
Association for Information Systems Association for Information Systems

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL)

ICEB 2004 Proceedings International Conference on Electronic Business
(ICEB)

Winter 12-5-2004

A High Performance XML Querying Architecture A High Performance XML Querying Architecture

Fangju Wang

Hui Shen

Follow this and additional works at: https://aisel.aisnet.org/iceb2004

This material is brought to you by the International Conference on Electronic Business (ICEB) at AIS Electronic
Library (AISeL). It has been accepted for inclusion in ICEB 2004 Proceedings by an authorized administrator of AIS
Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

https://aisel.aisnet.org/
https://aisel.aisnet.org/iceb2004
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb2004?utm_source=aisel.aisnet.org%2Ficeb2004%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing 1019

A High Performance XML Querying Architecture

Fangju Wang, Hui Shen

Department of Computing and Information Science, University of Guelph
Guelph, Ontario, Canada, N1G 2W1

ABSTRACT

Data exchange on the Internet plays an essential role in electronic business (e-business). A recent trend in e-business is
to create distributed databases to facilitate data exchange. In most cases, the distributed databases are developed by
integrating existing systems, which may be in different database models, and on different hardware and/or software
platforms. Heterogeneity may cause many difficulties. A solution to the difficulties is XML (the Extensible Markup
Language). XML is becoming the dominant language for exchanging data on the Internet. To develop XML systems for
practical applications, developers have to addresses the performance issues. In this paper, we describe a new XML
querying architecture that can be used to build high performance systems. Experiments indicate that the architecture
performs better than Oracle XML DB, which is one of the most commonly used commercial DBMSs for XML.

Keywords: XML, database, index, query processing

1. INTRODUCTION

In recent years, the needs for Internet data exchange
between organizations have grown rapidly, especially
in electronic businiss (e-business). For example, in e-
business of B2B (business to business), companies may
offer customers and partners to access their databases
for information about their products and services.
Brokers or consultants may need to process data from
databases of many companies for best satisfying client
requirements. There has been a trend in e-business to
integrate existing stand-alone databases into distributed
databases for facilitating data exchange.

XML (Extensible Markup Language) is becoming a
major markup language for data exchange on the
Internet. The language is especially useful in
developing heterogeneous distributed databases, in
which databases in different models, and/or on
different kinds of platforms are combined into
integrated systems. With XML, data from
heterogeneous sources can be encoded as XML
documents, transmitted on the Internet, and processed
together. It has been widely accepted that XML is an
indispensable tool in e-business, and that e-business
cannot develop well without it.

Performance is a key issue in building a successful
XML-based database. The querying techniques for the
traditional relational databases were developed to
manipulate record sets. High performance of the
techniques is achieved by efficient read/write, search,
and partitioning of records. However, XML documents
are structured as hierarchical trees of nodes, which are
essentially different from the table and record
structures of the relational data. The querying
techniques developed for relational data cannot be
directly adopted for XML data. The special features of
XML data require new techniques for querying XML
data. Currently, research on querying techniques for
XML data, including indexing and querying processing,

is still at the preliminary stage. At the time of this
writing, there have been no broadly accepted querying
techniques XML databases.

In this paper, we describe a new querying architecture,
which consists of three indexes, a block parser, and
two query processing alsorithms. Experiments indicate
that the architecture may perform better than Oracle
XML DB, one of the most commonly used commercial
DBMSs for XML data.

2. RELATED WORK

The related work includes XML data indexing and
query processing for XML databases. Most papers
about XML indexes focus on building path indexes on
XML documents. In [3], an adaptive path index, APEX,
is proposed to keep all paths to improve query
performance. Ashraf and co-workers proposed two
techniques: path tree and Markov tables [1]. They build
a path tree to ensure that it fits in memory by deleting
low-frequency nodes. Path information is contained in
the Markov table.
In the work by Li [6], the index structure is composed
of three major components: element index, attribute
index and structure index, all of those indexes are
based on a numbering scheme. For most index
structures for XML data proposed so far, update is a
problem because XML element’s coordinates are
expressed by absolute values. In [5], Kha proposed an
indexing structure based on the relative region
coordinate that can effectively deal with the update
problem.
The existing indexing techniques have major
disadvantages. The most severe ones are that the sizes
of indexes are very big and the time for building
indexes for large XML documents may be very long.
For example, in Lore, the total size of the indexes on
an XML document of 465 megabytes is 2.2 times
larger than the original file size and the time for

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing 1020

building the indexes is about 20460 seconds (5.68
hours) [8].

Much of the work for XML query processing is based
on graph theories. Shasha, and co-workers survey both
algorithms and applications of tree and graph searching
[10]. Prakash Ramanan develops O(n2) and O(n4)
algorithms based on the concept of graph simulation to
minimize tree pattern queries (TPQs) [9]. In the work
by Fernandez and Suciu [4], two optimization
techniques for queries with regular path expression,
both replying on graph schemas, are proposed to
restrict search on fragments of graphs and to find the
most suitable optimization on all regular queries.

Structural join operations are central to evaluate
queries against XML data. In [2], Bruno proposed a
holistic twig join algorithm, “TwigStack”, for matching
an XML query twig pattern. McHugh and Widom
created a set of techniques to facilitate XML query
processing in the Lore system designed specially for
semi-structured data [7].

Currently, the research on querying XML documents is
still at the preliminary stage. Some query techniques
cannot support very large XML documents [9]. Some
have too complex algorithms [9][7]. Some have to
work with special indexing systems but the indexing
systems are not optimal [4]. Some techniques have to
rely on the underlying relational database structures but
the join techniques developed for relational data cannot
be directly adopted to join XML data.

3. THE INDEXING SYSTEM

As mentioned before, the index system in our approach
consists of three indexes. They are path index, element
index and block index.

3.1 Path index

The path index contains a set of paths extracted by
parsing the schema of the XML document. Every path
from the root to a node in the schema tree are identified
by a unique number called PID (Path ID). Since every
element in a document is associated with a node in the
schema tree, the PID assigned to the schema node can
be assigned to the class of elements in the document
associated to the schema node. The path index can be
used to find the PID of a given path.
3.2 Element index

The element index is built for finding all the elements
associated with a given path. A pair of numbers is
assigned to each element’s start tag and end tag, which
are called StartEID and EndEID respectively. The
StartEIDs and EndEIDs are sequential numbers and
generated by preorder traversal on the document tree.
An ID value is the same as the count of element tags in
the whole document. StartEID is the number assigned

to the start tag of an element and EndEID is the
number assigned to the end tag. For an element
containing string value only, EndEID is the same value
as StartEID.

PurchaseOrder (1:27)[0]

Reference
(2:3)[1]

Requestor
(5:6)[3]

Reject
(4:4)[2]

Address
(10:11)[6]

Name
(8:9)[5]

ShippingInstructions
(7:14)[4]

Telephone
(12:13)[7]“ADAM

S-
2001112
7121040
988PST”

“Julie P. Adams”

“300 Oracle
Parkway,
Redwood
Shores, CA
9406 ”

“Julie P. Adams”
“650 506 7300"

LineItems
(15:26)[8]

LineItem
(16:20)[9]

LineItem
(21:25)[9]

Part
(19:19)[11]

Description
(17:18)[10]

Part
(24:24)[11]

Description
(22:23)[10]

“The Ruling Class” “Diabolique”

Figure 1.The element numbering strategy

Figure 1 shows an XML document tree and the
StartEID and EndEID pairs assigned to the elements.
Since every element in a document is associated with a
node in its schema tree, the PID assigned to a schema
node can be assigned to the corresponding elements in
the document. We can search the path in the path index
to get its PID, and assign the PID to the element. PID is
included in “[]”on every element in the Figure. The
StartEID:EndEID pairs with the same PID are stored
into a file. The collection of such files is called the
element index.

3.3 Block index

The block index is used for identifying the exact file
block on disk in which a given element is stored, so
that the block can be directly accessed without
sequential search. The index contains the StartEID and
EndEID pair and PID of the first and last element in
every block. A block index is built by recording the
information about the tags of the three elements in each
block:
1. The first “element with its start tag” in the block.
2. The first “element with its end tag” in the block.
3. The last “element with its start tag or its end tag”
in the block.

A tag in XML is always associated with an element.
Since an element in the document has an associated
PID in the path index, the tags of that element can also
be associated with that element’s PID. In this paper, a
tag’s PID refers to its associated element’s PID. A
tag’s EID refers to its associated element’s StartEID or
EndEID.
The block index plays an important role in achieving
the high performance. By comparing a given element’s
StartEID and ENDEID with the blocks’ tag Ids, the
block containing the element can be decided and
directly read from disk. Then the information about the
three elements listed above can be used for block
parsing, which will be described in the next section.

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing 1021

4. QUERY PROCESSING ALGORITHMS

In this section, we describe the algorithms based on the
indexes for achieving high querying performance.

4.1 Block identification algorithm

The block identification algorithm is used to find the
disk blocks containing a given element. The algorithm
compares the element’s StartEID and EndEID pair
with each block’s tag information in the block index. In
this algorithm, variable StartBlock is used to represent
the block containing the tag with StartEID and variable
EndBlock is used to represent the block containing the
tag with EndEID. Either StartBlock or EndBlock is the
sequential block number assigned to a block in the
block index. The input of this algorithm is the StartEID
and EndEID pair of the element to be found, the output
is the StartBlock and EndBlock pair of the block(s) to
read. The content of the element crosses over the
blocks between StartBlock and EndBlock.

4.2 Block parser

After the block or blocks containing a given element
are read from the disk, we need a special parser to
parse the content in the blocks to get the element. This
parser is the block parser. Along with the block index,
the block parser allows an element to be retrieved
quickly.
There are two popular XML parsers: SAX and DOM.
Both have to scan the entire document from the
beginning to end. Scanning XML documents is usually
costly. The block parser only parses the contents of the
blocks of interests instead of scanning the whole
document. It thus helps minimize the I/O costs in
retrieving elements.

In the block parser, an EID counter is defined to trace
the element ID assigned to every element’s tag and a
step stack is defined to trace the element’s name in the
block. The block parser initializes the EID counter and
the step stack by the tag’s information recorded in
block index.
The blocks to be parsed are a sequence of blocks
between StartBlock and EndBlock. The parsing is
started from the first character in the first of those
blocks. When the block parser reads a start tag, it
pushes the element’s name in that tag as a step onto the
top of the step stack. When the block parser reads an
end tag, it pops up the step from the top of the step
stack. There is an exception: when the first tag is a
start tag, block parser ignores it and does nothing.

A path, here called stack path, can be built by
connecting the steps from the bottom to the top in the
step stack. Every time after pushing an element’s name
to the step stack, the block parser builds a stack path
and looks up for PID in path index for the stack path.
Here, the PID is called stack PID. If the stack PID is

among the PIDs of the source nodes in the query trees,
the block parser stores the content between the current
start tag and its matching end tag into a buffer in main
memory or to temporary files on disk.

4.3 Single-root query algorithm

We categorize XML queries into the single-root
queries and multi-root queries and apply different
algorithms to process them. In the following discussion,
the queries are represented in the Xquery language. A
query has a For clause, a WHERE clause, and a
RETURN clause.

In a single-root query, there is only one variable
defined in the FOR clause that can serve as the root of
all the paths referenced in the query. Source elements,
which are elements referenced in the WHERE clause,
must be processed in the scope of root elements.
Source elements in different root element scopes
cannot be processed together. The result of the
operation can be generated within the scope of every
root element.

First of all, the PID assigned to the root node is used to
obtain the first StartEID and EndEID pair from the
element index. The first root element’s scope can be
built by the StartEID and EndEID pair. Then, the PID
assigned to every source element is used to read the
corresponding element index. By an algorithm for
determining the “ancestor-descendent” relationships,
every source element’s StartEID and EndEID pair is
compared with the root element’s scope and then all
source elements’ StartEID and EndEID pairs in the
current root query element’s scope are decided.

Through the “Block Identification Algorithm”, the
exact blocks containing a desired source element in the
WHERE clause can be identified. The content of these
blocks can be read and parsed by the block parser to
fetch the content of that element to a buffer. When all
the source elements in the WHERE clause are fetched,
the query condition is evaluated. When a set of source
elements satisfies the query condition, the blocks
containing the associated elements in the RETURN
clause are identified. The content of the blocks are
parsed and values of those elements are output as the
result immediately. Figure 2 is the diagram illustrating
this algorithm.

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing 1022

1,1:12

1,2:6 1,7:11

1,3:3 1,4:4 1,5:5 1,8:8

Element Index

Block 1

Block Parser

Output

Block Index

Path Index
Ancestor-descendant Algorithm

Identify Block Algorithm

scope

1,9:9 1,10:10

Block 4

scope

Figure 2. Single-root query algorithm

4.4 Multi-root query algorithm

In a multi-root query, there are more than one variable
defined in the FOR clause that can serve as roots of the
paths referenced in the WHERE and RETURN clauses.
The multi-root query algorithm is more complicated
than the single-root query algorithm. Roughly a multi-
root query is similar to a join query in the relational
data model. A join operation is related to two root
element classes. In the following, “A” refers to the
first of the two root element classes and “B” refers to
the second root element classes. A source element
class in the WHERE clause is called WHERE element
class. The element in a WHERE element class is called
a WHERE element. A WHERE element class is always
associated with root element class “A” or “B”. The join
operation is performed by comparing a WHERE
element within the scope of an element of “A” with all
the WHERE elements within the scopes of all the
elements in “B”.

We can use an element class’s PID to get its element
index. From A’s element index, we can get the scope
of each element by its StartEID and EndEID pair. We
can get a WHERE element with a StartEID and
EndEID pair within this scope through the algorithm
for determining the ancestor-descendent relationship.
Then the blocks containing the WHERE element can
be identified by the Block Identification Algorithm.
The WHERE element can be fetched by using the
block parser. And then the fetched WHERE element
and this scope are stored together into a value set.

The procedure is conducted on all the pairs of WHERE
elements. At a point of time we can get two sets of
WHERE elements. The first contains the WHERE
elements within the scope of an element in “A”. The
second contains the WHERE elements within the scope

of an element in “B”. We execute the query operation
on these two sets of WHERE elements. The join
operation would be executed by comparing every
WHERE element in the first set with all WHERE
elements in the second set.

1,1:12

1,2:6 1,7:11

1,3:3 1,4:4 1,5:5 1,8:8 1,9:9 1,10:10

Element Index

Block 1 Block 4

Block Parser

Block Index

Path Index

Ancestor-descendant Algorithm

Identify Block Algorithm

Block Parser

scope of root element A scope of root element B

Multi-Pass Join

Output

Temporary files
on Disk

Value Buffer

Figure 3. Multi-root query algorithm

When the join condition is satisfied by a pair of
WHERE elements, the pair of the corresponding root
element’s scopes is recorded as an intermediate root
scope pair. The two scopes in an intermediate root
scope pair represent the root element in “A” and in “B”
respectively, and hereafter called intermediate scope A
and intermediate scope B respectively. After the
execution of the join operation, we can get a set of
intermediate root scope pairs.

Every source element class in the RETURN clause
(here, called RETURN element class) is associated with
a query node in the query tree with its associated root
query element class “A” or “B”. The element in a
RETURN element class is called RETURN element.
Only the RETURN element in either an intermediate
scope A or B is valid for the output. Figure 3 shows the
multi-root query algorithm.

5. EXPERIMENTS AND RESULTS

In this section, we describe the experiments and
present experimental results.

5.1 Test environment

The computer used for the experiments is a desktop
station with a 2.0 GHz Intel Celeron IV processor, 512
MB RAM and a 120 GB Seagate hard disk. The
querying architecture is implemented in the C language
on Linux 7.3. For comparison, the same queries are
executed in Oracle XML DB, which is installed on
Windows 2000. Both the Windows and Linux
operating systems are on the same machine.

The test data are from Oracle. They are XML
documents of sizes of about 3, 8, 10, 30, 60, 100, 300,

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing 1023

and 600 megabytes, on a schema of “purchasing
orders”. For each document, we examine the total size
of indexes and the time for creating indexes in both our
system and Oracle XML DB. A set of queries are
applied to the data. The queries are used to perform
operations of selection, equal join, θ -join on the data.
The time required by both systems are recorded and
compared.

5.2 Experimental results

5.2.1 Building indexes

0

100

200

300

400

500

600

700

800

900

2.6
6M

7.6
7M

10
.55

M
30

.7M
61

.4M 10
0M

30
0M

60
0M

Size(MB)

Si
ze

(M
B

) File size

Oracle

Our system

Figure 4 Space used by the two systems.

A path index is a memory structure that is generated by
parsing the schema. Generally the size of a schema is
very small, so we ignore the time for parsing a schema
to create the path index. The time spent on building the
other two indexes is significantly affected by the time
for parsing the document and the time for writing
element index and block index to disk.

Figures 4 and 5 gives the comparison of the space
usage in Oracle and our system, and the time required
by the two system to organize data and create indexes.
Our system needs 20% to 40% of the time by Oracle
XML DB and more space when data sizes are big.

0. 00
200. 00
400. 00
600. 00
800. 00

1000. 00
1200. 00
1400. 00
1600. 00
1800. 00

2.6
6M

10
.55

M
61

.4M 30
0M

Size(MB)

R
es

po
ns

e
tim

e(
s)

O racle
O ur system

Figure 5. Time required by the two systems.

5.2.2 A query of selection

 The following query is designed to select an element
and retrieve its parent as well as all the children of the
parent element. This is a single-root query.

0. 00

100. 00

200. 00

300. 00

400. 00

500. 00

600. 00

700. 00

800. 00

2.6
6M

7.6
7M

10
.55

M
30

.7M
61

.4M 10
0M

30
0M

60
0M

Size(MB)

R
es

po
ns

e
tim

e
(s

)

Oracle

Our system

Figure 5.Comparison of the time for executing the

selection query.

Figure 5 illustrates the response time for evaluating the
selection query with XML documents of different sizes
in both Oracle XML DB and our system. The results
indicates our system is faster than Oracle XML DB
when executing such a query.

5.2.3 A query of document join

The following is a query for joining two XML
documents. The WHERE clause includes an equality
condition. Element pairs satisfying the condition are
selected and the number of the elements in one of the
classes are returned as query results.

Figure 6 shows the experimental results in testing this
query. The time required by our system is basically
proportional to the document size. For most of the
documents, our system performs better than Oracle
XML DB. Since we have no knowledge about how
exactly Oracle handles the data, we are unable to
explain the behavior of Oracle.

For $c in document("PurchaseOrder.XML")/PurchaseOrder/
Where $c/Reference="ADAMS-20011127121040988PST"
Return $c

For $c in document("PurchaseOrder1.XML") /Purchase
Order/,
$d in document("PurchaseOrder2.XML")/Purchase
Order/ShippingInstructions
Where $c/Requestor=$d/Name
Return DISTINCT({$c/Requestor})

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing 1024

0. 00

10. 00

20. 00

30. 00

40. 00

50. 00

60. 00

S i z e (MB)

Or a c l e

Ou r s y s t e m

Figure 6. Comparison of the required for executing the

join query.

6. CONCLUSION

In this research, we develop a novel architecture for
querying XML data. The core of this architecture
includes the block index and block parser, which
overcome disadvantages of the existing general
purpose indexing systems: large sizes and long creation
time. Based on the indexing system, a set of algorithms
can achieve high performance in evaluating queries.
Experiments indicate that the system implementing the
architecture requires less time to create the indexes
than the time by Oracle XML DB to load the same files.
Our system is 2 to 12 times faster than Oracle XML
DB. For most of the test data, our system is faster than
Oracle XML DB in executing the same queries. Our
system requires only 0.5 % to 50% of the time required
by Oracle XML DB to evaluate the same test queries.

REFERENCES

1. A. Aboulnaga, A. R. Alameldeen and J.F.
Naughton, 2001, “Estimating the selectivity of XML

Path Expressions for Internet Scale Applications”,
Proceedings of the 27th VLDB Conference, Roma,
Italy.

2. N. Bruno, N. Koudas and D. Srivastava, 2002,
“Holistic Twig Joins: Optimal XML Pattern
Matching”, ACM SIGMOD 2002, Madison,
Wisconsin, USA.

3. C. W. Chung, J. K. Min and K. Shim, 2002,
“Apex: An Adaptive path index for XML data”,
ACM SIGMOD ‘2002 June 4-6, Madison,
Wisconsin, USA.

4. M. Fernandez and D. Suciu, 2002, “Optimizing
Regular Path Expressions Using Graph schemas”,
Proceedings of IEEE 14th International Conference
on Data Engineering.

5. D. D. Kha, M. Yoshikawa and S. Uemura, 2001,
“An XML Indexing Structure with Relative Region
Coordinate”, 17th International Conference on Data
Engineering.

6. Q. Li and B. Moon, 2001, “Indexing and
Querying XML Data for Regular Path Expressions”,
Proceedings of the 27th VLDB Conference, Roma,
Italy.

7. J. McHugh and J. Widom, 1999, “Query
Optimization for XML”, Proceedings of 25th VLDB
Conference, pp315-326, Edinburgh, Scotland.

8. L. K. Poola and J. R. Haritsa, 2001, “SphinX:
Schema-concious XML Indexing”, Database
Systems Laboratory, Dept. of Computer science &
Automation, Indian Institute of Science, Bangalore.

9. P. Ramanan, 2002, “Efficient Algorithms for
Minimizing Tree Pattern Queries”, In ACM
SIGMOD 2002 June 4-6, Madison, Wisconsin, USA.

10. D. Shasha, J. T.L. Wang and R. Giugno, 2002,
“Algorithmics and Applications of Tree and Graph
Searching”, Proceedings of the 21st ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of
Database Systems', Madison, Wisconsin.

	A High Performance XML Querying Architecture
	Microsoft Word - EN049-paper.doc

