
Association for Information Systems
AIS Electronic Library (AISeL)

All Sprouts Content Sprouts

11-19-2008

Optimal Release Time: Numbers or Intuition?
Hans Sassenburg
Software Engineering Institute, hanss@sei.cmu.edu

Egon W. Berghout
University of Groningen, e.w.berghout@rug.nl

Follow this and additional works at: http://aisel.aisnet.org/sprouts_all

This material is brought to you by the Sprouts at AIS Electronic Library (AISeL). It has been accepted for inclusion in All Sprouts Content by an
authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

Recommended Citation
Sassenburg, Hans and Berghout, Egon W., " Optimal Release Time: Numbers or Intuition?" (2008). All Sprouts Content. 179.
http://aisel.aisnet.org/sprouts_all/179

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fsprouts_all%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sprouts_all?utm_source=aisel.aisnet.org%2Fsprouts_all%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sprouts?utm_source=aisel.aisnet.org%2Fsprouts_all%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sprouts_all?utm_source=aisel.aisnet.org%2Fsprouts_all%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sprouts_all/179?utm_source=aisel.aisnet.org%2Fsprouts_all%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Working Papers on Information Systems ISSN 1535-6078

Optimal Release Time: Numbers or Intuition?

Hans Sassenburg
Software Engineering Institute, Germany

Egon W. Berghout
University of Groningen, The Netherlands

Abstract
Despite the exponential increase in the demand for software and the increase in our
dependence on software, many software manufacturers behave in an unpredictable manner.
In such an unpredictable software manufacturer organization, it is difficult to determine the
optimal release time. An economic model is presented supporting the evaluation and
comparison of different release or market entry alternatives. This model requires information
with respect to achieved reliability and maintainability. Existing literature reveals many
models to estimate reliability and limited models to estimate maintainability. The practicality
of most available models is however criticized. A series of case studies confirmed that
software manufacturers struggle with determining the reliability and maintainability of their
products prior to releasing them. This leads to a combination of non-analytical methods to
decide when a software product is "good enough" for release: intuition prevails where sharing
convincing information is required. Next research steps are put forward to investigate ways
increasing the economic reasoning about the optimal release time.

Keywords: Optimal release time; Software reliability prediction; Software reliability
estimation Maintainability

Permanent URL: http://sprouts.aisnet.org/6-61

Copyright: Creative Commons Attribution-Noncommercial-No Derivative Works License

Reference: Sassenburg, H., Berghout, E.W. (2006). "Optimal Release Time: Numbers or
Intuition?," University of Groningen, Netherlands . Sprouts: Working Papers on Information
Systems, 6(61). http://sprouts.aisnet.org/6-61

 Sprouts - http://sprouts.aisnet.org/6-61

http://creativecommons.org/licenses/by-nc-nd/3.0/

Optimal Release Time: Numbers or Intuition?
Hans Sassenburg

Software Engineering Institute
An der Welle 4

D-60322 Frankfurt, Germany
 +41 (033) 7334682

hanss@sei.cmu.edu

 Egon Berghout
Centre for IT Economics Research

P.O. Box 800

NL-9700 AV Groningen, Netherlands
 +31 (050) 3633721

e.w.berghout@eco.rug.nl

ABSTRACT
Despite the exponential increase in the demand for software and

the increase in our dependence on software, many software

manufacturers behave in an unpredictable manner. In such an

unpredictable software manufacturer organization, it is difficult to

determine the optimal release time. An economic model is

presented supporting the evaluation and comparison of different

release or market entry alternatives. This model requires

information with respect to achieved reliability and

maintainability. Existing literature reveals many models to

estimate reliability and limited models to estimate maintainability.

The practicality of most available models is however criticized. A

series of case studies confirmed that software manufacturers

struggle with determining the reliability and maintainability of

their products prior to releasing them. This leads to a combination

of non-analytical methods to decide when a software product is

‘good enough’ for release: intuition prevails where sharing

convincing information is required. Next research steps are put

forward to investigate ways increasing the economic reasoning

about the optimal release time.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification –

reliability, statistical methods.

D.2.8 [Software Engineering]: Metrics – process metrics,

product metrics.

K.6.3 [Management of Computing and Information Systems]:

Software Management – software development, software

maintenance.

General Terms
Management, Measurement, Economics, Reliability.

Keywords
Optimal release time, software reliability prediction, software

reliability estimation, maintainability.

1. INTRODUCTION
A relatively unexplored area in the field of software management

is the release or market entry decision, deciding whether or not a

software product can be transferred from its development phase to

operational use. As many software manufacturers behave in an

unpredictable manner [1], they have difficulty in determining the

‘right’ moment to release their software products. It is a trade-off

between an early release, to capture the benefits of an earlier

market introduction, and the deferral of product release, to

enhance functionality, or improve quality. A release decision is a

trade-off where, in theory, the objective is to maximize the

economic value. Inputs into the release decision are expected cash

inflows and outflows if the product is released. What is the market

window? What are the additional pre-release development costs

when continuing testing and the expected post-release

maintenance costs when releasing now?

2. ECONOMIC MODEL
A release decision is a trade-off where, in theory, the objective is

to maximize the economic value. Inputs into the release decision

are expected cash inflows and outflows if the product is released.

The determinants of the economic value of a software product are

separated into a development and an operations phase, as in

Figure 1. A commonly used capital budgeting method to evaluate

and compare investment proposals is NPV, being the discounted

present value of the difference between total cash inflows and

total cash outflows.

Development Operations

0 end of lifeT

I C, M

Figure 1: Determinants of Economic Value [5]

Its value can be calculated as the net asset value, equal to C – M,

from which the cost of development I is deducted, with all cash

inflows and outflows expressed in their present value. Equation:

NPV = -I + (C – M) / (1 + r) T (1)

With:

- T is the development time or time-to-market, defined as the

elapsed time between the commitment to invest in the project

and the time the product is released (start of first major cash

inflow from revenues or cost savings);

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

WoSQ’06, May 21, 2006, Shanghai, China.

Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

 Sprouts - http://sprouts.aisnet.org/6-61

- I is the total present value, at time 0, of all cash outflows from

the time the decision to invest is made to the product release

date;

- C is the total present value at time T of the cash inflows that the

product is expected to generate during its lifetime (revenues,

direct cost savings), also called the asset value or revenue;

- M is the total present value at time T of all cash outflows in the

operational phase (corrective and adaptive/perfective

maintenance), also called operational costs;

- r is the discount rate representing the systematic risk in the

software product.

When faced with the release or market entry decision, a software

manufacturer has to choose between an early release, to capture

the benefits of an earlier market introduction, and the deferral of

product release, to enhance functionality, or improve quality. If

testing, as the last project stage, is stopped too early, significant

defects could be released to intended users and the software

manufacturer could incur the post-release cost of fixing resultant

failures later. If testing proceeds too long, the cost of testing and

the opportunity cost could be substantial. At some point in time

during product development, two main questions will arise; how

long the software will run before it fails; and how expensive the

software will be to remove failures? Answers to these questions

require knowledge of the reliability and maintainability of the

product. The achieved reliability level determines determine how

long testing should continue before the product is stable enough

to be released. The achieved level of maintainability determines

how easily defects can be removed once the product has been

released and how easily the software can be further enhanced.

Different alternatives can be evaluated by comparing their NPV

values. Erdogmus introduces a method for comparative evaluation

of software development strategies based on NPV-calculations,

used to compare custom-built systems and systems based on

Commercial ‘Off the Shelf’ (COTS) software [5]. Erdogmus

distinguishes comparison metrics for various variables that

influence the NPV of a project. This method was used for a

similar method to reflect software release decisions [20].

Let V be a variable and let Va and Vb denote the value of variable

V for alternatives A and B respectively. A comparison metric is a

function of Va and Vb and for a specific value of a comparison

metric, alternative A is said to be favourable over B if for the

value of that metric the project NPV for alternative A is superior

to the project NPV for alternative B, when everything else is

equal. Metrics distinguished are:

� Premium: the relative difference of two quantities (if the

value of alternative A is 20% more than the value of alternative

B, the premium equals 0.2). A negative premium is a penalty.

� Advantage: the natural logarithm of the ratio of two

quantities (for mathematical convenience and ease of

interpretation). A negative advantage is a disadvantage.

� Incentive: normalized difference of two quantities to allow

comparison of alternatives of variable scale. A negative

incentive is a disincentive.

The structure of the NPV model with the breakdown into

incentives, advantages and premiums is illustrated in Figure 2.

At the lowest level, two categories of premium metrics are

distinguished:

� Asset value premiums. Three variables influencing the asset

value are considered, namely early market entry (EEP), product

functionality (PFP) and product reliability (PRP).

� Operational cost premiums. Two variables influencing the

operational cost are considered, namely the short-term costs for

corrective maintenance (SMP) and the long-term costs for

adaptive/perfective maintenance (LMP).

D
T

A

D
ev

el
o
p
m

en
t

T
im

e
A

d
v
an

ta
g
e

=
lo

g
 T

b
 -

 l
o

g
 T

a

E
E

P

E
ar

ly
 E

n
tr

y
 P

re
m

iu
m

P
F

P

P
ro

d
u
ct

F

u
n
ct

io
n
al

it
y

P
re

m
iu

m

P
R

P

P
ro

d
u
ct

R

el
ia

b
il

it
y

P

re
m

iu
m

AVA

Asset Value Advantage

= log C
a
 - log C

b

S
M

P

S
h

o
rt

-t
er

m
 M

ai
n

te
n

an
ce

P
re

m
iu

m

L
M

P

L
o
n
g
-t

er
m

M

ai
n
te

n
an

ce

P
re

m
iu

m

OCA

Operational Cost Advantage

= log M
b
 - log M

a

D
C

A

D
ev

el
o
p
m

en
t

C
o
st

 A
d
v
an

ta
g
e

=
 l

o
g

 I
b

-
lo

g
 I

a

NAVA

Net Asset Value Advantage = log (Ca - Ma) + log (Cb - Mb)

DCI

Development

Cost Incentive

PVI

Present Value Incentive = (PVa - PVb) / NAVb

NPVI

Net Present Value Incentive = (NPVa - NPVb) / (NAVb + Ib)

Figure 2: Breakdown of NPV Incentive [20]

The Asset Value Advantage AVA is equal to the expected increase

in future cash inflows (difference between the two alternatives Ca

and Cb) and is the contribution of the Early Entry Premium EEP,

the Product Functionality Premium PFP and the Product

Reliability Premium PRP.

The Operational Cost Advantage OCA is equal to the future cash

outflows savings (difference between the two alternatives Mb and

Ma) when the product is transferred to the operational phase and is

the contribution of the Short-term Maintenance Premium SMP

(corrective maintenance) and the Long-term Maintenance

Premium LMP (adaptive/perfective maintenance).

The Asset Value Advantage and the Operational Cost Advantage

are combined in the Net Asset Value Advantage NAVA.

The Present Value Incentive PVI is derived from the Net Asset

Value Advantage NAVA, taking into account the discount rate r

and normalizing it to the base alternative NAVb.

The Development Cost Incentive DCI is the normalized

difference of the development cost between the two alternatives Ib

and Ia considered.

This leads to the final Net Present Value Incentive NPVI,

normalized to the project scale:

 NPVI = (NPVa – NPVb) / (NAVb + Ib)

 = (PVa – Ia – PVb + Ib) / (NAVb + Ib)

 = (PVI . NAVb + DCI . Ib) / (NAVb + I) (2)

This NPVI-method enables a software manufacturer to evaluate

and compare different release alternatives and therefore to

determine the optimal release or market entry time. It requires

however the availability of as complete and reliable as possible

 Sprouts - http://sprouts.aisnet.org/6-61

information regarding the market window on one hand (asset

value premium) and the product reliability and maintainability on

the other hand (operational cost premium). In this paper, focus is

on available models to make quantitative statements about the

operational cost premium. This requires the capability of

assessing reliability, influencing the short-term corrective

maintenance cost, and maintainability, influencing both the short-

term corrective maintenance cost and the long-term

adaptive/perfective maintenance cost.

3. RELIABILITY
The crucial question during the testing phase of a product is:

when can testing be stopped so the product can be released?

Reliability, defined as the probability that a product will operate

without failure under given conditions for a given time interval, is

an important non-functional requirement to take into account

when this question is raised. If testing, as the last project stage, is

stopped too early, significant defects could be released to

intended users and the software manufacturer could incur the

post-release cost of fixing resultant failures later. In literature, two

types of software reliability models are described, supporting a

software manufacturer to make quantitative statements about

reliability prior to a release decision [19]:

� Software reliability prediction models (also referred to as

quality management models) address the reliability of the

software early in the life-cycle, at the requirements, design or

coding level, using historical data. The reliability is, for

example, predicted using fault density models and uses code

characteristics, such as lines of code and nesting of loops, to

estimate the number of faults in the software. Examples of such

models are Orthogonal Defect Classification or ODC [2] and

COQUALMO [3].

� Software reliability estimation models (also referred to as

reliability growth models) evaluate current and future reliability

from faults, beginning with the integration, or system testing, of

the software. The estimation is based on test data. These models

attempt to statistically correlate defect detection data with

known functions, such as an exponential function.

Although software reliability prediction models can be applied

during the entire product development process, software

reliability estimation models have been formulated to find the

optimal release time for software products. These models have in

common the support of the trade-off between three dimensions

cost, time and quality during the test phase, i.e. when the project

is nearing the release date. Most literature focuses on software

reliability estimation models, evaluating current and future

reliability from faults, beginning with the integration, or system

testing, of the software. The estimation is based on test data.

These models attempt to statistically correlate defect detection

data with known functions, such as an exponential function.

These models take the general form [21]:

 C(t) = c1 . m(t) + c2 . t + c3 . [m() – m(t)] (3)

With:

 m(t): expected mean number of faults detected in time (0,t]

The usefulness of the software reliability estimation models is

heavily criticized. Criticism is twofold:

� Most models assume a way of working that does not reflect

reality [16], meaning that the quality of assumptions is low. As

a result, several models can produce dramatically different

results for the same data set meaning that the predictive validity

is limited [9] [6].

� These models provide little support for determining the

reliability of a software product due to many shortcomings.

Studies show for instance that the number of pre-release faults

is not a reliable indicator of the number of post-release failures

[8]. The problem is that many software manufacturers use the

pre-release fault count as a measure for the number of post-

release failures, e.g. the reliability of the released product.

The lack of practical applicability of traditional verification

approaches for non reliability, has led to the exploration of new

approaches. Fenton and Neil argue that Bayesian nets offer a

model that takes into account the crucial concepts missing from

classical approaches [7] [17]. The nodes in the net represent

uncertain variables and the arcs in the net represent

causal/relevance relationships between the variables. Traditional

approaches do not take these relationships into account, but focus

on correlation between variables (e.g. size and defects). Although

positive results have been reported [17], its practical application is

assumed still to be limited for large and complex software

products due to the multitude of interdependent variables and the

excessive assessment burden, which might lead to informal, and

indefensible, quantification of the modeled variables. Further

research in this area is required to obtain more evidence.

Another relatively new approach to construct and present well

reasoned arguments that a system achieves acceptable levels of

safety, is the development of safety cases, where arguments are

structured using a technique called Goal Structuring Notation or

GSN [13]. This approach focuses on creating and documenting

structured rationales that convincingly show how evidence

gathered during system design and test, supports claims regarding

not only safety but also other non-functional requirements like

dependability, real-time performance, reliability and

maintainability. Ongoing research is required here as well to

investigate the practical application.

It is concluded that determining the reliability of a product using

software reliability estimation models is difficult due to the lack

of practically applicable models. A favourable choice should be to

use software reliability prediction models instead, using historical

data to make predictions of the expected defects densities in the

different development phases. It requires however the availability

of such historical data.

4. MAINTAINABILITY
Software reliability estimation models have received criticism

from different angles. Two higher-order limitations regarding

these models exist as well [20]:

� Focus is on cash outflows, not on profit. The models only

take into account cash outflows, assuming that minimizing total

cash outflows is the main objective. However, in profit-oriented

environments, for example, where software manufacturers sell

products to their customers, the expected cash inflows should

also be taken into account. In this case the optimal release time

would not be determined by minimizing the total cash outflows

but by maximizing the difference between cash inflows and

cash outflows.

 Sprouts - http://sprouts.aisnet.org/6-61

� Focus is on pre-release testing versus post-release corrective

cash outflows, not total cash outflows. Considering the total

life-cycle cost of a software product, focus should not only be

on the short-term operational cost for repairing failures

(corrective maintenance cost), but also on the expected future

cost for extending the product with additional functionality

(adaptive and perfective maintenance cost). Important factors

influencing the long-term maintenance cost are, for example,

the quality of the product design (the extent to which

maintainability requirements are addressed), the quality of the

product realization (the extent to which maintainability

requirements are correctly implemented), and the quality of the

documentation supporting the product (the extent to which the

product is documented in an accessible way: e.g. specifications,

design, code, test cases, build procedures).

The Maintainability Index or MI, defined by Oman and

Hagemeister, gives an indication of how maintainable a software

product is [18]. Two equations are available; the second one takes

into account the availability of comment in the code (assuming it

has a positive influence on maintainability):

MI = 171 – 3.42 ln(aveV) – 0.23 aveV(g´)

 – 16.2 ln (aveLOC) (4)

MI´ = MI + 50 sin (2.46 perCM) (5)

With:

aveV: average Halstead Volume per module

 (related to number of operators and operands used)

 aveV(g´): average extended cyclomatic complexity per module

 (number of linearly independent test paths)

 aveLOC: average lines of code per module

 perCM: average percent of lines of comment per module

However, one of the general problems is the lack of reliable

metrics for software complexity – one of the main input drivers

for estimation. Inputs like lines of code, function points and

cyclomatic complexity all have severe limitations [14].

IEEE defines the Software Maturity Index or SMI, which provides

an indication of the stability of a software product and can be

used as a metric for planning software maintenance activities [10]

[11]. As SMI approaches 1, the product begins to stabilise. In a

formula:

SMI = [Mt – (Fa + Fc + Fd)] / Mt (6)

With:

 Mt: number of modules in the current release

 Fc: number of changed mules in the current release

 Fa: number of deleted modules in the current release

 Fd: number of deleted modules in the current release

This index cannot provide an accurate estimate of operational

costs, and its main purpose is to demonstrate the evolution of a

product over time.

5. CASE STUDIES

5.1 Introduction
The conclusion of the previous two sections is that proven models

to determine the reliability and maintainability of a software

product are limited. It was found that collecting and analyzing

historical data from similar projects is probably a better

instrument. With regard to reliability, it will support the use of

software reliability prediction models to estimate pre-release

development costs for further testing and the number of residual

faults after product release. With respect to maintainability, it will

support the estimation of expected post-release maintenance costs.

The limited availability raises the question how software

manufacturers make their release decisions in a practical context.

How are estimated values for reliability and maintainability

obtained in practice? Seven case studies were conducted. The

selected environments varied with respect to the software

manufacturer types (custom system written in-house versus

commercial software), geographical locations (The Netherlands

and Switzerland), the product version developed (new product

versus new version of existing product), and the process maturity

level (ranging from CMMI level 1 to 3). The obtained results are

discussed in the next subsections (see [20] for a broader and more

detailed overview and discussion). The presented results show to

which extent reliability and maintainability are addressed and

quantified during the:

� specification phase as part of the (non-functional) product

requirements;

� design phase (deployment or breakdown of the specified

requirements to the different subsystems and lower level

components), and

� testing phase (evaluation of the specified requirements).

5.2 Reliability
Specification phase: In all cases, reliability was addressed in the

specifications as an important project objective. Only in some of

the cases was reliability defined in quantitative terms.

Design phase: Only in case G was evidence found that, during the

design or architecture phase, time and effort was spent to deploy

reliability to identified components. This was however not done

in quantitative terms. In case C, although not explicitly addressed

and quantified during the design phase, very detailed design and

coding rules were available with the objective of implicitly

contributing to high reliability.

Testing phase: In all the cases was reliability evaluated prior to

the release decision. Software reliability prediction and estimation

models were not used, although one organization was

investigating the application of ODC at that time. In none of the

cases, the achieved reliability could be quantified.

Table 1. Case Study Results – Reliability [20]

Reliability Spec. Design Testing

Case A Q A Q A Q

A + - - - + -

B + + - - + -

C + + -/+ - + -

D + - - - + -

E + + - - + -

F + + - - + -

G + + + - + -

Legend: A = addressed; Q = quantified

The results are summarized in Table 1.

 Sprouts - http://sprouts.aisnet.org/6-61

5.3 Maintainability
Specification phase: In all cases, maintainability was addressed in

the specifications as an important project objective. However, in

none of the cases was maintainability defined in quantitative

terms.

Design phase: Only in case G was evidence found that, during the

design or architecture phase, time and effort was spent to deploy

maintainability in identified components. This was however not

done in quantitative terms. In case C, although not explicitly

addressed and quantified during the design phase, very detailed

design and coding rules were available with the objective of

implicitly contributing to high product maintainability.

Testing phase: In none of the cases was product maintainability

evaluated prior to the release decision. It was not addressed at all

and was not expressed in quantitative terms. Only in case C was it

verified that the detailed design and coding rules were followed,

implicitly contributing to high product maintainability.

The results are summarized in Table 2.

Table 2. Case Study Results – Maintainability [20]

Maintainability Spec. Design Testing

Case A Q A Q A Q

A + - - - - -

B + - - - - -

C + - -/+ - - -

D + - - - - -

E + - - - - -

F + - - - - -

G + - + - - -

Another important observation here is that the information

regarding the availability of relevant documentation and the

quality of this documentation was limited in several cases (A, B,

E). This is expected to undermine the efficiency and effectiveness

of correcting defects, or giving the product additional quality,

especially when this discrepancy occurs during initial product

development [4].

5.4 Conclusions
In the first place, it is concluded that software manufacturers face

difficulties when deploying non-functional requirements to the

level of components during the design phase and evaluating them

once implemented. Available quality models like ISO/IEC 9126

[12] are of limited support here, a problem also recognized by for

instance Kitchenham and Pfleeger [15]. Existing quality models

share certain common problems:

� They lack a rationale for determining the hierarchy (between

for instance characteristics and sub-characteristics in ISO/IEC

9126) making it impossible to use the model as a reference to

define all non-functional requirements.

� There is no description of how the lowest level metrics

(indicators in ISO/IEC 9126) can be used to evaluate non-

functional requirements at a higher level.

Secondly, it is concluded that the estimate of post-release

operational cost for short-term corrective activities and long-term

product enhancements, prior to the release decision, is a difficult

task due to problems in determining exact levels for the reliability

level obtained, and the maintainability of the software product.

Thirdly, as a consequence, in none of the cases studied the

expected post-release maintenance effort or operational cost

premium could be quantified:

� The reliability level was uncertain, making it difficult to

(accurately) estimate the expected number of post-release

defects.

� The average effort or cost for correcting a defect was hardly

known. This means that even when the reliability level could be

quantified, the corrective maintenance would difficult to

quantify.

� The maintainability of the product was basically unknown,

making it difficult, if not impossible, to state the extent to which

a product can be further adapted, or perfected, in the future and

the associated costs.

This often leads to situations where software is released

prematurely with serious post-release problems. The case studies

revealed (a combination of) the following non-analytical methods

to decide when a software product is ‘good enough’ for release:

� A ‘sufficient’ percentage of test cases run successfully.

� Statistics are gathered about what code is exercised during

the execution of a test suite.

� Defects are classified and numbers and trends are analysed.

� Real users conduct beta testing and report problems that are

analysed.

� Developers analyse the number of reported problems in a

certain period of time. When the number stabilizes, or remains

below a certain threshold, the software is considered ‘good

enough’.

Intuition seems to prevails, where as economic reasoning by

sharing convincing information is required. Intuition on its own is

not sufficient for software release decisions, especially in cases

where large prospective financial loss outcomes to a software

manufacturer and its customers/users are present.

6. NEXT STEPS
The NPVI-method presented in section 2 offers an instrument to

evaluate and compare different release alternatives. However, to

make it a good candidate for determining the optimal release time,

information is required for the market window and the operational

cost premium. This study revealed that software manufacturers

are confronted with serious problems when trying to report the

pre-release level of product reliability obtained and the expected

post-release maintenance cost, based on the level of reliability and

the maintainability of the resulting product. This hampers the

economic reasoning about the optimal release time, where the

decision-making process is characterized by sharing of

convincing information. Further research is required into the

following issues:

� Deployment of non-functional requirements. It was

concluded that existing quality models lack a rationale for

determining the hierarchy and a description of how the lowest

level metrics can be used to evaluate non-functional

requirements at a higher level. This makes it difficult to address

the deployment of non-functional requirements like reliability

and maintainability requirements during the design phase. The

 Sprouts - http://sprouts.aisnet.org/6-61

case studies confirmed that deployment is something software

manufacturers either ignore or struggle with. It is therefore

recommended to pursuit research in finding better ways to

support this deployment process.

� Evaluation of reliability requirements. It was concluded that

traditional software reliability estimation models lack practical

applicability. Most models assume a way of working that does

not reflect reality. In none of the cases studied, such models

were used. Therefore, future research should concentrate on

revisiting the applicability of existing software reliability

prediction models like COQUALMO and ODC and enforcing

the development of new software reliability estimation

approaches like Bayesian Nets and GSN. In addition, successful

application of such approaches will require software

manufacturers to collect and analyze historical data from

different projects, thus enforcing the successful implementation

of metrics programs as well.

� Evaluation of maintainability requirements. It was concluded

that there is a lack of models supporting the evaluation of the

achieved level of maintainability. In none of the cases studied,

models were found supporting these estimates. This hampers

software manufacturers in making strong statements about the

post-release maintenance costs (operational cost premium), both

and the short-term (corrective) and the long-term

(adaptive/perfective). It is recommended to look into ways to

support the evaluation of the level of maintainability achieved.

In parallel, further research is planned regarding the applicability

of the NPVI-method to determine its potential benefits in a

practical context. This may possibly lead to further extensions

and/or refinements of the method. It is assumed that in more

mature environments information is increasingly perfect.

Organizations interested in participation and/or contributions are

invited to contact the authors.

7. REFERENCES
[1] Boehm, B.W., Sullivan, K.J., Software Economics: A

Roadmap. ACM Press, 2000.

[2] Chillarege, R., et al., Orthogonal Defect Classification – A

Concept for In-Process Measurements. IEEE Transactions

on Software Engineering, 18, 11, 1992.

[3] Chulani, S., COQUALMO (COnstructive QUALity MOdel):

A Software Defect Density Prediction Model. In Project

Control for Software Quality, Kusters et al., (Eds.), Shaker

Publishing, 1999.

[4] Cook, C., Visconti, M., New and improved documentation

process model. Proceedings of the 14th Pacific Northwest

Software Quality Conference, Portland, 1996, 364-380.

[5] Erdogmus, H., Comparative evaluation of software

development strategies based on Net Present Value.

Proceedings of the First International Workshop on

Economics-driven Software Engineering Research, Toronto

(Canada), 1999.

[6] Fenton, N.E., Pfleeger, S.L., Software Metrics: A Rigorous &

Practical Approach. PWS Publishing Company, 1997.

[7] Fenton, N.E., et al., Assessing Dependability of Safety

Critical Systems using Diverse Evidence. IEEE Proceedings

Software Engineering, 145, 1, 1998, 35-39.

[8] Fenton, N.E., Neil, M., A Critique of Software Defect

Prediction Research. IEEE Transactions on Software

Engineering, 25, 5, 1999.

[9] Gokhale, S.S., et al., Important Milestones in Software

Reliability Modeling. Communications in Reliability,

Maintainability and Serviceability, SAE International, 1996.

[10] IEEE, IEEE Standard Dictionary of Measures to Produce

Reliable Software. IEEE Std. 982.1, The Institute of

Electrical and Electronics Engineers, 1988.

[11] IEEE, IEEE Guide for the Use of IEEE Standard Dictionary

of Measures to Produce Reliable Software. IEEE Std. 982.1,

The Institute of Electrical and Electronics Engineers, 1988.

[12] ISO, ISO/IEC 9126-1:2001 Software Engineering - Product

Quality - Part 1: Quality model. International Organization

for Standardization, 2001.

[13] Kelly, T.P., Arguing Safety. PhD thesis, University of York

(UK), 1998.

[14] Kemerer, C., Software complexity and software

maintenance: a survey of empirical research. Annals of

Software Engineering I, J.C.Baltzer AG, Science Publishers,

1995, 1-22.

[15] Kitchenham, B., Pfleeger, S.L., Software Quality: The

Elusive Target. IEEE Software, 13, 1, 1996, 12-21.

[16] Li, P.L., et al., Selecting a defect prediction model for

maintenance resource planning and software insurance.

Proceedings of the Fifth International Workshop on

Economics-driven Software Engineering Research, Oregon

(USA), 2003.

[17] Neil, M., Fenton N., Improved Software Defect Prediction.

European SEPG Conference, London (UK), 2005.

[18] Oman, P., Hagemeister, J., Constructing and testing of

Polynomials Predicting Software Maintainability. Journal of

Systems and Software, 24, 3, March, 1994.

[19] Reliability Analysis Center, Introduction to Software

Reliability: A State of the Art Review. Reliability Analysis

Center (RAC), 1996.

[20] Sassenburg, H., Design of a Methodology to Support

Software Release Decisions: Do the Numbers really Matter?

PhD thesis, University of Groningen (The Netherlands),

2006.

[21] Xie, M., Software Reliability Modeling. Singapore. World

Scientific, 1991.

 Sprouts - http://sprouts.aisnet.org/6-61

Optimal release time: Numbers of intuition?

Hans Sassenburg
Egon Berghout

University of Groningen
Centre of IT Economic
Research
P.O. Box 800
9700 AV Groningen
The Netherlands

 CITER WP/009/HSEB

21 May 2006

 Sprouts - http://sprouts.aisnet.org/6-61

Projects and main venues of research

• Cost/benefit management of IT.
• Decision-support methods for implementation

decisions within organizations.
• Evaluation of legacy systems.
• Innovation and technical change in ICT.
• ‘Open’ vs. ‘proprietary’ software modes of

development.
• Software patenting and appropriation strategies.
• Tools and strategies for the IT Control Officer.

Sponsors

UWV

Getronics PinkRoccade

CITER Mission

CITER is an independent research group
within the Department of Economics,
University of Groningen. Our research is
focused on the economics of information
technologies. Our research aims at
understanding and analyzing the dynamics
and the processes of development, distribution
and implementation of information and
communications technologies and improving
their efficiency and effectiveness.

We investigate particular economic issues in
the economics of information technologies.
For instance, the differences between ‘Open’
and ‘proprietary’ technologies, the
characteristics of hardware and software
commercial demand and supply and the
diffusion of new technologies. We also study
the efficient and effective use of those
technologies, how we can improve IT
management and increase the benefits of
investment in information technologies.

The objectives of our research are especially
useful for organizations using information
technologies and to firms competing in this
arena, as well as to policy makers and to
society as a whole.

Our research is conducted in close coopera-
tion with industry, non-profit organizations
and governmental partners, as our field of
research is subject to frequent technological
and political changes.

Contact information

University of Groningen
CITER-WSN827
P.O. Box 800
9700 AV Groningen
The Netherlands
Tel. +31-50-363-3721
info@CITER.nl

Researchers

Prof. dr. E.W.
Berghout

Drs. Ing. A.L.
Commandeur

C.E. Elsenga, MSc

Dr. E. Harison

Dr. ir. M.H. Nijland

Prof. dr. P. Powell

Dr. T.J.W. Renkema

Dr. Ir. H. Sassenburg

P.M. Schuurman,
MSc.

E.J. Stokking, MSc.

S. Orie, MSc.

e.w.berghout@rug.nl

a.l.commandeur@
rug.nl

c.e.elsenga@rug.nl

e.harison@rug.nl

m.h.nijland@lse.ac.uk

mnspp@management.bath.ac.uk

t.j.w.renkema@rug.nl

hanss@sei.cmu.edu

p.m.schuurman@rug.nl

e.j.stokking@rug.nl

sieraadj@asset-control.com

 Sprouts - http://sprouts.aisnet.org/6-61

 Working Papers on Information Systems | ISSN 1535-6078

Editors:
Michel Avital, University of Amsterdam
Kevin Crowston, Syracuse University

Advisory Board:
Kalle Lyytinen, Case Western Reserve University
Roger Clarke, Australian National University
Sue Conger, University of Dallas
Marco De Marco, Universita’ Cattolica di Milano
Guy Fitzgerald, Brunel University
Rudy Hirschheim, Louisiana State University
Blake Ives, University of Houston
Sirkka Jarvenpaa, University of Texas at Austin
John King, University of Michigan
Rik Maes, University of Amsterdam
Dan Robey, Georgia State University
Frantz Rowe, University of Nantes
Detmar Straub, Georgia State University
Richard T. Watson, University of Georgia
Ron Weber, Monash University
Kwok Kee Wei, City University of Hong Kong

Sponsors:
Association for Information Systems (AIS)
AIM
itAIS
Addis Ababa University, Ethiopia
American University, USA
Case Western Reserve University, USA
City University of Hong Kong, China
Copenhagen Business School, Denmark
Hanken School of Economics, Finland
Helsinki School of Economics, Finland
Indiana University, USA
Katholieke Universiteit Leuven, Belgium
Lancaster University, UK
Leeds Metropolitan University, UK
National University of Ireland Galway, Ireland
New York University, USA
Pennsylvania State University, USA
Pepperdine University, USA
Syracuse University, USA
University of Amsterdam, Netherlands
University of Dallas, USA
University of Georgia, USA
University of Groningen, Netherlands
University of Limerick, Ireland
University of Oslo, Norway
University of San Francisco, USA
University of Washington, USA
Victoria University of Wellington, New Zealand
Viktoria Institute, Sweden

Editorial Board:
Margunn Aanestad, University of Oslo
Steven Alter, University of San Francisco
Egon Berghout, University of Groningen
Bo-Christer Bjork, Hanken School of Economics
Tony Bryant, Leeds Metropolitan University
Erran Carmel, American University
Kieran Conboy, National U. of Ireland Galway
Jan Damsgaard, Copenhagen Business School
Robert Davison, City University of Hong Kong
Guido Dedene, Katholieke Universiteit Leuven
Alan Dennis, Indiana University
Brian Fitzgerald, University of Limerick
Ole Hanseth, University of Oslo
Ola Henfridsson, Viktoria Institute
Sid Huff, Victoria University of Wellington
Ard Huizing, University of Amsterdam
Lucas Introna, Lancaster University
Panos Ipeirotis, New York University
Robert Mason, University of Washington
John Mooney, Pepperdine University
Steve Sawyer, Pennsylvania State University
Virpi Tuunainen, Helsinki School of Economics
Francesco Virili, Universita' degli Studi di Cassino

Managing Editor:
Bas Smit, University of Amsterdam

Office:
Sprouts
University of Amsterdam
Roetersstraat 11, Room E 2.74
1018 WB Amsterdam, Netherlands
Email: admin@sprouts.aisnet.org

	Association for Information Systems
	AIS Electronic Library (AISeL)
	11-19-2008

	Optimal Release Time: Numbers or Intuition?
	Hans Sassenburg
	Egon W. Berghout
	Recommended Citation

	htmldoc704.html

