A Three-phased Online Association Rule Mining Approach for Diverse Mining Requests

Chingyao Wang
Shianshyong Tseng
Tzungpei Hong
Yianshu Chu

Follow this and additional works at: https://aisel.aisnet.org/iceb2004

This material is brought to you by the International Conference on Electronic Business (ICEB) at AIS Electronic Library (AISeL). It has been accepted for inclusion in ICEB 2004 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.
A Three-phased Online Association Rule Mining Approach for Diverse Mining Requests

Chingyao Wang¹, Shianshyong Tseng¹, Tzungpei Hong², Yianshu Chu¹

¹ Institute of Computer and Information Science, National Chiao-Tung University, Hsinchu, 300, Taiwan, China
² Department of Electrical Engineering, National University of Kaohsiung, Kaohsiung, 811, Taiwan, China
tphong@nuk.edu.tw, {cywang, sstseng, yschu}@cis.nctu.edu.tw

ABSTRACT

In the past, most incremental mining and online mining algorithms considered finding the set of association rules or patterns consistent with the entire set of data inserted so far. Users can not easily obtain the results from their only interested portion of data. For providing ad-hoc, query-driven and online mining supports, we first propose a relation called multidimensional pattern relation to structurally and systematically store the context information and the mining information for later analysis. Each tuple in the relation comes from an inserted dataset in the database. This concept is similar to the construction of a data warehouse for OLAP. However, unlike the summarized information of fact attributes in a data warehouse, the mined patterns in the multidimensional pattern relation can not be directly aggregated to satisfy users’ mining requests. We then develop an online mining approach called Three-phased Online Association Rule Mining (TOARM) based on the proposed multidimensional pattern relation to support online generation of association rules under multidimensional considerations. Experiments for both homogeneous and heterogeneous datasets are made, with results showing the effectiveness of the proposed approach.

Keywords: association rule, incremental mining, multidimensional mining, constraint-based mining, data warehouse

1. INTRODUCTION

Data mining technology has become increasingly important in the field of large databases and data warehouses. This technology helps discover non-trivial, implicit, previously unknown and potentially useful knowledge [3][9][16], thus being able to aid managers in making good decision. Among various types of databases and mined knowledge, mining association rules from transaction databases is the most interesting and popular. Previous works on mining association rules could be classified into batch mining approaches [2][4][5][7][20][22][24] and incremental mining approaches [10][11][13][18][23][25] according to the processing ways. Most of them have focused on finding association rules or patterns in a specified part of a database [15]. Some contexts (circumstance information) such as region, time and branch have usually been ignored in mining requests. Users can not easily obtain association rules or patterns from their only interested portion of data. However, decision-makers usually diversely consider problems at different aspects [14][15][16]. They may need to analyze market demands, customer preferences, locations, and short-term/long-term trends. They may also want to understand the change of discovered patterns or rules in different dimensions. This may decrease the usage of mining in online decision support for multidimensional data.

In this paper, we attempt to extend the concept of effectively utilizing previously discovered patterns in incremental data mining to support online generation of association rules under multidimensional considerations. We first propose the multidimensional pattern relation to structurally and systematically store the additional context information and mining information for each inserted dataset. It is conceptually similar to the construction of a data warehouse for OLAP [8][19][26]. Both of them preprocess the underlying data in advance, integrate related information, and store the results in a centralized structural repository for later use and analysis. However, unlike the summarized information of fact attributes in a data warehouse, the mined patterns in the multidimensional pattern relation can not be directly aggregated to satisfy users’ mining requests. We then develop a Three-phased Online Association Rule Mining (TOARM) approach to effectively and efficiently satisfy diverse mining requests. It mainly consists of three phases, generation of candidate itemsets, reduction of candidate itemsets, and generation of association rules. The phase for generation of candidate itemsets selects the tuples satisfying the context constraints in a mining request and generates the candidate itemsets from the matched tuples. After that, the phase for reduction of candidate itemsets calculates the upper-bound supports of the candidate itemsets and adopts two pruning strategies to reduce the number of candidate itemsets. Finally, the phase for generation of association rules finds the final large itemsets and then derives the association rules from them. Experimental results also show the effectiveness of the proposed TOARM approach.
2. RELATED WORK

An association rule indicates a relationship among items such that the occurrence of certain items in a transaction would imply the occurrence of some other items in the same transaction. The process of mining association rules can roughly be decomposed into two tasks [4]: finding large itemsets and generating interesting association rules. The first task discovers the itemsets that satisfy a user-specified minimum support from a given database. It is used to obtain the statistically significant patterns. The second task finds the association rules that satisfy a user-specified minimum confidence from the large itemsets. Since this process is rather costly and time-consuming, some famous mining algorithms, such as Apriori [4], DIC [7], DHP [22], Partition [24], Sampling [20] and GSP [5], were proposed to achieve this purpose. Among them, the Apriori algorithm, which is the best well-known, utilizes a level-wise candidate generation approach to reduce its search space, such that only the large itemsets found in the previous level are treated as seeds for generating the candidate itemsets in the current level. This level-by-level property can greatly reduce the number of itemsets to be considered in a mining process. Many following algorithms were then based on this property and attempted to further reduce candidate itemsets and I/O costs. Comprehensive overviews can be referred to in [9][16].

Most of the mining algorithms process data in a batch way and must re-process the entire database whenever either the data stored in a database or the thresholds (i.e. the minimum support or the minimum confidence) set by users are changed. They do not utilize previously mined patterns for later maintenance, and may require considerable computation time to update the updated set of association rules or patterns [10]. Recently, some researchers have developed incremental mining algorithms to maintain association rules without re-processing the entire database whenever the database is updated. Examples include the FUP-based algorithms proposed by Cheung et al. [10][11], the adaptive algorithm proposed by Sarda and Srinivas [23], the incremental mining algorithm based on the concept of pre-large itemsets proposed by Hong et al. [18], and the incremental updating technique based on the concept of negative border proposed by Thomas et al. [25] and Feldman et al. [13]. The common idea of the above researches lies in that the previously mined patterns are stored in advance for later usage. When new transactions are inserted or old records are deleted, a large part of the final results can be obtained by comparing the patterns mined from the newly inserted transactions or deleted records with the pre-stored mined knowledge. Only a small portion of patterns needs to be re-processed against the entire database. Much computation time can thus be saved in this way. Among the above approaches, the FUP-based algorithms [10][11] store the previously mined large itemsets for later maintenance. Some other approaches utilize the pre-large itemsets [18] and the negative border [13][25] to enlarge the amount of pre-stored mined information for further improving the maintenance performance at the expense of storage spaces.

3. THE MULTIDIMENSIONAL PATTERN RELATION

A multidimensional pattern relation schema MPR is a special relation schema for storing mining information. An MPR consists of three types of attributes, identification (ID), context, and content. There is only one identification attribute for an MPR. It is used to uniquely label the tuples. Context attributes describe the contexts (circumstance information) of an individual block of data which are gathered together from a specific business viewpoint. Examples of context attributes are region, time and branch. Content attributes describe available mining information which is discovered from each individual block of data by a batch mining algorithm. Examples of content attributes include the number of transactions, the number of mined patterns, and the set of previously mined large itemsets with their supports.

The set of all previously mined patterns with their supports for an individual block of data is called a pattern set (ps) in this paper. Assume the minimum support is s and there are l large itemsets discovered from an individual block of data. A pattern set can be represented as ps = {(xi, si) | si ≥ s and 1 ≤ i ≤ l}, where xi is a large itemset and si is its support. The pattern set is thus a principal content attribute for an inserted block of data.

A multidimensional pattern relation schema MPR with n1 context attributes and n2 content attributes can be represented as MPR(ID, CX1, CX2, ..., CXn1, CN1, CN2, ..., CNn2), where ID is an identification attribute, CXi, 1 ≤ i ≤ n1, is a context attribute, and CNi, 1 ≤ i ≤ n2, is a content attribute. Assume a multidimensional pattern relation mpr, which is an instance of the given MPR, includes tuples {ti, t2, ..., tn}. Each tuple ti = (id i, cx1i, cx2i, ..., cxn1i, cn1i, cn2i, ..., cnm2i) in mpr indicates that for the block of data under the contexts of cx1i, cx2i, ..., and cxn1i, the mining information contains cn1i, cn2i, ..., and cnm2i.

Example 1: Table 1 shows a multidimensional pattern relation with the initial minimum support set at 5%. ID is an identification attribute, Region, Branch and Time are context attributes, and No_Trans, No_Patterns and Pattern_Sets are content attributes. The Pattern_Sets
attribute records the sets of mined large itemsets from the previous data blocks. For example, the tuple with ID = 1 shows that seven large itemsets, \{ (A, 10\%), (B, 11\%), (C, 9\%), (AB, 8\%), (AC, 7\%), (BC, 6\%), (ABC, 5\%) \}, are discovered from 10000 transactions and under the contexts of Region = CA, Branch = San Francisco and Time = 2003/10. The other tuples have similar meaning.

Table 1: A multidimensional pattern relation with minimum support = 5%

<table>
<thead>
<tr>
<th>ID</th>
<th>Region</th>
<th>Branch</th>
<th>Time</th>
<th>No._Trans</th>
<th>No._Patterns</th>
<th>Pattern_Sets (Itemset, Support)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CA</td>
<td>San Francisco</td>
<td>2003/10</td>
<td>10000</td>
<td>7</td>
<td>(A,10%),(B,11%),(C,9%),(AB,8%),(AC,7%),(BC,6%),(ABC,5%)</td>
</tr>
<tr>
<td>2</td>
<td>CA</td>
<td>San Francisco</td>
<td>2003/11</td>
<td>15000</td>
<td>3</td>
<td>(A,5%),(B,8%),(C,5%)</td>
</tr>
<tr>
<td>3</td>
<td>CA</td>
<td>San Francisco</td>
<td>2003/12</td>
<td>12000</td>
<td>2</td>
<td>(A,5%),(C,9%)</td>
</tr>
<tr>
<td>4</td>
<td>CA</td>
<td>Los Angeles</td>
<td>2003/10</td>
<td>20000</td>
<td>4</td>
<td>(A,8%),(B,6%),(C,7%),(AC,6%)</td>
</tr>
<tr>
<td>5</td>
<td>CA</td>
<td>Los Angeles</td>
<td>2003/11</td>
<td>25000</td>
<td>2</td>
<td>(A,5%),(C,6%)</td>
</tr>
<tr>
<td>6</td>
<td>CA</td>
<td>Los Angeles</td>
<td>2003/12</td>
<td>30000</td>
<td>4</td>
<td>(A,6%),(B,6%),(C,9%),(AB,6%)</td>
</tr>
<tr>
<td>7</td>
<td>NY</td>
<td>New York</td>
<td>2003/10</td>
<td>18000</td>
<td>3</td>
<td>(B,8%),(C,7%),(BC,6%)</td>
</tr>
<tr>
<td>8</td>
<td>NY</td>
<td>New York</td>
<td>2003/11</td>
<td>18500</td>
<td>2</td>
<td>(B,8%),(C,6%)</td>
</tr>
<tr>
<td>9</td>
<td>NY</td>
<td>New York</td>
<td>2003/12</td>
<td>19000</td>
<td>5</td>
<td>(A,5%),(B,9%),(C,8%),(D,6%),(BC,6%)</td>
</tr>
</tbody>
</table>

4. MULTIDIMENSIONAL ONLINE MINING FOR ASSOCIATION RULES

The goal of online mining is to find the association rules satisfying the constraints in a mining request on line. The types of mining requests allowed can grow up through the usage of the proposed multidimensional pattern relation. In this paper, an online mining approach called Three-phased Online Association Rule Mining (TOARM) is proposed to achieve the mining task from a multidimensional pattern relation. TOARM first selects the tuples from the relation satisfying the constraints in a mining request. It then integrates and outputs the mining information in these tuples to users. Before describing the TOARM approach, we first formally define the problem to be solved and some related terminology. Some lemmas are also derived (The detailed proofs are omitted here).

Assume \(mpr = \{ t_1, t_2, \ldots, t_n \} \) is a multidimensional pattern relation based on an initial minimum support \(s \). Given a mining request \(q \) with a set of contexts \(cx_q \), a new minimum support \(s_q (s_q \geq s) \), and a new minimum confidence \(conf_q \), the proposed algorithm will effectively and efficiently derive the association rules satisfying \(s_q, conf_q \) and \(cx_q \). A tuple with \(cx_q \) in a multidimensional pattern relation is called a matched tuple. Let \(t_i \) denote the \(i \)-th tuple in a multidimensional pattern relation, \(t_i, trans \) denote the number of transactions kept in \(t_i \), \(t_i, ps \) denote the pattern set in \(t_i \), and \(t_i, s_x \) denote the actual support of an itemset \(x \) in \(t_i \).

Lemma 1: For each itemset \(x \) satisfying \(s_q \) and \(cx_q \) in a mining request \(q \), there exists at least a matched tuple \(t \), such that \(t_i, s_x \) satisfies \(s_q \).

Lemma 2: For each itemset \(x \) satisfying \(s_q \) and \(cx_q \) in a mining request \(q \), it must be among the candidate itemsets obtained by collecting the ones whose supports are larger than or equal to \(s_q \) in at least one matched tuple.

Lemma 3: If \(x \) is a candidate itemset, then \(\forall x' \subset x, x' \) is also a candidate itemset.

The appearing count \(Count_t^{appear} \) of a candidate itemset \(x \) is defined as the count of \(x \) calculated from the matched tuples in which \(x \) appears. Thus:

\[
Count_t^{appear} = \sum_{i,mapped\ tuples \ and \ s_{x'}} t_i, s_{x'}.
\]

The upper-bound count \(Count_t^{ub} \) of a candidate itemset \(x \) is defined as the upper bound count of \(x \) calculated from the matched tuples in which \(x \) does not appear. Thus:

\[
Count_t^{ub} = \sum_{i, matched\ tuples \ and \ not\ s_{x'}} (t_i, trans * s - 1).
\]

Let \(Match_Trans \) denote the number of transactions in the matched tuples. Thus:

\[
Match_Trans = \sum_{i, matched\ tuples} t_i, trans.
\]

The upper-bound support \(s_{x'}^{ub} \) of a candidate itemset \(x \) is thus calculated as:

\[
s_{x'}^{ub} = \frac{Count_t^{appear} + Count_t^{ub}}{Match_Trans}.
\]

Lemma 4: If \(x \) is a candidate itemset and \(s_x \) is its actual support, then \(s_x \leq s_{x'}^{ub} \).

Lemma 5: If \(x \) is a candidate itemset, then \(\forall x' \subset x, s_{x'}^{ub} \geq s_{x'} \).

Lemma 6: If a candidate itemset \(x \) is contained in all the matched tuples, then \(s_{x'}^{ub} = s_{x'} \).
The Three-phased Online Association Rule Mining (TOARM) approach:

INPUT: A multidimensional pattern relation based on an initial minimum support \(s \) and a mining request \(q \) with a set of contexts \(c_{x_q} \), a minimum support \(s_q \) and a minimum confidence \(conf_q \).

OUTPUT: A set of association rules satisfying the mining request \(q \).

Phase 1: Generation of candidate itemsets:
(a) Select the tuples satisfying \(c_{x_q} \) from the multidimensional pattern relation.
(b) Gather the candidate itemsets appearing in the matched tuples.
(c) Calculate \(Count_{\text{appearing}} \) and \(Count_{UB} \) for each candidate itemset \(x \).

Phase 2: Reduction of candidate itemsets:
(a) Calculate the upper-bound support \(s_{UB} \) of each candidate itemset \(x \) by the formula:
\[
\frac{\text{Match}_\text{Trans}}{UB} = \frac{\text{Count}_{\text{appearing}} + \text{Count}_{UB}}{s_{x}}.
\]
(b) Discard the candidate itemset \(x \) and its proper supersets from the candidate set if \(s_{UB} \leq s_q \).
(c) Put \(x \) into the set of large itemsets if \(s_{UB} \geq s_q \).

Phase 3: Generation of association rules:
(a) Check whether each remaining candidate itemset \(x \) is large by scanning the underlying blocks of data for the matched tuples in which \(x \) does not appear.
(b) Generate the association rules satisfying the minimum confidence \(conf_q \) from the set of large itemsets.

The TOARM approach only considers the itemsets appearing in the matched tuples and satisfying the minimum support as the candidate ones. It also uses two pruning strategies to reduce the number of candidate itemsets. It therefore only needs to re-process the remaining candidate itemsets against the underlying blocks of data by the TOARM approach is less than that by typical batch mining or incremental mining approaches.

Example 2: For the multidimensional pattern relation given in Table 1, assume a mining request \(q \) is to get the patterns under the contexts \(c_{x_q} = \text{Region} = \text{CA} \) and \(Time = 2003/11−2003/12 \) and satisfying the minimum support \(s_q = 5.5% \). According to Lemma 2, the set of candidate itemsets is \{[A], [B], [C], [AB]\}, which is the union of the itemsets appearing in the pattern sets and with their supports larger than 5.5%. Among these candidate itemsets, in Phase 2, the TOARM approach can remove the candidate itemsets \{[A] and [AB]\} according to Lemmas 4 and 5, and put the candidate itemset \{[C]\} into the set of large itemsets for \(q \) according to Lemma 6. Only the remaining candidate itemset \{[B]\} needs to be further processed in Phase 3.

6. EXPERIMENTS

The experiments were implemented in Java on a workstation with dual XEON 2.8GHz processors and 2048MB main memory, running RedHat 9.0 operation system. The datasets were generated by a generator similar to that used in [4]. The generator first generated \(L \) maximal potentially large itemsets, each with an average size of \(I \) items. The items in a potentially large itemset were randomly chosen from the total \(N \) items according to its actual size. The generator then generated \(D \) transactions, each with an average size of \(T \) items. The items in a transaction were generated according to the \(L \) maximal potentially large itemsets in a probabilistic way.

The two groups of datasets generated in the above way and used in our experiments are listed in Table 2, where the datasets in the same group had the same \(D \), \(T \) and \(I \) values but different \(L \) or \(N \) values. Each dataset was treated as a block of data in the database. Among the two groups, Group 2 could be thought of as heterogeneous because of its varied \(N \) values. This group of datasets was used to show the effect of heterogeneous blocks of data on our approach.

Table 2: The two groups of datasets generated for the experiments

<table>
<thead>
<tr>
<th>Group</th>
<th>Size</th>
<th>Datasets</th>
<th>(D)</th>
<th>(T)</th>
<th>(I)</th>
<th>(L)</th>
<th>(N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>(T10I8D10)</td>
<td>10000</td>
<td>10</td>
<td>8</td>
<td>200 to 245</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>(T10I8D10KN^0)</td>
<td>10000</td>
<td>10</td>
<td>8</td>
<td>200 to 145</td>
<td>100</td>
</tr>
</tbody>
</table>

The TOARM and the Apriori algorithms were then run for Groups 1 and 2 along with different minimum supports ranging from 0.022 to 0.04 in the mining requests. The execution times spent by the two algorithms for each group are respectively shown in Figures 1 and 2. From Figures 1, it is easily seen that the execution time by the TOARM algorithm on Groups 1 was always much less than that by the Apriori algorithm. This is because the datasets in this group was homogeneous, meaning they used the same set of items in each group. In this situation, the number of candidate itemsets considered by the TOARM algorithm was much closer to the number of the final large itemsets than that by the Apriori algorithm. The former thus had a more compact candidate set than the latter.
On the contrary, the datasets in Group 2 were heterogeneous, meaning they used different sets of items. In this situation, the number of candidate itemsets considered by the TOARM algorithm was much larger than the number of the final large itemsets since most of the candidate itemsets appeared in only one or few tuples in the multidimensional pattern relation. But, since the TOARM algorithm adopted two pruning strategies in Phase 2 and only re-processed the remaining candidate itemsets in Phase 3 against the underlying datasets in which they do not appear, the execution time spent by the TOARM algorithm was usually still less than that spent by the Apriori algorithm. This is also consistent with the results shown in Figure 2.

7. CONCLUSION

In this paper, we have extended the concept of effectively utilizing previously discovered patterns in incremental mining to online decision support under multidimensional considerations. By structurally and systematically storing the additional context information and mining information in the multidimensional pattern relation, our proposed TOARM approach can easily and efficiently derive the association rules satisfying diverse user-concerned constraints. From the experimental results, the proposed TOARM approach is more efficient than the well-known Apriori approach especially for homogeneous datasets.

ACKNOWLEDGEMENT

This research was supported by the National Science Council of Taiwan, China under Grand No. NSC93-2752-E-009-006-PAE.

REFERENCES