qPV (t)
)

(

pPV (t); qPV (t)
)

qPV (t)

Figure 3. Illustration of reactive power capacity as a

function of real power injected by PV.

from nominal value, since PV inverters can provide the
reactive power compensation ‘for free’ up to a limit in
magnitude. Therefore, penalizing the amount of reactive
power injected/consumed is irrelevant. However, in
attempt to minimize variations of reactive power flow
changes across the network, we penalize changes in
reactive power injection (i.e.

�
qPV
i (t)− qPV

i (t− 1)
�
.

This is desired to minimize line losses and uncertainty
of the operating condition around which we assumed
a linearized system model. In other words, to better
track changes in the operating condition, we seek
less fluctuation in reactive power compensation. The
localized objective at node i becomes:

min
qi

1X
t=0

[ei(t)]
2

+ µi

�
qPV
i (t)− qPV

i (t− 1)
�2

(10a)

s.t. qPV
i (t) ≤ qPV

i (t) ≤ qPV
i (t) (10b)

where µi is a weighting factor assigned for each node

i and qPV
i (t) and qPV

i (t) are known at time t but not
controllable.

We propose a stationary linear control policy at each
node in attempt to meet the objective of Eq. (10). Let gi
be a feedback control gain, determined for each node
i by prescribed setting. The control input, qPV

i (t), is
updated incrementally at every point in time as a scalar
multiple of tracking error ei(t) (refer to Eq. (9)), as



shown in Eq. (11a).

qPV
i (t) = qPV

i (t− 1) + giei(t) (11a)

⇒ e(t+ 1) = (I −XG) e(t)

−R
�
pPV(t)− pPV(t− 1)

�
−
�
vother(t)− vother(t− 1)

�
(11b)

where G is a diagonal matrix whose ith entry on
the diagonal is gi. The fact that G is diagonal, and
the control policy shown in Eq. (11a) both illustrate
the communication-free aspect of the proposed control
scheme.

Eq. (11b) is a transformed version of Eq. (7). Please
note that the application of Eq. (11a) (and hence Eq.
(11b)) assumes no violation of the constraint in Eq.
(10b). At any point in time, the controller is assigned
to saturate at the capacity limit if the constraint is about
to be violated. This ensures Eq. (10b). Furthermore,
as previously explained, the difference terms of pPV and
vother in Eq. (11b) might be approximated to zero, as
explained for Eq. (7). This is assumed for small time
scales, but as we know, over a whole day, the pPV terms
may heavily fluctuate. The controller considers this as
disturbance and is able to reject it by feedback.

3. Guarantees on stability under
communication-free policies

In this section, we show that there exists a convex set
of possible matrices G, which we will call the stability
region, such that the control scheme in Eq. (11) drives
ei(t) → 0 for all nodes i. The fact that G is diagonal
emphasizes the communication-free aspect. We propose
and prove a list of properties of this stability region and
detail under what policies the system succeeds/fails to
converge.

Definition 1 (Communication-free linear system). A
system is labelled C.F. if it obeys the following
discrete-time dynamics

e(t+ 1) = (I −XG) e(t) (12)

where X is real, symmetric and positive-definite, G is
diagonal and e(t) ∈ Rn. The notation C.F.Ω is used
to indicate a system under which all nodes are still
represented, but only those in Ω are active, i.e. strictly
Gii = 0 ∀ i 6= Ω.
Remark 1.1. Please refer to the Nomenclature section.
Eq. (12) implies Eq. (13) under C.F.Ω.

eΩ(t+ 1) = (I −XΩGΩ) eΩ(t) (13)

That is, if all nodes outside of Ω are inactive, then
from the perspective of the controllers at nodes Ω where
regulation of only those nodes’ voltages is of interest,
the larger system C.F. becomes equivalent to the local
subsystem C.F.Ω. That is not to say that the other nodes
won’t get affected by actions of nodes in Ω, but it means
that nodes in Ω are not affected by actions at nodes not
in Ω, simply because they are necessarily inactive.
Remark 1.2. From Eq. (11a), we may deduce that if
during any time period, qPV

i (t) at some node is saturated
at its limit, then the corresponding gi value is effectively
zero (no change in reactive power injection). This
is equivalent to node i becoming inactive during that
period.

Definition 2 (Stability). We say C.F.Ω is stable iff

ρ (I −XΩGΩ) < 1 (14)

where ρ(A) is the spectral radius of some matrix A.
Remark 2.1. This definition implies that whether ei(t)
diverges or not for each i /∈ Ω is irrelevant, instead, all
what matters is the voltage stability at nodes in Ω.

Definition 3 (Sub-matrix). “GΨ @ GΩ” is a logical
statement that is true iff for each i ∈ Ψ ⊂ Ω, the entry
corresponding to node i inGΨ is identical to that inGΩ.
Remark 3.1. Given some GΩ and any Ψ ⊂ Ω, there is
a unique GΨ such that GΨ @ GΩ.

Using the definitions above, we propose multiple
theorems below and provide the proofs in the appendix
in reference [17]. Please note that these theorems can be
applied to linear systems beyond the scope of this paper,
as long as they satisfy Definition 1.

Theorem 1 (Slower policies stable). If C.F.Ω is stable
under some control policy GΩ, then it is also stable
under G̃Ω := GΩΘ, where Θ is diagonal and each entry
on the diagonal lies in (0, 1].

Since we are considering a communication-free
control scheme, it is not available information at each
node what the next move at the other nodes will be. As
a reminder, there is a control policy gain (scalar) gi at
each node i that dictates the local control scheme. Say
under some combination of these policies, the system is
already stable. In this scenario, it is worth asking how
the changes to these policies at some nodes will affect
other nodes. Theorem 1 states that if we begin with a
combination of gi’s that stabilizes the system, then if any
or multiple of those values is/are reduced in magnitude
(i.e. ‘slower’), the entire system will remain stable.

This is key in building a communication-free setting
since it helps the controllers at all nodes know that if



other nodes are less aggressive, perhaps due to scarcity
of resources, then if their own policy remains put, the
local voltage will not diverge.

Theorem 2 (Sub-system also stable). For any Ψ ⊂ Ω,
if C.F.Ω is stable under some control policy GΩ, then
C.F.Ψ is stable under GΨ, where GΨ @ GΩ.

Corollary 2.1 (Self-interest necessary). A necessary
condition for C.F.Ω to be stable under some control
policy GΩ is that for each i ∈ Ω, C.F.fig is stable under
gi, where gi @ GΩ.

Corollary 2.2 (All-active sufficient). For any Ψ ⊂ Ω
where |Ω| = n, a sufficient condition for C.F.Ψ to be
stable is that C.F.Ω is stable for the same set of policies.

It is worth clarifying the difference between
Theorem 1 and Theorem 2. The first theorem is
concerned with the stability at all nodes in Ω; whereas
the second is concerned with that of only a few nodes,
Ψ. That is if nodes in Ω outside of Ψ became
inactive, although stability at those nodes may be
compromised, stability at Ψ will not. This is another
key in establishing a communication-free scheme, as it
guarantees that sudden absence or interruption of control
in other parts of the distribution grid will not lead to
local instability - assuming the system was stable prior
to the interruption. Thus, knowledge of such remote
interruptions is not required to ensure local stability.

Corollaries 2.1 and 2.2 consider application of
Theorem 2 for scenarios with a single node active and all
nodes active respectively. They are logical implications
of the theorem, yet they are individually very useful in
establishing and testing choice of control policies.

Corollary 2.1 suggests that it is necessary that each
node seeks self-interest, otherwise no node will achieve
stability. 1) This justifies the notion of self-interest in
a communication-free setting, and 2) we may easily
compute necessary bounds on any single node’s control
policy gi by hand (see Theorem 3) since the system
C.F.fig is comprised of only one active node.

Corollary 2.2 suggests that if there is a feasible
combination of gi’s that we know can stabilize the
system, then by picking out any subset of those and
setting the rest to zero, we may guarantee stability for
the subset. This is tremendously useful in addressing
the curse of dimensionality. As an example, consider
the network in the case study (Section 5). Since n = 55,
there is a total of 3.6 × 1016 possible combinations of
subsystems to consider. Instead, by simulating offline
over 1 only (where all nodes are active), we may achieve
a good starting point for what the gi at each node should
be for any subsystem of the 55 nodes.

Theorems 1 and 2 provide properties of the stability
region over the space of possible policies, yet they do not
present how the region looks like, and how it is bounded
along more than a single dimension. Theorem 3 depicts
this region more concretely.

Theorem 3 (Stability Region). For any system C.F.Ω,
let gΩ be a point in RjΩj, and each coordinate gi be the
control policy at node i ∈ Ω, so that GΩ = diag(gΩ).

1. The control policy stability region is the set of all

gΩ such that both GΩ and
�

2 (XΩ)
�1 −GΩ

�
are positive definite (i.e. 0 ≺ GΩ ≺ 2 (XΩ)

�1).

Note: (XΩ)
�1 6=

�
X�1

�
Ω

.

2. This region is convex.

3. It is contained entirely in the open box

BΩ := {gΩ | Xiigi ∈ (0, 2) ∀i ∈ Ω} ⊂ RjΩj+

(all-positive orthant of RjΩj).

4. The entire region is the union of all open segments
bounded on one end by the origin and on the other
end by the manifold of points g ∈ BΩ that satisfy
fΩ(2) = 0, where fΩ(·) is defined as follows:

fΩ(γ) := det (γI −XΩGΩ)

=

jΩjX
k=0

(−1)k

2664 X
Ψ�Ω
jΨj=k

det (XΨ)
Y
i2Ψ

gi

3775 γjΩj�k
(15)

Note: The determinant of an empty matrix is 1.

Corollary 3.1 (Multilinear mapping). For any γ, fΩ(γ)
is multi-affine in gΩ. That is for any i ∈ Ω, define
Ψ such that Ω = Ψ ∪ {i} and i /∈ Ψ, then fΩ(γ) is
affine in gi. Namely, there is a polynomial in γ, hΨ(γ),
independent of gi such that

fΩ(γ) = γ · fΨ(γ) + gi · hΨ(γ) ∀γ (16)

Corollary 3.2 (Nested stability regions). The stability
region of C.F.Ψ is the projection of the stability region
of C.F.Ω onto RjΨj (gi → 0 ∀i /∈ Ψ), for any Ψ ⊂ Ω.

Corollary 3.3 (Simplex stable). All points inside the

simplex

(
gΩ ∈ BΩ

����� X
i2Ω

Xiigi ≤ 2

)
are guaranteed

to be inside the stability region of C.F.Ω.



Theorem 3 provides the requirement that all gi’s
must be strictly positive to ensure local stability. That
is, drop in voltage requires injection of reactive power,
and increase requires consumption, following power
systems experience. The convexity of the region implies
that if a learning algorithm has a history of multiple
stabilizing policies, then it knows that any convex
combination of those policies is guaranteed to be stable.
The open box provides strict upper and lower bounds.
Finally, the effect of each individual node’s policy gi
on the stability of the whole system is highlighted, and
yields results in the corollaries that follow.

Corollary 3.1 addresses the effect of each gi on
the quantity fΩ(γ). Per the theorem, the algebraic
equation in terms of gΩ (fΩ(2) = 0) represents the
stability region’s (outer) boundary. For some fixed
node i, changes in fΩ(2) are linear in changes in gi.
Moreover, if the policies are fixed at all nodes in Ψ
(where Ω = Ψ ∪ {i}), the policy for i at the boundary
of the stability region can be found directly by Eq. (16)
as −2fΨ(2)/hΨ(2).

As an example, consider a system with 2 nodes
active (Ω = {1, 2}), and X11 = 1, X22 = 2, X12 =
X21 = 0.5. It is illustrated in Fig. 4 that if g2 is fixed
at 0.6, then the most aggressive the policy at node 1
can be is roughly 1.68 (red point), which was found by
−2fΨ(2)/hΨ(2) ≈ 1.68 for Ψ = {2}. In a sense, there
is a total amount of energy that is to be provided, so if
one node provides less, the other can provide more.

Figure 4. Possible regions of C:F: systems. Small box

of Theorem 4 (blue) � Simplex (green) � Stability

Region (red) � open box BΩ (yellow). Here, Ψ = f2g.

Corollary 3.2 and 3.3 can be verified by Fig. 4.
Project the red region onto the horizontal axis, and
indeed it will yield the region (0, 2/X11), the stability
region of C.F.f1g. The green region is the simplex
mentioned in the corollary.

Theorem 4 (Node-Invariant Policy). For any C.F.Ω, if
each node i ∈ Ω adopts any policy gi ∈ (0, 2/mXii),
independent of other nodes, where m = |Ω|, then C.F.Ω
is guaranteed to be stable.

Theorem 4 says that there is a small box of policies
(see Fig. 4) which is guaranteed to be inside the stability
region. The fact that it is a box implies that for any
group of nodes, if the policies are fixed and the system is
stable, then the other nodes can roam around inside the
box freely and the system will remain stable. Because
the box is much smaller for higher order system, it is
considered as too conservative, yet the tip of the box
(farthest from origin) may be considered a good starting
point for a searching algorithm. The tip of this box is
addressed in Section 4.

Please note that the illustration shown in Fig. 4 does
not apply only to the given example. For any radial
network, of any size, which can be reasonably modelled
as a C.F. system (Eq. (12)), there will always be an outer
box (yellow), an inner box (blue), and a simplex (green),
and the boundary of the stability region (red) will be
always be between the simplex and the outer box!

4. Choice of stationary policies from
stability region

The previously mentioned theorems and corollaries
establish bounds on the choice of policy gi for every
node i, but the question remains: where inside the
stability region should the controllers operate? In this
section, we propose a control schemes which is based
on policies that are fixed in time, i.e. stationary policies,
to answer the question.

The objective of Eq. (10) is based on a single-node
selfish objective. Since each node is unaware of the
presence or absence of other activity in the network, the
unknown term of Eq. (8) is assumed by default to follow
a white noise behavior, thus the objective becomes an
LQG control objective. It involves solving a Ricatti
equation, whose solution yields a stationary policy of

g�i =
1

Xii

2

1 +

s
1 +

4µi

X2
ii

∀i (17)

where µi is the control penalty factor in Eq. (10). The
reason we can analytically express the optimal gain as
in Eq. (17) is because the single-node scalar system can
be solved by hand.

The factor which determines if this distribution of
policies g�i ∀i will yield stability or not is the choice
of µi ∀i. This value needs to be preset for each node.
Considering we desire to dispatch this algorithm to all
nodes, we would like a strategy that is as unbiased
towards any node as possible. To do this, we manipulate



Eq. (17). For some θi ∈ (0, 1), assign µi as:

µi ←
X2

ii
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θi
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35 (18a)

⇒ g�i ← θi
2

Xii
(18b)

As shown in Theorem 3, the open box places upper and
lower bounds which require gi ∈ (0, 2/Xii). By the
trick used in Eq. (18b), we define necessary conditions
of θi ∈ (0, 1) ∀i to remain inside the box, and sufficient
conditions of θi ∈ (0, 2/m) ∀i for a guarantee of
stability (m is the total number of active nodes with PV)
is provided by Theorem 4.

The only remaining task is to pick out θi, and
one way to do it is θi ← constant ∀i, where one
may perform offline search over the best constant (i.e.
node-unbiased). Although θi may seem unbiased over
the set of nodes, keep in mind that g�i is still influenced
by Xii as shown in Eq. (18b). This is justified by the
fact that nodes deeper into the network have a higher
impact on the grid (see Eq. (4)) and must be set to follow
more conservative policies. This is exactly what is being
proposed in Eq. (18b) for constant θi.

From Eq. (18b), one may realize θi as a
risk factor, where θi = 1/m is considered as
risk-balanced, θi � 1/m as heavy risk-seeking or too
strong/aggressive, and θi � 1/m as very risk-averse
or too weak/safe/conservative. A case study of this is
performed in Section 5. See Fig. 8 and Fig. 9. In those
results, we assume that the same value of θ is dispatched
to all nodes (i.e. all are equally risky). However, it
is also possible that at individual nodes, a controller
free-rides the local θ value by tuning it arbitrarily within
(0, 1), perhaps to save energy locally if other buses
are already providing enough reactive power. For now,
this is left to future work, where a learning scheme is
adopted at each node to find the best local θ.

This risk terminology is justified by Fig. 4. It can
be seen that the weaker the policy is at one node, the
more expanded the stability region will become for the
other nodes. That is, if any group of nodes become more
risk-averse, the nodes everywhere else get to be more
risk-seeking without escaping the stability region, and
vice-versa. In general, to dispatch an unbiased set of
θi’s, we assume risk-balanced policies at all nodes as a
safe bet, i.e. θi ≈ 1/m ∀i.

It is worth noting though that m is the number or
active PV nodes, not the total number of nodes in the
system. This means that in a system with many nodes,
1/m is small only when many PV’s are actively engaged
in reactive power compensation. In general, that is not

bad because the more the better, since the injection of
power by one is received by the other. It is reasonable
to then expect that, for stability purposes, the bounds on
each injection is inversely proportional to the number
of active nodes, which is precisely captured in the 1/m
factor, presented here and in Theorem 4.

5. Case study

We test our theory on a 56-bus Southern California
Edison distribution grid (12 kV, 1 MVA base) as used
in [7]. A schematic of the network is shown in Fig. 5.
We modified the case file for this network developed
by [15] to accompany MATPOWER [18], which we
used in MATLAB for our simulations. For example,
we changed all PV-type buses (PV here in the power
flow sense, not photovoltaic) to PQ-type, i.e. all are PQ,
except the slack.

Figure 5. Schematic of 56-bus distribution grid [7].

Moving forward, we will return to use “PV” to mean
photovoltaic. We assume PV penetration at all nodes
other than the slack bus, along with the possibility of
reactive power injection at all buses with PV. There is
a total of n = 55 possible active nodes (since bus
1 is slack). Another modification we made was to
remove all sources of steady state active and reactive
power injection, and replace them with our own, as
follows. Shown in Fig. 6 (top), PV penetration was
taken from real data obtained publicly thanks to Pecan
Street’s Dataport website [19]. We multiply the 24-hour
PV profile by 200 to suggest that at each node, there
are that many homes contributing a relatively similar
profile.

The load profile shown in Fig. 6 (bottom) is not
obtained from real data, but is modelled in such a way
that the sum of the loads from various nodes does not
simply cancel out. This allows for testing the proposed
control scheme under harsher loading conditions.

5.1. Voltage performance with no control

Under the real power injection and consumption
shown in Fig. 6, and zero control, i.e. no reactive power
compensation, we obtain the results shown in Fig. 7.
The voltage is too low when the system is heavily loaded




