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Abstract 
The variance is a well-known statistical measure 

and is frequently used for the calculation of variability. 

This concept can be used to obtain the degree of 

agreement in groups that have to make decisions. In 

this study, we propose the use of a variance derivative 

as an alternative for the calculation of the degree of 

consensus for Group Decision Making problems with 

fuzzy preference relations. As revealed by a subsequent 

comparative study, the values obtained by this new 

method are comparable to the values obtained by 

means of frequently used methods that employ distance 

functions and aggregation operators, while it turns out 

to be a simpler application method. 

 

1. Introduction  

 
In decision environments present in daily life, it is 

important to obtain a decision accepted by the group of 

people implicated. A problem of group decision 

making (GDM) involves a group of individuals, 

usually called experts, who have to choose an 

alternative in a set of several possible alternatives [1-

3]. In this context, is desirable an agreement among 

experts about the proposed alternative. The state of 

agreement among the members of the group is usually 

known by the term consensus [3-4]. In this context, 

consensus can be understood as a full and unanimous 

agreement among experts although, in most situations, 

that absolute agreement is not necessary.  In addition, it 

is necessary to handle the vagueness that is present in 

the expression of the opinions of the experts. In this 

sense, new tools to represent the preferences of experts 

have been provided by the theory of fuzzy sets [5]. In a 

fuzzy context, it has become relevant to conduct the 

consensus session with the help of a moderator who 

advises people how to change their opinions until reach 

consensus. This way, the consensus process can be 

observed as an iterative process made up of several 

consensus rounds, in which the experts accept to 

change their preferences following the advice given by 

the moderator. The moderator knows the agreement 

degree in each round of the consensus process by 

calculating some consensus measures. This will allow 

him to identify whether or not an enough consensus 

state has been reached, that is, whether or not a 

consensus threshold, which may have been pre-fixed, 

has been reached. Several measures can be used to 

express different levels of consensus, among which is 

the one originated from the concept known as soft 

consensus. Several papers [3, 5-8] constitute the basis 

of many soft consensus models proposed in the 

literature [9-13]. Using soft consensus measures we 

can express different levels of agreement among 

experts. The use of these measures is based on the 

concept of similarity between preferences of the 

experts. 

Generally, for the computation of consensus levels 

it is necessary to calculate and aggregate the distance 

measures employed to represent the proximity of the 

preferences of each pair of experts on each pair of 

alternatives [4, 9-14]. We have shown [15-17] that 

consensus level values are affected by the distance 

function and the aggregation operator used in the 

calculation. 

Measures based on statistic variability have been 

used to measure agreement [18]. Most of them assess 

disagreement among experts by means of variance as 

an alternative measure of consensus. In these situations 

a high variance is seen as a high disagreement inside 

the members of the group. 

In this paper we propose a new consensus measure 

o index and perform a comparative study in the context 

of GDM problems with fuzzy preference relations. To 

do so we use the standard deviation and the coefficient 

of variation to calculate the consensus levels. This 

index could replace other consensus computations 

without using distance measures in iterative or non-

iterative processes. The implementation of this new 

index could allow an alternative way to measuring 

consensus. 

We compare this proposed consensus measure with 

a more frequently used approach based on an 

aggregator and different distance functions [15-17] and 

acceptable results are obtained in comparison with the 

usual approach mentioned above. Finally, we present a 

ranking of these measures. 

The structure of this study is the following: Section 

2 introduces basic concepts about GDM problems and 
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the variability elements used in this study is presented 

in Section 3. A comparative study is presents in 

Section 4. And, finally, we end this paper in Section 5 

Conclusion.  

 

2. The GDM problem 

 
In a GDM problem, experts can express their 

preferences with several formats: preference orderings 

[19], utility values [11] and preference relations –fuzzy 

preference relations, multiplicative preference relations 

and linguistic preference relations- [3]. Preference 

relations are the representation format most used. A 

GDM problem with fuzzy preference relation involve a 

group of experts, E = {e
1
,..., e

n
} (n >1), who have to 

find the best alternative from a set of several 

alternatives, X = {x1,..., xm} (m >1),  according to their 

preferences. Expert’ preferences may be expressed 

through fuzzy preference relations [20-24]. A fuzzy 

preference relation, P, on a finite set of alternatives X 

is characterized by a function : [0,1]P X X    which 

gather up the preference degree of the alternative xi 

over xj given by an expert [25]:  

 

     ,    ,  P i j i j ijx x P x x p     

 

being 0 the minimal preference and 1 the maximal 

preference. This function verifies reciprocity, i.e. pij + 

pji = 1, with i,j in {1,..., m} and is usually denoted by a 

matrix P = (pij). 

A fixed minimum consensus level among experts is 

very interesting to be obtained in order to support the 

decision.  

The measurement of the distance between the 

experts’ preference values facilitates the computation 

of the consensus level among them [26]. Some of the 

following distance functions are the most commonly 

used in its calculation [15-17, 26]:  
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where A = {a1,...,an} and B = {b1,...,bn} are two sets of 

real numbers.   

In order to find the similarity between preference 

values through the similarity function, any of these 

distance functions could be used by setting similarity 

as s = 1- d [15-17]. 

A similarity matrix, SM
r
 = (sm

r
ij) is then obtain 

through sm
r
ij = s(p

r
ij, pij). This matrix provides an 

evaluation of the proximity among preference values 

by comparing the proximity of each expert with the 

rest in every pair of alternatives (xi, xj). 

A consensus matrix, CM = (cmij), is then calculated 

by aggregating all the similarity matrices previously 

obtained by using an OWA operator. The aggregation 

operation by a quantifier guided OWA (Ordered 

Weighted Averaging) operator is carried out as [27-

28]: 

 1

1

( , ),  ·
m

kc m

ij Q ij ij k ij

k

p p p w p 


   
  

where denotes a permutation function such that 

 
     1

,  1,..., 1
k k

ij ijp kp n  
   

   
 

and Q is a fuzzy linguistic quantifier of fuzzy majority 

which is used to calculate the weighting vector, W = 

[w1, …, wn].  

Some operators are Maximum (W = [1, 0,…, 0]), 

Minimum (W = [0,…, 0, 1]) or Average (W = [1/n, 

1/n,…, 1/n]). Alternative representations for the 

concept of fuzzy majority can be found in the literature 

[29].  

In this situation, CM = (cmij), with i, j in {1,…, m}, 

is obtained as: 

 1,..., n

ij ij ijcm sm sm
    

and it shows the consensus degree on each pair of 

alternatives (xi, xj). In order to calculate the consensus 

degree on the relation, cr, i.e. the global agreement 

among all experts, an aggregation operation of all the 

consensus degrees at the level of pairs of alternatives is 

performed: 
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 : & , 1,...,ijcr cm i j i j m  
   

In this step it is common to use an OWA operator, 

mainly the Average operator. 

The consensus model is represented in Figure 1. 

 

 
 

Figure 1. Consensus model with distance 
functions and aggregation operators. 

 

3. Variance based consensus index  

 
Among the measures of statistical dispersion [30] 

one of the most used is the variance. Variance 

measures how far a set of values are spread out from 

their average value. It is an important tool in data 

analysis [30]. Related to the variance is the standard 

deviation. Widely used in descriptive statistics, 

standard deviation shows the magnitude of the 

dispersion in the same units as the original data. When 

the purpose is to compare the homogeneity or 

variability among several data distributions, it is 

common the use of the coefficient of variation, also 

known as relative standard deviation. The coefficient 

of variation is a standardized measure of dispersion of 

a data distribution. It is often expressed as a 

percentage, and is defined as the ratio of the standard 

deviation to the mean or its absolute value.  

In this paper the aforementioned dispersion 

measures are introduced in the framework of a GDM 

problem with fuzzy preference relations in the 

following way. 

 

Definition (Variance on a pair of alternatives (xi, xj) 

with fuzzy preferences) 

Let {pij
1
,..., pij

n
} be the preferences of n experts on 

a pair of alternatives (xi, xj) with i, j in {1, …,m}. The 

variance for a pair of alternatives (xi, xj) is defined as 
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with 

1

1 n
k

ij ij

k

p p
n 

   is the average value. 

 

 

Property 1 (Variance properties) 

 

i) 0 ijVAR  

 

ii)  , 1,...,ij jiVAR VAR i j m    

 

This measure of variability in GDM problems with 

fuzzy preference relations can be understood as a 

measure of dispersion: the greater the value of the 

dispersion measure, the greater the variability and vice 

versa, the lower the dispersion value, the greater the 

homogeneity. 

 

Definition (Standard deviation on a pair of 

alternatives (xi, xj) with fuzzy preferences) 

Let {pij
1
,..., pij

n
} be the preferences of n experts on a 

pair of alternatives (xi, xj) with i, j in {1, …,m}. The 

standard deviation for a pair of alternatives (xi, xj) is 

defined as 

 

   
2

1

1
, 1,...,

n
k

ij ij ij ij

k

SD VAR p p i j m
n 

       

 

Property 2 (Standard deviation properties) 

 

i) 0 ijSD  

 

ii)  , 1,...,ij jiSD SD i j m    

 

Two opposite situations can be observed in what 

dispersion goes: null dispersion -minimum variability- 

and total dispersion -maximum variability-. In the first 

case, minimum variability, all pij
k 
  take the same value: 

 
1 2 1... n n

ij ij ij ijp p p p     

 
In the second case, maximum variability, only one 

value is different from zero: 

 
1 2 1... 0 & 0n n

ij ij ij ijp p p p      
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Property 3 (Standard deviation bounded) 

 

 0 1 , 1,...,ij ijSD p n i j m      

 

At this point we introduce a new consensus measure as 

following. 

 

Definition (Standard deviation consensus index on a 

pair of alternatives (xi, xj) with fuzzy preferences) 

Let {pij
1
,..., pij

n
} be the preferences of n experts on a 

pair of alternatives (xi, xj) with i, j in {1, …,m}. The 

standard deviation consensus index for a pair of 

alternatives (xi, xj) is defined as 

 

 
1

1 , 1,...,
1

ij ij

ij

SDC SD i j m
p n

    


 

 

Standard deviation consensus index can be displayed 

as a matrix:  

 

 ,    , 1, ,ijSDC SDC i j m   

 

Property  4 (Bounded values) 

 

 0 1 , 1,...,ijSDC i j m     

 
Property 5 (Reciprocity) 

 

 , 1,...,ij jiSDC SDC i j m    

 

Definition (Standard deviation consensus index on 

the relation) 

The standard deviation consensus index on the relation 

is defined as: 

 

 

1

1

1

m m

ij

i j i

SDC m

k
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C

m k
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Definition (Coefficient of variation on a pair of 

alternatives (xi, xj) with fuzzy preferences) 

Let {pij
1
,..., pij

n
} be the preferences of n experts on a 

pair of alternatives (xi, xj) with i, j in {1, …,m}. The 

coefficient of variation consensus index for a pair of 

alternatives (xi, xj) is defined as 

 

 , 1,...,
ij

ij

ij

SD
CV i j m

p
    

 
Property 6 (Coefficient of variation bounded) 

 

 0 1 , 1,...,ijCV n i j m      

 
Then we can define a new consensus index as follows. 

 

Definition (Coefficient of variation consensus index 

on a pair of alternatives (xi, xj) with fuzzy 

preferences) 

Let {pij
1
,..., pij

n
} be the preferences of n experts on a 

pair of alternatives (xi, xj) with i, j in {1, …,m}. The 

coefficient of variation consensus index for a pair of 

alternatives (xi, xj) is defined as 

 

 
1

1 , 1,...,
1

ij ijCVC CV i j m
n

    


 

 

Property 7 (Identity) 

 

 , 1,...,ij jiSDC CVC i j m    

 
The consensus model is represented in Figure 2. 

 

 
 

Figure 2. Consensus model with proposed 
consensus index 

 

As can be seen, Figure 1 is more complex than Figure 

2. So, our proposal is an easier consensus index. 
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4. A comparative study. Experimental 

design and results  

 
In this paper, we develop a strategy already used in 

previous documents [15-17] consisting in contrasting a 

statistical hypothesis through a non-parametric 

hypothesis test. The hypothesis to be tested is stated as 

follows: 

H0: The application of SDC/CVC as a consensus 

measure in GDM problems with fuzzy preference 

relations do not produce significant differences versus 

the use of a distance (di) with an Average OWA for this 

measurement. 

A total of 50 random GDM problems were 

generated for 4 alternatives and 3 experts. The OWA 

operator used was Average, being the weighting vector 

w = [1/3, 1/3, 1/3], and the distance functions the ones 

given in Section 2.2. We used the nonparametric 

Wilcoxon signed-ranks test to test the new hypothesis. 

The results are showed in Table 1. 

 

Table 1. P-values obtained for Wilcoxon 
tests 

Measures  SDC 
vs d1 

SDC 
vs d 2 

SDC 
vs d 3 

SDC 
vs d 4 

SDC 
vs d 5 

P-value     
0.000 

   
0.000 

   
0.023 

   
0.037 

   
0.000 

 

It can be observed that SDC is significantly 

different (at  = 0.05) when it is compared with d1, d2, 

d3, d4 and d5. So, there are significant differences were 

found among the five distance functions proposed in 

this study by using test.  

Table 2, depicted in figure 3, shows the level of 

consensus (in percentage) achieved in the different 

cases analyzed. The higher the value of the consensus 

degrees, the higher the global degree of consensus. The 

results show the relative position of the proposed SDC 

index facing distance functions usually used, and also 

shown that this index could be used as a measurement 

of consensus degree in GDM problems. 

 

Table 2. Consensus degrees in 
percentages 

Measures  d1 d2 d3 d4 d5 SDC 

Percentage 60 60 100 100 80  96 

 

Figure 3, shows the level of consensus (in 

percentage) achieved by SDC is very similar to Cosine 

and Dice distance cases analysed. 

 

 
Figure 3. Consensus degree in percentages 

 

Figure 4 displays the differences among the 

considered measures (d1, d2, d3, d4, d5, SDC) through 

an ideal simulation that shows the number of rounds 

necessary to reach an acceptable consensus degree 

value previously fixed. 

 
Figure 4. Number of consensus rounds 

 (Minimum fixed in 6) 

 
Based on the previous analysis we can draw some 

rules to speed up or slow down the convergence of the 

consensus that could prove a useful decision support 

tool in GDM problem.   

i. The SDC value helps the consensus process to 

convergence faster than the Manhattan (d1) and the 

Euclidean (d2) distance functions. 

ii. The SDC value helps the consensus process to 

converge lightly slower than the Cosine (d3) and the 

Dice (d4) distance functions. 

iii. The SDC value helps the consensus process to 

converge lightly faster that the Jaccard (d5) distance 

function.   

It seems reasonable that these rules allow using the 

proposed consensus index to speed up or slow down 

the consensus process. So, SDC provides results 

similar to those of the other models considered in this 

study.   
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5. Conclusion  

 
We have proposed a new consensus index based on 

the study of the variability of data by standard 

deviation. We have compared this new index with five 

well-known distance functions, being considered as an 

aggregator operator one frequently used, the average 

operator.  
Outcomes of the experiment show acceptable 

results regarding the consensus behavior of the 

proposed index, similar to those derived from the 

considered distances functions. In addition, we have 

established a ranking of these different measures of the 

level of consensus in GDM problems with diffuse 

preference relations. 
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