
Association for Information Systems Association for Information Systems

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL)

ICEB 2004 Proceedings International Conference on Electronic Business
(ICEB)

Winter 12-5-2004

Distributed Load Balancing in Peer-to-Peer Computing Distributed Load Balancing in Peer-to-Peer Computing

Shan Zhang

Zheng Qin

Follow this and additional works at: https://aisel.aisnet.org/iceb2004

This material is brought to you by the International Conference on Electronic Business (ICEB) at AIS Electronic
Library (AISeL). It has been accepted for inclusion in ICEB 2004 Proceedings by an authorized administrator of AIS
Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

https://aisel.aisnet.org/
https://aisel.aisnet.org/iceb2004
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb2004?utm_source=aisel.aisnet.org%2Ficeb2004%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Distributed Load Balancing in Peer-to-Peer Computing

Shan Zhang, Zheng Qin

Software School, Tsinghua University, Beijing, 100084, China

s-zhang@mails.tsinghua.edu.cn, qingzh@tsinghua.edu.cn

ABSTRACT

In this paper, we address the load balancing problem in the context of peer-to-peer computing environments. The key
challenge to employ peer-to-peer networks for distributed computing is to exploit the heterogeneous processing capabil-
ity of the participating hosts as well as the diverse network conditions. The contribution of our work is twofold. First,
we model the load balance problem as an optimization problem with the objective of minimizing the system response
time. This modeling considers not only the current loading of hosts, but also the fluctuation of network delay, which
completely captures the characteristics of the P2P systems. Second, we propose a gradient projection algorithm to solve
the optimization problem, which is fully distributed and easy for implementation. Simulation results demonstrate that
our scheme has satisfied performance in terms of convergence, response time and load distribution.

Keywords: peer-to-peer computing, load balancing, constrained optimization, gradient projection

1. INTRODUCITON

The Peer-to-Peer (P2P) systems are composed of a set
of end hosts that work collaboratly for some common
tasks, such as file sharing, on-demand streaming,
collaborative computing etc.. They differ from the
traditional distributed systems from several aspects.
First, the participating hosts in the P2P systems are
often distributed across the Internet and higher
end-to-end delay is expected between logically closet
neighbor nodes. Second, most of these nodes are
norml PCs and have diverse processing speed, storage
capacity and access bandwidth. These features make it
challenging task to design the load balancing scheme to
coordinate the distribution of items to be stored, data to
be downloaded, or computations to be carried out to the
participating hosts so that the heterogeneity of the hosts
can be fully exploited.
 Addressing this problem, several solutions have
been proposed in literature [1]-[4]. These schemes are
focused on the load balancing for structured P2P
systems. Structured P2P systems employ a class of
distributed hash tables (DHT) for item storage and
retrieval. The main limitation of this kind of systems is
that the distributed hash tables may not produce load
balance as good as standard hash function, so there is a

 imbalance factor in the number of items
stored at a node [2]. In [2], Rao et. al. assume that
the system is static, i.e., the membership and data items
are stable over a timescale that the load balancing
algorithm can be performed. They employ the concept
of virtual server that represents a peer in DHT. Each
physical node can host one or more virtual servers so
that the storage and retrieval of data items are conducted
at the virtual server level instead of the physical node

level. The key to achieve load balance is then to move
virtual servers from overloaded physical nodes to lightly
loaded physical nodes. This concept is extended to the
dynamic P2P systems by Godfrey et. al. in [4], where
data items can be continuously inserted and deleted, and
nodes may change their states frequently. They propose
to maintain the loading information of the peer nodes on
a set of directory servers. These directory servers
periodically schedule the reassignment of the virtual
servers among the physical nodes that they are serving.
However, these solutions do not consider the cost to
move the virtual servers between the hosts. In [5], Zhu
and Hu proposed a proximity-aware load balancing
scheme to address this issue. The basic idea is to utilize
the proximity information of the physical nodes, so that
the virtual servers are only reassigned and transferred
between physically close heavy nodes and light nodes
so that the cost of performing reassignments is reduced.

(log())NΘ

 The drawback of the virtual server based load
balancing schemes is that running multiple virtual nodes
may increase the bandwidth consumption in maintaining
the network connectivity across neighbor nodes in the
peer-to-peer network. In [6], Karger et. al. address this
problem by arranging for each node to activate only one
of its virtual nodes at any given time. Specifically, the
node checks its inactive virtual nodes periodically. If it
finds that the load distribution has changed, it may
migrate to one of these virtual nodes. In this way,
previous load is shifted to other nodes, and it will taks
responsibility for loading of the newly migrated virtual
nodes.
 All of the aforementioned schemes are based on
the structured P2P systems where the load distribution is
tightly controlled by the distribution hash functions.
Although the virtual server concept is elegant and easy

ybb
The Fourth International Conference on Electronic Business (ICEB2004) / Beijing

ybb

ybb
1235

to implement, the achieved load balancing is ad-hoc in
that it relies on the reassignment or migration of data
items after they have been assigned. The fineness
depends on the space allocated for each virtual server.
The tradeoff, however, is not easy to justify.
Furthermore, the scheme adopted in [4] essentially
resorts to the centralized solution, which makes the
directory servers vulnerable to single-point-failure.
 In this paper, we consider the load balancing prob-
lem in the context of unstructured P2P systems. Exam-
ple of this kind of systems includes Gnutella, KaZaA,
etc. A salient feature of these unstructured P2P systems
is that the host can fully control where its data items can
be placed, and the amount of the data items that should
be assigned to these hosts. This feature is desirable for
load balancing purpose since it allows for a fine-grained
allocation of load across all participating hosts accord-
ing to their loading. However, the results is not only
limited to unstructured P2P system, it is also applicable
for structured p2p system. For example, it can be used
to find a finegrained reassignment of virtual servers for
this kind of p2p systems.
 The contribution of our work is twofold. First, we
model the load balance problem as the minimum cost
problem. This modeling considers not only the current
loading state of the participating hosts, but also the
fluctuation of network delay, which completely captures
the characteristics of the P2P systems when they are
employed for massive computing purpose. Second, we
propose a gradient projection algorithm to solve the
optimization problem, which is fully distributed and
easy for implementation.
 In the reset of this paper, we first present the sys-
tem model and problem formulation in Section 2 and
discuss the necessary conditions for the optimization
problem. In Section 3, we then propose an algorithm
based on the classic gradient projection methods. By
identifying the difficulties to implement the algorithm in
practice, we propose an approximation solution which is
suited for practical implementation. We also discuss the
inherit reasonability of our model for the p2p computing
environments. Simulation results are presented in Sec-
tion 4 and finally we conclude this paper in Section 5
and suggest some possible directions for future research.

2. SYSTEM MODEL AND PROBLEM
MULATIFOR ON

2.1 Problem Statement

We are given a peer-to-peer system and a set of N hosts.
Each host can choose a set of hosts from
these N hosts as its servers to carry out the computation
for its raw data. These servers can be chosen randomly
as in the unstructured peer-to-peer networks, or can be
determined according to the distributed hash function as
that of the structured peer-to-peer networks.

i N∈ iS

 For each host i, we are given a scalar re-
ferred to as the generating rate of the raw data of host

i to be computed. In the context of the peer-to-peer
computing, (measured in units/second) could be
the data rate exporting from host i to its servers for
computation for the final results. The objective of our
problem is to divide of host i among the set of

 servers in a way that the resulting loading distri-
bution across the overall peer-to-peer system mini-
mizes a suitable cost function.

ir

ir

ir

iS

 We denote ikx as the data rate that is assigned

by host i to its server ik S∈ . The collection of as-

signment ikx must satisfy the following constraints

 ,
i

ik i
k S

x r i
∈

N= ∀ ∈∑ (1)

 0, ,ik ix k S i N≥ ∀ ∈ ∈ (2)
 For peer-to-peer computing, the primary design
objective is to minimize the response time for the tasks,
which is the duration from the time that a host assigns
the raw data to the server to the time that the final result
is computed and retrieved. In peer-to-peer systems, the
participating hosts have highly diverse processing
speeds and are widely distributed across the Internet. As
a result, the response time is composed two components,
one is host dependent processing delay and the other is
network dependent end-to-end delay.
 For host-dependent delay, we adopt the response
time model from [7] by treating the computing process
as an M/M/1 system. Specifically, suppose a host k is
chosen by a set of kA hosts as their servers. Then the
aggregated data rate to be carried by this host is
 (3)

k

k
i A

J
∈

= ∑ ikx

Suppose the host k has a processing speed kσ , then
the cost function of the processing delay for each host
i to get the computation result from this host can be
obtained following M/M/1 queuing model as follows

 ()h k
ik ik

k k

JD x
Jσ

=
−

 (4)

 For network delay, it consists of the time for deliv-
ering the raw data from the host to the server plus the
time for retrieving the results from the server. Without
losing generality, we can assume the volume of the raw
data is very larger than that of the results, so the delay of
getting the results can be ignored and we only consider
the former one. Assume the path between a node i

and node k consists of a set of links of . Then
the cost function between i and k can be represented by
a superposition of delays of all links along the path by
modeling each link as M/M/1 queue as follows

ikP

0 1, ,l l

 ()
ik

n l
ik ik l l

l P l l

YD x d Y
C Y∈

⎡ ⎤
= +⎢ −⎣ ⎦
∑ ⎥ (5)

ybb
The Fourth International Conference on Electronic Business (ICEB2004) / Beijing

ybb

ybb
1236

where is the aggregated traffic over link l in-

cluding
lY

ikx , and are the link capacity and
propagation delay of link l respectively.

lC ld

 Summing up, the overall cost function for response
time between host i and k is
 (6) h

ik ik ikD D D= + n

Consider the overall cost function of the form
 (7) ()

i

ik ik
i N k A

D x
∈ ∈
∑∑

The problem is to find a set of job assignments
{ }ikx that minimize the cost function (6) subject to
the constraints of equations (1)-(3). More formally,
the load balancing problem can be stated as follows

minimize ()
subject to ,

0, ,
i

ik i
k S

ik i

D x
x r i N

x k S i N
∈

= ∀ ∈

≥ ∀ ∈ ∈

∑ (8)

where

 (9)
()

() ()

() ()
i

i

ik ik
i N k S

h n
ik ik ik ik

i N k S

D x D x

D x D x
∈ ∈

∈ ∈

=

= +

∑∑

∑∑

2.2 Necessary Conditions for Optimality

We first calculate the partial derivative of the objective
cost function (9) with respect to ikx , which is

 () ' 'h n
ik ik

ik

D x D D
x
∂

= +
∂

 (10)

where ' and ' are the derivatives of

and respectively. Equation (10) can be in-
terpreted as the overall response time between host i
and server k if the server’s processing delay is taken
to be the first derivative and the network delay to

be the first derivative .

h
ikD n

ikD ()h
ikD x

()n
ikD x

'h
ikD

'n
ikD

 According to the Kuhn-Tucker theorem(see also
[9]), at optimality, a host only assigns its jobs over serv-
ers that have the minimum response time given by (10).
More specifically, let }{ ikx x∗ ∗= be an optimal

assignment vector. Then if for some 0ikx∗ > ik S∈ ,
we have[9]

'

() (), ' i
ik ik

D Dx x k
x x

∗ ∗∂ ∂
≥ ∀

∂ ∂
S∈ (11)

 That is, the optimal assignment is positive only on
servers with the minimum first derivative response
time.

3. LOAD BALANCING ALGORITHM AND
DISTRIBUTED IMPLEMENTATION

3.1 Gradient Projection Methods

The standard technique to solve the equality constrained
optimization problem (8) is the gradient projection
algorithm [9]. The basic idea is to iteratively adjust the
amount of assignment in opposite to the gradient of the
objective function and projected to feasible space speci-
fied by the constraint functions. In general, the gradient
projection algorithm takes the iterative form as follows

 (12) 1 () , 0,1,t t t tx x D x tα
++ ⎡ ⎤= − ∇ =⎣ ⎦

where is the step size at time t, is a
vector with the (i,k)th element to be the first derivative

of with respect to

0tα > ()tD x∇

()D x ikx , which is ()
ik

D x
x
∂
∂

 as

shown in (10) at time t, and for any vector z , the

function []z +
denotes the projection of z onto the

feasible space.
 The iterative algorithm in (11) can be expressed
individually for each host-server pair as the following

 1 ()t t t t
i i ix x D xα

++ ⎡ ⎤= − ∇⎣ ⎦ (13)

where { },t t
i ik ix x k S= ∈ is the assignment vector of

host i over all its servers at time t.

3.2 Practical Implementation

The projection algorithm in (13) can be carried out
individually by each host according to the locally
received cost function information, so it is well suited
for distributed implementation. The most straight-
forward approach is for each host to broadcast the
value of the current total aggregated loading to
all hosts that select it as the server. Each host then
computes the host-dependent cost and its de-
rivative. The difficult here, however, is that the net-
work-dependent cost can only be implicitly ob-
tained since in general it is not practical to ask inter-
mediate network nodes for detailed traffic informa-
tion.

kJ

h
ikD

n
ikD

 Notice that the parameters involved in the pro-
jection algorithm are only the first derivative '
and , which, as we have discussed, can be inter-
preted as the response time during the host and the net-
work respectively. For host-dependent response time, it
is actually the time for waiting for the computation re-
sults, while for network-dependent response time, it is
actually the end-to-end delay between the host and
server. So we can actually directly measure these two

h
ikD

'n
ikD

ybb
The Fourth International Conference on Electronic Business (ICEB2004) / Beijing

ybb

ybb
1237

values and use them to approximate the first derivative
of two cost functions.
 Let be the measured processing delay at host k

and be the network delay between host i and k.

Here can be measured by host i itself, while
can be measured and fed back by host k. Host i receiv-
ing all these information from all its servers can deter-
mine the optimal assignment of its task among these
servers using the iterative algorithm as follows

kd

ikd

ikd kd

(1) ; ,min min{ | }i ik kd d d k← + ∈ iS

S∈(2) ; 0 arg min{ | }ik kk d d k= +
(3) foreach , do ik S∈

(4) ; ,minik ik k id d d∆ ← + −

(5) if , do 0k k≠

(6) { }max 0,ik ik ikx x α← − ×∆ ;
(7) end
(8) end
(9)

0

, 0i

ik i ik
k S k k

x r x
∈ ≠

← − ∑

In this algorithm, is the index of the server with

the minimum total response time . In step (4),
the algorithm computes the difference of the response
time between any server and this minimum one. In
step (6), it decreases the assignment to each non-
minimum server in proportion to this difference and
projection to the feasible space. The max projection
function guarantees that nonminimum with zero as-
signment originally always stays at zero. In step (9),
it simply assigns the rest task to the server with the
minimum response time. It is trivial to prove that the
assignment to the minimum response time server is
always increased, while the nonminimum servers are
always reduced until to zero, eventually only these
severs with minimum (and identical) response time
have positive assignment as (11) indicates. This
guarantees that the assignments approach to optimal-
ity eventually.

0k

,minid

3.2 Discussion

Unlike traditional distributed computing system, the
participating hosts in the peer-to-peer network may be
distributed across wide area network, which make the
network delay a non-negligible factor. At the same time,
computers involved in the p2p computing are normally
personal computers that have diverse processing speeds.
The processing delay is the major concern for the p2p

computing. Our model incorporates both factors into the
same framework. Therefore the load balance problem
exhibits distinct features from the traditional distributed
computing as well as other delay-insensitive p2p sys-
tems. Depending on the relation of the network delay
and processing delay, we can envision the following two
scenarios;

 If the processing delay is the dominate part of the
overall response time, i.e., process delay is far more
longer than network delay, our model is close to the
traditional load balance problem where the objective
is to assign the jobs across the servers according to
their processing capability.

 If the network delay is the dominate part of the over-
all response time, our model is close to the optimal
routing problem. The objective here becomes to as-
sign the tasks across the servers to avoid overloading
the network connections with longer delay.

Clearly, under this framework, in contrast to the con-
ventional wisdom that a host should choose these
physically closet nodes as the servers, which may led to
task concentration over these nodes and a higher proc-
essing delay is expected. Instead, a tradeoff should be
achieved to between the processing delay and network
delay, which makes the selection of the server a rather
challenging problem.

4. PERFORMANCE EVALUATION

In this section, we evaluate the distributed load balanc-
ing scheme proposed in this paper using simulations
based on a randomly generated network. The objective
is to investigate the convergence of the distributed im-
plementation, the effects of the number of servers for
each host on the performance of the scheme, and the
behavior of the scheme under different composition of
the network delay and processing delay. The network
used in the simulations has 100 nodes, among of them,
10 nodes are randomly selected as the hosts which gen-
erate the raw data at a rate of 10k bits per seconds. The
rest nodes serve as the servers for these hosts. The
number of servers for all hosts is the same and the map
of host and server is randomly determined.
 Fig. 1 illustrates the convergence of the mean re-
sponse time of these 10 hosts within a 200-seconds run
of simulation. In this simulation, each host randomly
selects 5 servers and distributes its task evenly across its
servers at the beginning, which are far from optimal as
shown in the figure: all of them incur higher response
time which is the mean value of the response time to all
the servers of each host. The response time of all hosts
drops quickly within the first 20 seconds of the simula-
tion and converges to the stable value after the simula-
tion is run for about 30 seconds. The result suggests that
proposed algorithm can reduce the tasks from the over-
loaded servers or servers with congested network con-
nections and distribute them to the under-utilized serv-
ers or these that have good network conditions.

ybb
The Fourth International Conference on Electronic Business (ICEB2004) / Beijing

ybb

ybb
1238

 Fig. 2 compares the mean response time of all
hosts under different number of servers for each host.
We consider five cases where the number of servers of
each hosts varies from 2 to 10. As this figure shows, the
hosts incur a very higher response time when they have
only two servers for each. This is reasonable because in
this case a host has little freedom to adjust the assign-
ment of the task if both of its two servers are overloaded
or under severe network conditions. The response time
is significantly reduced as the number of the servers of
each host is increased to four as well as from four to six.
However, the improvement of the response time is
slowed down as the number of servers is further in-
creased, and the convergence of the response time has a
subtle increment when the number of servers is in-
creases. This simulation suggests that the server number
should be chosen at a reasonable value so to achieve the
tradeoff between the response time and the convergence
time.

0 20 40 60 80 100 120 140 160 180 200
30

40

50

60

70

80

90

100

Time (seconds)

M
ea

n
re

sp
on

se
 ti

m
e(

m
s)

Fig. 1 Convergence of response time vs simulation time

0 20 40 60 80 100 120 140 160 180 200
50

60

70

80

90

100

110

120

Time(seconds)

M
ea

n
re

sp
on

se
 ti

m
e(

m
s)

2 servers
4 servers
6 servers
8 servers
10 servers

Fig. 2 Response time under different number of servers

 As discussed in the previous section, our model
tries to capture two factors that affect the performance
of p2p computing environments. The proposed scheme
may exhibit different properties depending on the
composition of the overall response time. In this
simulation, we will verify this characteristic using two
set of settings. We use the same network topology as
above simulations so that the average network delay is

simulations so that the average network delay is roughly
fixed. We then adjust the processing speeds of the nodes
so that in the first case, the ratio of the processing delay
to the network delay is about 5:1, while in the second
setting, this ratio is about 1:5. In Fig. 3 and Fig. 4, we
illustrate the throughput (the message processed in bits
per seconds) of the host under these two settings respec-
tively. Each figure shows the max, min and mean
throughput of all nodes. As shown in Fig.3, since in this
case the processing delay is very larger comparing to
network delay, the algorithm behaviors like the normal
load balancing scheme that can distribute tasks as
evenly as possible overall servers. So the max, min and
mean value are very closer. While as shown in Fig. 4,
here the network delay is comparable to processing de-
lay, so the algorithm considers not only the server load
but also the network delay, so the server throughput is
not distributed evenly, however, the overall response
time still approaches to the optimality not shown here.

20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

8

9

10

Time(seconds)

Th
ro

ug
hp

ut
(M

es
sa

ge
s

pr
oc

es
se

d
(K

bp
s)

) Max
Mean
Min

Fig. 3 Throughput under first setting

20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

8

9

10

Time(seconds)

Th
ro

ug
hp

ut
(M

es
sa

ge
s

pr
oc

es
se

d
(K

bp
s)

)

Max
Mean
Min

Fig. 4 Throughput under second setting

5. CONCLUSION AND FUTURE WORK

In this paper, we have presented the modeling and solu-
tion for the loading balancing problem for a p2p com-
puting system. In this system, the primary challenge is
to allocate the tasks overall all participating nodes so
that the overall response time is minimized. We model

ybb
The Fourth International Conference on Electronic Business (ICEB2004) / Beijing

ybb

ybb

ybb
1239

this as a constrained optimization problem. The model
captures the distinct features of p2p computing, that is,
the cost involved in the computation includes not only
the processing delay, but also the network delay. Lever-
aging some well studied analysis techniques, we can
solve the constrained optimization problem using the
gradient projection algorithm, which is well suitable for
distributed implementation. Using extensive simulation
experiments, we evaluate the proposed scheme in terms
of convergence, response time as well as the tradeoff the
processing delay and network delay. Experimental re-
sults demonstrate our scheme has satisfied performance.

[2] A. Rao, K, Lakshminarayanan, S. Surana, R, Karp,
and I. Stoica, “Load Balancing in Structured P2P
Systems,” in Proc. IPTPS’03, Feb. 2003.

[3] J. Byers, J. Considine, and Michael Mitzenmacher,
“Simple Load Balancing for Distributed Hash
Tables,” in Proc. IPTPS’03, Feb. 2003.

[4] B. Godfrey, K. Lakshminarayanan, S. Surana, R.
Karp and I. Stoica, “Load Balancing in Dynamic
Structured P2P Systems”, Infocom’04, March,
2004. In this study, we have only considered the static

situation where the nodes are stable in the network, and
a host never changes its servers once selected. It is in-
teresting to investigate the case where the node can join
or leave the p2p networks dynamically. A leaving node
may broke the ongoing computing, this lead to another
problem that a host may have to change its servers for
better performance or for failure of the existing servers.
It is interesting to investigate the stability of the pro-
posed scheme in this dynamic environment, which will
be the focus of the further work.

[5] Yingwu Zhu and Yiming Hu. "Towards Efficient
Load Balancing in Structured P2P Systems".
IPDPS'04 . April 2004.

[6] David R. Karger and Matthias Ruhl, “Simple
Efficient Load Balancing Algorithms for
Peer-to-Peer Systems”, IPTPS'04 . Feb. 2004.

[7] Subhash Suri, Csaba Toth and Yunhong Zhou.
“Uncoordinated Load Balancing and Congestion
Games in P2P Systems”, IPTPS'04 . Feb. 2004.

REFERENCES

 [8] Dimitri P. Bertsekas and John N. Tsitsiklis, “Parallel
and Distributed Computation: Numerical Methods”,
Athena Scientific, 1997.

[1] I. Stoica, R. Morris, David Karger, M. Frans
Kaashoek,and H. Balakrishnan, “Chord: A Scalable
Peer-to-peer Lookup Service for Internet
Applications,” in Proc. ACM SIGCOMM, San
Diego, 2001, pp. 149–160.

[9] Dimitri P. Bertsekas and R. Gallager, “Data
Networks”, Printice-Hall Inc. 2nd edition, 1992.

ybb
The Fourth International Conference on Electronic Business (ICEB2004) / Beijing

ybb

ybb
1240

	Distributed Load Balancing in Peer-to-Peer Computing
	Instruction of Style of Papers Submitted to ICSDS’2002

