Association for Information Systems

AIS Electronic Library (AISeL)

Pacific Asia Conference on Information Systems

PACIS 1995 Proceedings (PACIS)

December 1995

Vu: A Databse Computer Language for the
Simulation of Events in the City

Claude Comair
Osaka University

Atsuko Kaga
Osaka University

Follow this and additional works at: http://aisel.aisnet.org/pacis1995

Recommended Citation

Comair, Claude and Kaga, Atsuko, "Vu: A Databse Computer Language for the Simulation of Events in the City" (1995). PACIS 1995
Proceedings. 82.
http://aisel.aisnet.org/pacis1995/82

This material is brought to you by the Pacific Asia Conference on Information Systems (PACIS) at AIS Electronic Library (AISeL). It has been
accepted for inclusion in PACIS 1995 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please
contact elibrary@aisnet.org.

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fpacis1995%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis1995?utm_source=aisel.aisnet.org%2Fpacis1995%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis1995%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis1995%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis1995?utm_source=aisel.aisnet.org%2Fpacis1995%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis1995/82?utm_source=aisel.aisnet.org%2Fpacis1995%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Vu:

A Database Computer Language
for the Simulation
of Events in the City.

Author; Claude Comair .
Osaka University, Faculty Engineering,
Dep. Environmental Engineering

The subject of this paper is to present a new computer
language dedicated to the creation and maintenance of city
databases. The new language is called Vu, {pronounced
Vee-Yoo). Vuis the brainchild of Clande Comair who frst
presented the language in his 1988 master's thesis at Osaka
University, Faculty of Environmental Engineering, Mr.
Comair is now a researcher and writing a Doctorate thesis at
the same university.

This new computer language actually transfers total
control to the database, thus, allowing the creation of
concise and intelligent databases. Databases of cities are
notorious for being complex, long, and containing
heterogeneous data types. Furthermore, most of the current
database formats focus on few aspects of the definition of
city objects. Some databases define the data objects in
terms of their shapes, while some others will define them in
terms of cost or list of contents. Vu, on the other hand,
imposes no limits on the type and order of the information
in the data stream. -

1 Introduction:

In our close circle of friends, comprised mainly of
urban planners who use computer technology to simulate
events in the city, we have a firm belief that "he who owns
the database, controls the world (the virtual world at least)".
If I recall it well (this goes back to the early 80's), we
started to believe this after watching a couple of science
fiction movies. I remember that in these movies, there was
always a bitter and destructive nuclear war that divided the
people, then the control of a certain substance that became
rare assured the rule of the planet. In one case, it was the
"spices", and in another movie it was the "gas". In our
case, the database of a city (or a portion of a city) is the
most sought after "substance”. The database has always
~ presented a range of difficult and sometimes impossible

challenges. These challenges have varied, from lack of

computer power, computer data storage space, unavailability
of adequate computer software, to limited manpower.
Despite these limitations, we have managed in our
Laboratory at Osaka University, over a period of ten years
of relentless research, to generate databases and computer
based simulations for many cities and large urban projects.
Some of these projects are listed below:

349

Co-Author: Atsuko Kaga
Osaka University, Faculty Engineering,
Dep. Environmental Engineering

The database for the downtown core of the

city of OSAKA Japan, (02/1983).

« The database of major shrines and the hills
of Kyvoto, namely Kyomisudera temple, one
of the larpgesi wooden structures in the werld
(08/1983).

The city line and Portopia disirict of the
city of Kobe, Japan (03/1984).
+« Portions of the Shinjuku

downtown Tokyo (10/1983).

Parigraph '85.

Kumamoto city and Castle in Japan.

Shanghai (city database and various phases

of new development in the city 1987-89)

Shanghai Railway Station (from 1~11)

Kansai International Airport (05/1987).

The ancient city of Lou-Lan in China

Automatic Parametric Data Generation of

Ancient Japanese Tempies.

district in

Table 1 Various Projects

It would be impossible to give credit in this paper to
every researcher and student who contributed to these
projects with the exception of one person, Prof. Tsuyoshi
Sasada. All the above research and work was done under his
supervision and direction at Osaka University, Faculty of
Engineering, Department of Environmental Engineering.

Over the years, we have learned how to overcome the
different problems that faced our team. Our success can be
credited to the Laboratory's attitude of actively participating
in the creation of the tools that we use. Specialized
computer controlled hardware and various computer software
were developed for the various tasks. In a sense, this
attitude allowed us to better control the destiny of our
research, and not to be completely dependent on some
remotely located development team.

2 Vu: A Computer Language

Vu is a modemn computer language. It supports most of
the features found in general programming languages.
Since Vu is a problem oriented computer language, it offers
a specific support to the creation and maintenance of city
planning related databases. Vu has evolved over a period of
ten years and it is under constant upgrade. Since this paper
does not represent the official document of the language, it
just describes some of the key features of the language.

2.1 Free Format Database

A Vu database is viewed by the Vu interpreter as a
stream of ASCII characters. Vu accepts a free format input.
This means that successive separators are ignored by Vu. In
fact, Vu programs could be written on a single line. Again,
good sense and style can dramatically enhance the readability
of programs. The following examples illustrate what are
considered to be good and bad styles in programmmg Vu
will not see the difference between thesé two versions, and
both versions will produce the same result. However, the
usage of well chosen identifiers, well commented code, and
a consistent style aré the best recommendations you can get
from a fellow programmer.

object Sbox {side = 10)
{
cube {side, side, side);
}

shox (gide = 5);

kill sbox;

bye;

Code 1

object $box(side=10) {cube(side, side ,side);
} $box (side=5);kill $bhox; byve;:

Code 2

2.2 Comments in the Database

Vu accepts two different ways to comment. Vu
considers a comment as any sequence of characters enclosed
between the opening constuct "/*" and the closing
construct "#/",

i*

This could have been a very long comment
It could expand over several lines

*/

Code 3

The second form of a comment starts with the opening
construct "//" and ends with a new-line character. :

// this is until the end of the line comment

Code 4

Yariable Valoes

Variable Points

' Variable Matrices

Variable Strings

Variable Cameras

Variable Binary Data Blocks
 Variable Text Data Blocks

* 9 9 e 8 9 »

Table 2 Vu Variables
2.3.1 Defining Variables in Vu:

By declaring a variable, Vu reserves an area of the
memory large enough to hold the data type of the variable.
The user gives a name of his/her choice to this area, then
the name of the variable could be used in any statement or
expression where the type can be used. At any given time,
the user can change the content of a variable, hence the
name variable. When a variable is no longer necessary, Vu
provides the possibility to "kill" the variable and release the
reserved memory. Variables turns Vu into a powerful
programming language. Thus, the programmer's control
aver the database is increased. Vu also provides a large set
of operators and functions to manipulate mathematical and
lexical operations on these variables.

In many cases, Vu uses the first letter of a variable
name 1o recognize its type. Thus, the programmer does not
need to constantly refer to a declaration sheet to remember
the type of certain variables. The disadvantage of this
method remains in the fact that the user has to type the
"type-character" at the start of the variable name. However,
this is a small price to pay in order to make the code more
readable. The table below shows the different "type-
characters™: ‘

= Identifiers starting with the "." character
indicate that this variable is a 3D point.

¢ Identifiers starting with the "#" character
indicate that this variable is a 4x4 matrix.

¢ Identifiers starting with the "@" character

. indicate that this variable is a string.

¢ Identifiers starting with the "$" character
indicate that this is an object. Objects are
not variables and they will be présented
later in this paper.

* Identifiers starting with the "~" character
__indicate that this is a camera variable.

Table 3. Type Character

The following exarnples illustrate how easy it is to
declare, initialize, and recognize the type of variables at first

Cominents are ignbred by Vu. Itis ‘certéinly a good
habit to comment your code. Comments render the code
more readable, thus, easier to upgrade, change, and debug.

2.3 Various Data Types of Variables:

Vu allows the user to declare several types of variables.
These types are:

350

glance.
declare .a = (10,10,10); // a point
declare student_age = 35; /7 a value
@student _name = *John”; - // a string
#byl0 = |

(10,0,0,0)

(0,10,0,0)

{0, 0,10,0)

(0, ¢, Q,1)]; // a matrix

Code 5

The injtialization of the variables is an optional process
in Vu. If the variables are not initialized, Vu assigns a
defanlt value according to the following table:

type initial valae
values 0.0

points (0.0,0.0,0.0)
strings o

matrix IDMTX
camera camera

Binary Data Block No default
Text Data Block No default

Table 4. Defanlt Values

Vu variables can be declared anywhere in the program
or the database. When Vu encounters an undeclared variable
for the first time, it will define and initialize it
antomatically. Therefore, it is not necessary to explicitly
declare a variable in Vu. Howeuver, it is a better habit to use
the "declare” statement to explicitly declare the variables.
The declare statement allows the programmer to declare one
or more variables. This feature allows the programmer to
avoid having to repeatedly type the word "declare”. The
usage of the declare statement is shown in the following
example:

declare pi = 3.14;
declare
{
.a= (10,10,10);
student_age = 35;
@student_name = "John*;
#byl0 = |
(1,0,0,0}
(0,1,0,0)
(0,0,1,0}
(0,0,0,10}
[:3}

Code 5

2.3.2 Simulation of Arrays

Identifiers in Vu could be followed by an expression or
a succession of expressions separated by commas, all
enclosed between square brackets "[}". This addition to the
identifier is called the stem. The limited scope of this paper
will not allow us to cover the Vu expressions. For now let

15 consider that Vu expressions are constant values and —

value variables.

all0] 2;

pl1] (10,10,20);
.pial10]] = .pl[1]l:
all,1,1,1] = 30.0;

Code 6

In the above example, .p{a[10]] is equivalent to .p[2]
becanse a[10] was defined to be equal to 2. The stem could

351

be used to mimic the usage of arrays, but the programmer
must keep in mind that indexed identifiers in Vu are not
arrays. Vu, after resolving the expressions in the stem, will
concatenate the resalt to the end of the base name. Thus,
the variable a[10] in Vu could exist alone, and does not
implicate that the variables a[0] to a[%] exist. Programmers
who are used to using arrays in other languages may use the
stem to mimic the usage of arrays. However, they should
keep in mind the following facts:

1. In other languages, arrays when declared, will hold a
chunk of memory larze enough to accommodate all
the elements of the array. This memory remains held
during the entire life of the array, and all the elements
of the array will coexist. In the C programming
language, for example, an array of 40 characiers is
declared as follows and will need 40 bytes of
Memory:

/* ¢ declaration of an array of 40 chars */
char afl39];

Code 7

After this declaration, individual elements of the array
"a", can be referenced by using the base name for the
array "a" followed by an index or a number enclosed
in square brackets, "[]" representing the rank of the
element in the array. For example, a[9] represents
the 10th element of the array "a".

2. In Vu, the existence of variable a[10} does not
necessarily mean that the variables indexed from 0 to
9 exist. If the user wants to mimic the usage of an
array of 11 (0 to 10) elements in Vu, for example,
the programmer must declare each variable indexed
from O to 10, and must ensure that none of the
elements are destroyed by mistake. The declaraticn
of the different variables could be easily achieved by
using a loop. The following examples illustrate the
process:

// one dimension array
// declare the counter
declare i;
// deglares al[0] to a[4]
for (i = 0; i<= 4; i++) declare ali] = i;
// print them:
for (i = 0; i<= 4; i++)
print {"a["+,3+,"] = "+,a[i]l});

Code 8

The above code outputs the following text:

all] = 0
all] = 1
alz] = 2
al3l = 3
al4] = 4
Output 1. Output of Code 8

// two-dimensions array
// declare @all,1l] tc €a[10,12]
for (i = 1; i<= 5; i%¥+)
for (k = 1; k<= 6; k++)}
daclare@ali, k]
ll[ll+l+b ‘l+k+l]n.
// print them:
for (i = 1; i<= 5;
{
print (" "):
for (k = 1; k<= 6; k++}
print (Rali,k]l+," "=+);
b

i++)

Code 9

The above code outputs the following text:

(1,11 [1.2] [%,3] [1,4) [1,5] [1,8]
(2,11 [2.2] [2,3] [2,4} [2,5] [2,6]
(3,1] [3.2] [3,3] [3.,41 [3,5] [3.6]
[4,1] [4.2] [4,3] [4,41 [4£.5] [4,6]
[5.1]1 [5.2] [5,3]1 [5.4]1 [5,5]1 15.6]
Qutput 2. Output of Code 9

2.3.3 Scope of a Variable .

In Vu, declarations of variables can only happen in two
places. Variables are declared either inside an object (this
includes variables declared as parameters), or outside an
object. Those variables declared outside an object are said to
have a global scope. Variables that are declared inside an
object are said to have a local scope. Global scope variables
are known inside and outside the objects from the moment
they are declared until the moment they are killed. Local
variables are known only inside the object that declares
them. Variables declared inside an object need not be killed.
Vu kills local variables when it finishes executing the
object. When Vu terminates, Vu returas all the memory to
the operating system whether the program explicitly kills
all globally declared variables-and objects or not. It is still
a better habit to explicitly kill any variable as soon as it is
not needed any longer.

2.3.4 Killing . a Variable

Once a variable is declared, Vu reserves a chunk of
memory. This chunk is reserved as long as the variable is
not killed. Tt is a good habit to release back to Vu the
memory by killing a variable as soon as it is not needed any
longer. This will allow the nser to write larger code .
Indexed variables behave no differently from any other
variables. Again, a loop is handy to kill ail the declared
elements.

// kill example: declares af[l] to a{5]
for (i 1; i<= 5; i++) declare ali];

// Use them here ...
// release the memory when dene for geod

for (i = 1; i<= 5; i++) kill afil:
// release i
kill i;

Code 10

352

The user dynamically manages the memory usage.
This way the usage of the miemory is more efficient. This
i8 rather important when running Vu in multi-user or muiti-
tasking environments, in which the resources of the
computer are shared among many.

By allowing the user to dynamically manage all the
space allocated to vartables and mostly to index variables,
we hope that Vu will satisfy pointer advocates. After all,
arrays are much easier to master and use than pointers.
Nevertheless, they have been snubbed by many
programmers because they grab the memory at definition
time. This memory is fixed in size whether it is needed or
not. Furthermore, the allocated memory cannot be teleased
dynamically. The array has:to go out of scope for its
memory to be released. If the array is declared to be global,
The memory will be locked for the entire life of the
program. Vu offers the possibility of dynamically
managing arrays. Vu allows the programmer to add new
elements to the array it also allows to subtract elements
from the array. This is achieved simply with the declare and
kill statements.

2.3.5 Alias of a Variable

Each variable in Vu has a name and an alias. The alias
of a variable is by default the name of the variable itself as
shown in the following example of declare statements:

declare a=10;
declare h<-aj;

Code 11

The first statement means that the variable "a" started
to exist and thet it holds the value 1Q0. It also means that
the alias of "a" is "a".

The second statement means that variable "b" a]so
started to exist, its alias is "a" instead of its own name as in
the previous statement. Vanable "b" holds the value of "a"
which is 10.

The second statement in the above example uses the Vu
alias assignment operator "<-". Now that the alias of "b”
is "a", itis said that the variable "b" 1epresents "a", anid if a
value is assigned to "b" as in the following code, then Vu
assigns the value 20 to "3" automatically as welk:

b = 20;

Code 12

It is important to know that the two variables exist

indépéndently and they occlipy séparate areas of memory.

Therefore, when killing one of the variables, the other
variable remains. In the above example, killing "b" first
will not affect "a" in any mamner. On the other hand, if "a"
is killed first, "b" will not only remain to exist, but when
a value is assigned to "b", Vu will try to assign the same
value fo its alias "a". When Vu is not going to find the
variable "a" anywhere, it is going to reset the alias of "b" to
"b" itself, and further assignment statements involving

variable "b" will not trigger an unpecessary search for a
non-existent variable.

Alias assignments are often used in object parameters.
This allows an object to affect outside variables. Consider
the following example of an object that swaps two outside
variables:

object $Swap(x = 0, ¥ = Q)
{
declare tmp = X;
X =¥7
Y = tmp;

}
declare { a = 10; » = 20; }
// will not swap
$Swap {x =
// will swap
$Swap (x <-a, y<-b}

a, v = b)

Code 13

2.3.6 Value Variables

Value variables in Vu hold integers (Hexadecimal,
Octal, Decimal) as well as maximum precision Floating
point values (in Decimal and Engineering notations).

age = 33; // Integer

memory = 0xfi25 // Hexadecimal

char = 077; ' // Cctal

f =2.5; // Float (double)

big = 2.3e21 /{ Float {(double)
Code 14

2.3.7 Points Variables:

//peoints in space
.a=.b=.c= (10,10,10);
L0 = .a;F

Code 15

In 3D space, the point is the smallest entity that
someone can address. A point represents a location of the
3D space. This space will be referenced in this document as
the "real world". All the primitives and objects that the
user will create belong to the real world.

In order to locate points in the real world, the user sets

an arbitrary location as the origin (named 0) of his/er mypv it does not leave a trace in space. On the other hand, if

working space. A rectangle (Cartesian) coordinate system,
called "the world coordinate system", is established at the

origin. This can be obtained by drawing three mutually -

perpendicular axes, named oX oY oZ. It is usual for
architects to consider the 0XoY plane as the surface of the
ground on which the building is constructed. The third
direction, oZ, is perpendicular to the oXoY plane. Two
different orientations for the oZ direction are possible.
Suppose that the viewer is standing at the origin (o) on the
X0Y plane (on the ground). One possible direction is
represented by the vector pointing from the origin towards
the head of the viewer. This coordinate system is called the

353

"right-handed coordinate system". The second possible
direction for the oZ axis is the one starting at the origin and
going in the opposite direction of the head of the cbserver.
Such a coordinate system is calied the "left-handed
coordinate system". The right-handed coordinate system
seems more appropriate to describe architectural objects
since these objects are usually standing on the ground and
pointing upward. The fignre below shows the difference
between the lefi-handed and right handed coordinate systems.

Z

Right-Handed

Y

Fignre 1. Right Handed Coordeinate System

Left-Handed

o) Y

Figure 2. Right Handed Coordeinate System

By using a coordinate system, points can be identified
by a unigue ordered tripletof numbers, called coordinates
(x,y,z) . These coordinates represent the direct distance of
the point to the YoZ, XoZ, XoY planes, respectively.
Thus, a point "p" in space can be identified by the ordered
triplet (1,1,1), for example. The origin "o" is identified by
(0,0,0).

A single point cannot be viewed for the simple reason
that a point has no dimension. Vu simulates the motion of
a pen that can take any position of the 3D space. This pen
moves from the current location to a new one. If the pen is

the pen is "down" it leaves a trace between the points. The
current location of the pen is known as the "cardinal point”,
Vu offers a certain number of operations between points,
including special operators for dot product, cross product,
and points transformed by matrices among many others.

2.3.8 Matrix Variables

Vu matrices are currently 4x4 matrices. Vu provides a
large amount of matrix operations. This includes matrices
and matrices, points and matrices as well as values and

matrices operations. Furthermore, matrices can be pushed
on the model stack to alter the 3D world in which the
simulation is taking place. (More on this topic will be
covered later).

#m = ro (43);
#t = | (1,0,0,0)
(C,1,0,0)
(¢,0.,1,0)
{10,11,12,1)
| z
Code 16

2.3.9 Camera Variables:

- = {
focal (70);]
position (-200,-200,200);
target (0,9,0);
}: .

camera = ~g¢; // Set the hypothetical camer=z

~b = camera;
~t = ~b;
camera

{ .

focal { 100);

position (-200,-200,400);
target (0,0,10);

};

Code 17

Vu supporis a camera type variable. Vu has an internal
default camera that is the active camera. The name of the
internal camera is simply “camera”. Camera variables could
be assigned "caimera", and "camera" could be assigned any
camera variable . Vu hypothetical cameras act exactly like
real cameras. The above code shows that a camera structure
contains among other things a focal value, a position, and a
target. Unfortunately, the explanation of this topic is
beyond the scope of this paper.

2.3.10 String Variables:

@fname = "Forrest"; @name = 'Gump';
efullName = @fnamée + " " + @name;

Code 18

A String in Vu is any text that is enclosed in either 2

single or double quotes { as shown in the above example) . .

Operators are provided to sort, concatenate, search, and
compare, just to name a few. - .

2.3.11 Binary Data Block

BBlock "testImage* { 00116CL.... 3}

Code 19 '

354

A BBlock is a large binary chunk of binary data. This
is useful to include multimedia data. types (movie, sound,
graphics etc.).

2.3.12 Text Data Blocks:

TBlock "listText® { this is a test}

Code 20

A TBlock is a large ASCIT data block. This type of
variable is convenient to include large amount of text into
the definition of objects. This function is useful to include
general information into the database (letters, list of names,
etc.}. TBlocks can be searched for patterns, patterns can be
extracted form TBlocks and saved in string variables.
Furthermore, they can be concatenated just like strings. In
other words, a TBlock looks like a very large string. The
difference between the two lies in the internal
implementation of the two types.

2.4 Code or Object Blocks:

Objects in Vu are reserved areas in the memory. In this
tespect, they are very much like variables. In an object, the
user can store any sequence of statements. This sequence
can be executed over and over at will; simply by calling the
name of the object. Once created, an object resides in the
memory until destroyed using the- kill command. The
following is an exampie of a creation and use of an object:

// Create an object

$table{l} (size = 10, shape = 1)
iase (shape)
i: cubie (size,size,size);
2: cylinder (size,size,36);
. 3

// Call the object -

// Use defaults for all parameters
$table[l];

/? Use default shape
Stablefl] (size = 5);

// use default size
$table[l] (shape = 2);

// order of parameters is not important: -
$table[l] (size = 5, shape = 2); ‘
Stable[l] (shape = 2, size = 5);

// Reget the defaults of the parameters. ,
reassign $tablefl] (size = 5, shape = 2);

f/ Recall the object with the new defaults.
$tablell];) :

Code 21

The creation of an object starts with the keyword
"object”, followed by an object name, followed by an
optional stem, or index. The stem could be followed by
one or more parameters separated by commas and all
enclosed in parentheses, "()". The body of the object
comes last. The body is called the object list. The object
list is enclosed in curly brackets, "{ }", and it is made of
one or more statements. It is possible for an object to call
other objects. Therefore, complex objects could be
constructed from simpler ones. This modularity offers
better control and maintenance of large databases.

2.5 A large set of 2D and 3D primitives.

Vu maintains a 3D pen. Vu offers several commands o
move (and draw) in 3D space. Aside from the pen, Vu
recognizes several simple and complex 3D primitives
(polygonal and spline based).

2.6 Model Stack

Vu supports a 3D modeling stack, and a set of
commands to manage the stack. These commands are:

flush: Cleans the stack and resets the top of
the stack.

push: Push a matrix onto the stack.

pop: Pops a matrix onto the stack.

replace: Replaces the matrix at the top of the
stack by the provided matrix.

concat: Combines or multiplies the provided
matrix with the matrix at the top of
the stack.

Table 5. Stack Commands

The stack allows the creation of complex
transformations that will be applied to the 3D entities;
thus, creating different worlds where objects are temporarily
affected. The stack statement is probably the most
important modeling statement in Vu. Complex
transformations are achieved by combining simpler
transformations. Vu has several built-in transformations
mainly:

+« General 3D rotation around a general axis in
3D space.

+ x,¥,z rotations.

+ General 3D scale as well as x,y.z scale.

« General translation in 3D space as well as

I x,y,z tranmslation.

« Vu provides a mechanism to automatically
align any 3D object or primitive along a
chosen axis in space. This feature allow the
user to designate a flight path and make an
object follow it.

Table 6. Vu Transformation

The user can also create customized transformations. In
turn, these transformations can be combined with the built-
in set. It-is important to note that if an object is
transformed by a matrix that resides on the stack, this

355

transformation dees not affect the database of the object
itself. Tt only affects the way the user perceives the object.

2.7 Import and Export of Data

Vu offers the possibility of importing and exporting
several types of files. Vu make it easy to import and export
data form or to several different environment.

2.8 Flow Control

Vu supports a wide array of flow contro] statements.
Vu supports the "for”, "while", and "do..while" loop
statements, as well as the "if", "if ... else”, and "case"
conditional statements. Vu also supports other forms of
jump statements, mainly functions or object calling.

Flow Control statements are generally included in a
computer program to alter its linear execution. Single CPU
(Central Processing Unit) based computers execute the
instructions in a computer program one instruction at a
time (even when they appear to execute the statements in a
parallel or multitasking fashion). Flow control allows the
programmer to simulate real life events. Consider the
following events and how they tramslate directly into a

computer program:
Example I:
If the weather is nice, I will walk to school;

otherwise, I will take the bus.
This translates to:

if (GoodWeather)
$Walk(destination = .toSchool);
else $TakeTheBus (destinmation =.toSchool);

Code 22

‘Where:

*if .. else” is a conditional statement.
"GoodWeather" is a variable that is set to true is the
weather is nice and to false otherwise. "$Walk"', and
"$TakeTheBus" are functions that take an input
parameter called "destination' which was initialized
with the point variable ".toSchool".

Example 2:

The following segment of code s1mulates the
- operations of a control panel. -~ - -

case ControlPannel

{

1: startEngin;
2: stopEngin;
3: goFaster;

4: goSlower;

}

Code 23

By including flow contro} statements in the definition
of objects, the programmer gives to the objects some kind
of artificial intelligence or behavior. Thus, data and objects
in the database are able to behave differently under different
conditions (simulate an inferno, or an earthquake, for
example). In Vu, this decision-making capability has been
transferred from the interpreter to the database.- This transfer
has many advantages, mainly: '

1) Data can mimic real life situations.

2) Building databases is costly and complex. Therefore,
it is in the database where most of the investment
should be made and should remain. Usually large
databases are costly and time consuming to build.
Such databases are meant to survive the test of time
and the changes made to hardware and software. This
means that transporting the database from one
technology to another must be made easily. If all the
decision-making data as well as static data are
embedded into the database, all we need to transport
the database to a newer environment is 1o re-write the
interpreter for the new target technology. Databases
of cities certainly fall under this category since they
are usually extremely large and must be updated on a
regular basis.

3) Flow control allows us to produce very concise
databases To illustrate this, consider the following
example:

// filename: cubes.vu
for (i=1l;i<=10;i++) cube(i,i,i):

Code 24

The above example (56 bytes including the comment
line) would have required a much larger database if
expressed in terms of move (up) and draw (dn) actions
foliowed by three-dimensional coordinates as shown
in the following partial listing (9640 bytes).

filename: cubes.pri .
{0.000000,0.000000, - ¢.0o0060)
(1.000000,0.0000C0, G. 000000) ;
(1.000000,0.000000,

1.00000C);
(0.000000,0.000000,10.000Q000 };
(10.000000,0.000000,10.000000 };
(10.000000,10.000000,10.00C000 };

§&F BBEX

Code 25

3 Final Note

It is obvious that by including all the above features
into the database, we have truly passed the total control to
the database. By doing so, we obtain a more concise, more
versatile, and portable database. -

Finally, I have to mention that this paper does not
represent the formal definition of the Vu language. We are
currently working on the official Vu manual and hope to be
able to make it available soon.

356

Du 3D world ;Z'-ilg

]

Output 3. Output of Code 24 or Code 25

4 Bibliography

Comair, C.; A. Kaga. 1995. "Vu: A Database Computer
Language for the Simulation of Events in A City" In
Proceedings of European Simulation Multi-conference
1995 (Currently under publication).

Sasada, T. 1994. "Open Design Envircnment and
Collaborative Design™ In Proceedings of The 12th
European Conference on Education in Computer Aided
-Architectural Design, 3-6. _

Kaga A.; Y. Kawasaki; and T. Sasada. 1994. "Design
projects and computer supported cooperative works: A
study about doing an open design” In Proceeding of the
I7th Symposium on Computer Technology of
Information Systems and Applications, 193-198.

Sasada T.; Y. Kawasaki; A Kaga; and W. S. ho. 1994, "A
Study On Development And Use Of Design Tools
-Open Design Environment-" In Proceeding of the 17th
Symposium on Computer Technology of Information
Systems and Applications, 187-192. _

Kaga A.; and T. Sasada, 1993. "Design projects and
computer supported cooperative works: A framework of
research” In Proceeding of the 16th Symposium on
Computer Technology of Information Systems and
Applications, 193-198. L . .

Sasada T.; Y. Kawasaki; T.Nakayama. 1993. "A study on a
Design Tool by ODE"” In Proceeding of the 16th
Symposium on Computer Technology of Information
Systems and Applications, 235-240.

Sasada T.; Y. Kawasaki; and T. Nakayama. 1993. "A Study

On Presentation of Environmental Design” In
Proceeding of the 16th Symposium on Computer
Technology of Information Systems and Applications,
241-246. '

	Association for Information Systems
	AIS Electronic Library (AISeL)
	December 1995

	Vu: A Databse Computer Language for the Simulation of Events in the City
	Claude Comair
	Atsuko Kaga
	Recommended Citation

	tmp.1219228417.pdf.OPFvd

