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ABSTRACT
Despite the exponential increase in the demand for software and 

the increase in our dependence on software, many software 

manufacturers behave in an unpredictable manner. In such an 

unpredictable software manufacturer organization, it is difficult to 

determine the optimal release time. An economic model is 

presented supporting the evaluation and comparison of different 

release or market entry alternatives. This model requires 

information with respect to achieved reliability and 

maintainability. Existing literature reveals many models to 

estimate reliability and limited models to estimate maintainability. 

The practicality of most available models is however criticized. A 

series of case studies confirmed that software manufacturers 

struggle with determining the reliability and maintainability of 

their products prior to releasing them. This leads to a combination 

of non-analytical methods to decide when a software product is 

‘good enough’ for release: intuition prevails where sharing 

convincing information is required. Next research steps are put 

forward to investigate ways increasing the economic reasoning 

about the optimal release time.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification – 

reliability, statistical methods.

D.2.8 [Software Engineering]: Metrics – process metrics, 

product metrics.

K.6.3 [Management of Computing and Information Systems]: 

Software Management – software development, software 

maintenance.

General Terms
Management, Measurement, Economics, Reliability. 

Keywords
Optimal release time, software reliability prediction, software 

reliability estimation, maintainability. 

1. INTRODUCTION
A relatively unexplored area in the field of software management 

is the release or market entry decision, deciding whether or not a 

software product can be transferred from its development phase to 

operational use. As many software manufacturers behave in an 

unpredictable manner [1], they have difficulty in determining the 

‘right’ moment to release their software products. It is a trade-off 

between an early release, to capture the benefits of an earlier 

market introduction, and the deferral of product release, to 

enhance functionality, or improve quality. A release decision is a 

trade-off where, in theory, the objective is to maximize the 

economic value. Inputs into the release decision are expected cash 

inflows and outflows if the product is released. What is the market 

window? What are the additional pre-release development costs 

when continuing testing and the expected post-release 

maintenance costs when releasing now? 

2. ECONOMIC MODEL 
A release decision is a trade-off where, in theory, the objective is 

to maximize the economic value. Inputs into the release decision 

are expected cash inflows and outflows if the product is released. 

The determinants of the economic value of a software product are 

separated into a development and an operations phase, as in 

Figure 1. A commonly used capital budgeting method to evaluate 

and compare investment proposals is NPV, being the discounted 

present value of the difference between total cash inflows and 

total cash outflows. 

Development Operations

0 end of  lifeT

I C, M

Figure 1: Determinants of Economic Value [5] 

Its value can be calculated as the net asset value, equal to C – M,

from which the cost of development I is deducted, with all cash 

inflows and outflows expressed in their present value. Equation: 

NPV   =   -I + (C – M) / (1 + r) T                        (1) 

With: 

- T is the development time or time-to-market, defined as the 

elapsed time between the commitment to invest in the project 

and the time the product is released (start of first major cash 

inflow from revenues or cost savings); 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first page. To copy 

otherwise, or republish, to post on servers or to redistribute to lists, 

requires prior specific permission and/or a fee. 

WoSQ’06, May 21, 2006, Shanghai, China. 

Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

                             Sprouts - http://sprouts.aisnet.org/6-61



- I is the total present value, at time 0, of all cash outflows from 

the time the decision to invest is made to the product release 

date;

- C is the total present value at time T of the cash inflows that the 

product is expected to generate during its lifetime (revenues, 

direct cost savings), also called the asset value or revenue; 

- M is the total present value at time T of all cash outflows in the 

operational phase (corrective and adaptive/perfective 

maintenance), also called operational costs; 

- r is the discount rate representing the systematic risk in the 

software product. 

When faced with the release or market entry decision, a software 

manufacturer has to choose between an early release, to capture 

the benefits of an earlier market introduction, and the deferral of 

product release, to enhance functionality, or improve quality. If 

testing, as the last project stage, is stopped too early, significant 

defects could be released to intended users and the software 

manufacturer could incur the post-release cost of fixing resultant 

failures later. If testing proceeds too long, the cost of testing and 

the opportunity cost could be substantial. At some point in time 

during product development, two main questions will arise; how 

long the software will run before it fails; and how expensive the 

software will be to remove failures? Answers to these questions 

require knowledge of the reliability and maintainability of the 

product. The achieved reliability level determines determine how 

long testing should continue before the product is stable enough 

to be released. The achieved level of maintainability determines 

how easily defects can be removed once the product has been 

released and how easily the software can be further enhanced.  

Different alternatives can be evaluated by comparing their NPV 

values. Erdogmus introduces a method for comparative evaluation 

of software development strategies based on NPV-calculations, 

used to compare custom-built systems and systems based on 

Commercial ‘Off the Shelf’ (COTS) software [5]. Erdogmus 

distinguishes comparison metrics for various variables that 

influence the NPV of a project. This method was used for a 

similar method to reflect software release decisions [20]. 

Let V be a variable and let Va and Vb denote the value of variable 

V for alternatives A and B respectively. A comparison metric is a 

function of Va and Vb and for a specific value of a comparison 

metric, alternative A is said to be favourable over B if for the 

value of that metric the project NPV for alternative A is superior 

to the project NPV for alternative B, when everything else is 

equal.  Metrics distinguished are: 

� Premium: the relative difference of two quantities (if the 

value of alternative A is 20% more than the value of alternative 

B, the premium equals 0.2). A negative premium is a penalty. 

� Advantage: the natural logarithm of the ratio of two 

quantities (for mathematical convenience and ease of 

interpretation). A negative advantage is a disadvantage.

� Incentive: normalized difference of two quantities to allow 

comparison of alternatives of variable scale. A negative 

incentive is a disincentive.  

The structure of the NPV model with the breakdown into 

incentives, advantages and premiums is illustrated in Figure 2. 

At the lowest level, two categories of premium metrics are 

distinguished:

� Asset value premiums. Three variables influencing the asset 

value are considered, namely early market entry (EEP), product 

functionality (PFP) and product reliability (PRP).

� Operational cost premiums. Two variables influencing the 

operational cost are considered, namely the short-term costs for 

corrective maintenance (SMP) and the long-term costs for 

adaptive/perfective maintenance (LMP).
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Net Asset Value  Advantage =  log (Ca - Ma) + log (Cb - Mb)

DCI

Development

Cost Incentive

PVI

Present Value Incentive =  (PVa - PVb ) / NAVb

NPVI

Net Present Value Incentive =  ( NPVa - NPVb ) / ( NAVb + Ib )

Figure 2: Breakdown of NPV Incentive [20]  

The Asset Value Advantage AVA is equal to the expected increase 

in future cash inflows (difference between the two alternatives Ca

and Cb) and is the contribution of the Early Entry Premium EEP,

the Product Functionality Premium PFP and the Product 

Reliability Premium PRP.

The Operational Cost Advantage OCA is equal to the future cash 

outflows savings (difference between the two alternatives Mb and 

Ma) when the product is transferred to the operational phase and is 

the contribution of the Short-term Maintenance Premium SMP

(corrective maintenance) and the Long-term Maintenance 

Premium LMP (adaptive/perfective maintenance). 

The Asset Value Advantage and the Operational Cost Advantage 

are combined in the Net Asset Value Advantage NAVA.

The Present Value Incentive PVI is derived from the Net Asset 

Value Advantage NAVA, taking into account the discount rate r

and normalizing it to the base alternative NAVb.

The Development Cost Incentive DCI is the normalized 

difference of the development cost between the two alternatives Ib

and Ia considered. 

This leads to the final Net Present Value Incentive NPVI,

normalized to the project scale: 

   NPVI      =   ( NPVa – NPVb ) / ( NAVb + Ib ) 

                  =   ( PVa – Ia – PVb + Ib ) / ( NAVb + Ib ) 

                  =   (PVI . NAVb + DCI . Ib) / (NAVb + I )                  (2) 

This NPVI-method enables a software manufacturer to evaluate 

and compare different release alternatives and therefore to 

determine the optimal release or market entry time. It requires 

however the availability of as complete and reliable as possible 

                             Sprouts - http://sprouts.aisnet.org/6-61



information regarding the market window on one hand (asset 

value premium) and the product reliability and maintainability on 

the other hand (operational cost premium). In this paper, focus is 

on available models to make quantitative statements about the 

operational cost premium. This requires the capability of 

assessing reliability, influencing the short-term corrective 

maintenance cost, and maintainability, influencing both the short-

term corrective maintenance cost and the long-term 

adaptive/perfective maintenance cost. 

3. RELIABILITY
The crucial question during the testing phase of a product is: 

when can testing be stopped so the product can be released? 

Reliability, defined as the probability that a product will operate 

without failure under given conditions for a given time interval, is 

an important non-functional requirement to take into account 

when this question is raised. If testing, as the last project stage, is 

stopped too early, significant defects could be released to 

intended users and the software manufacturer could incur the 

post-release cost of fixing resultant failures later. In literature, two 

types of software reliability models are described, supporting a 

software manufacturer to make quantitative statements about 

reliability prior to a release decision [19]:  

� Software reliability prediction models (also referred to as 

quality management models) address the reliability of the 

software early in the life-cycle, at the requirements, design or 

coding level, using historical data. The reliability is, for 

example, predicted using fault density models and uses code 

characteristics, such as lines of code and nesting of loops, to 

estimate the number of faults in the software. Examples of such 

models are Orthogonal Defect Classification or ODC [2] and 

COQUALMO [3]. 

� Software reliability estimation models (also referred to as 

reliability growth models) evaluate current and future reliability 

from faults, beginning with the integration, or system testing, of 

the software. The estimation is based on test data. These models 

attempt to statistically correlate defect detection data with 

known functions, such as an exponential function.

Although software reliability prediction models can be applied 

during the entire product development process, software 

reliability estimation models have been formulated to find the 

optimal release time for software products. These models have in 

common the support of the trade-off between three dimensions 

cost, time and quality during the test phase, i.e. when the project 

is nearing the release date. Most literature focuses on software 

reliability estimation models, evaluating current and future 

reliability from faults, beginning with the integration, or system 

testing, of the software. The estimation is based on test data. 

These models attempt to statistically correlate defect detection 

data with known functions, such as an exponential function.

These models take the general form [21]: 

   C(t)  =  c1 . m(t)  +  c2 . t  +  c3 . [ m( ) – m(t) ]       (3) 

With: 

   m(t):  expected mean number of faults detected in time (0,t]    

The usefulness of the software reliability estimation models is 

heavily criticized. Criticism is twofold:  

� Most models assume a way of working that does not reflect 

reality [16], meaning that the quality of assumptions is low. As 

a result, several models can produce dramatically different 

results for the same data set meaning that the predictive validity 

is limited [9] [6].  

� These models provide little support for determining the 

reliability of a software product due to many shortcomings. 

Studies show for instance that the number of pre-release faults 

is not a reliable indicator of the number of post-release failures 

[8]. The problem is that many software manufacturers use the 

pre-release fault count as a measure for the number of post-

release failures, e.g. the reliability of the released product. 

The lack of practical applicability of traditional verification 

approaches for non reliability, has led to the exploration of new 

approaches. Fenton and Neil argue that Bayesian nets offer a 

model that takes into account the crucial concepts missing from 

classical approaches [7] [17]. The nodes in the net represent 

uncertain variables and the arcs in the net represent 

causal/relevance relationships between the variables. Traditional 

approaches do not take these relationships into account, but focus 

on correlation between variables (e.g. size and defects). Although 

positive results have been reported [17], its practical application is 

assumed still to be limited for large and complex software 

products due to the multitude of interdependent variables and the 

excessive assessment burden, which might lead to informal, and 

indefensible, quantification of the modeled variables. Further 

research in this area is required to obtain more evidence. 

Another relatively new approach to construct and present well 

reasoned arguments that a system achieves acceptable levels of 

safety, is the development of safety cases, where arguments are 

structured using a technique called Goal Structuring Notation or 

GSN [13]. This approach focuses on creating and documenting 

structured rationales that convincingly show how evidence 

gathered during system design and test, supports claims regarding 

not only safety but also other non-functional requirements like 

dependability, real-time performance, reliability and 

maintainability. Ongoing research is required here as well to 

investigate the practical application. 

It is concluded that determining the reliability of a product using 

software reliability estimation models is difficult due to the lack 

of practically applicable models. A favourable choice should be to 

use software reliability prediction models instead, using historical 

data to make predictions of the expected defects densities in the 

different development phases. It requires however the availability 

of such historical data. 

4. MAINTAINABILITY
Software reliability estimation models have received criticism 

from different angles. Two higher-order limitations regarding 

these models exist as well [20]:

� Focus is on cash outflows, not on profit. The models only 

take into account cash outflows, assuming that minimizing total 

cash outflows is the main objective. However, in profit-oriented 

environments, for example, where software manufacturers sell 

products to their customers, the expected cash inflows should 

also be taken into account. In this case the optimal release time 

would not be determined by minimizing the total cash outflows 

but by maximizing the difference between cash inflows and 

cash outflows.
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� Focus is on pre-release testing versus post-release corrective 

cash outflows, not total cash outflows. Considering the total 

life-cycle cost of a software product, focus should not only be 

on the short-term operational cost for repairing failures 

(corrective maintenance cost), but also on the expected future 

cost for extending the product with additional functionality 

(adaptive and perfective maintenance cost). Important factors 

influencing the long-term maintenance cost are, for example, 

the quality of the product design (the extent to which 

maintainability requirements are addressed), the quality of the 

product realization (the extent to which maintainability 

requirements are correctly implemented), and the quality of the 

documentation supporting the product (the extent to which the 

product is documented in an accessible way: e.g. specifications, 

design, code, test cases, build procedures). 

The Maintainability Index or MI, defined by Oman and 

Hagemeister, gives an indication of how maintainable a software 

product is [18]. Two equations are available; the second one takes 

into account the availability of comment in the code (assuming it 

has a positive influence on maintainability):  

MI  = 171 – 3.42 ln(aveV) – 0.23 aveV(g´)  

                             – 16.2 ln (aveLOC)       (4)

MI´ =  MI + 50 sin  (2.46 perCM)        (5) 

With: 

aveV:     average Halstead Volume per module 

    (related to number of operators and operands used) 

   aveV(g´): average extended cyclomatic complexity per module  

                    (number of linearly independent test paths) 

   aveLOC:  average lines of code per module 

   perCM:  average percent of lines of comment per module 

However, one of the general problems is the lack of reliable 

metrics for software complexity – one of the main input drivers 

for estimation. Inputs like lines of code, function points and 

cyclomatic complexity all have severe limitations [14]. 

IEEE defines the Software Maturity Index or SMI, which provides 

an indication of the stability of a software product and can be 

used as a metric for planning software maintenance activities [10] 

[11]. As SMI approaches 1, the product begins to stabilise. In a 

formula:

SMI =   [ Mt – (Fa + Fc + Fd) ] / Mt             (6) 

With: 

   Mt: number of modules in the current release  

   Fc: number of changed mules in the current release 

   Fa: number of deleted modules in the current release 

   Fd: number of deleted modules in the current release 

This index cannot provide an accurate estimate of operational 

costs, and its main purpose is to demonstrate the evolution of a 

product over time. 

5. CASE STUDIES 

5.1 Introduction
The conclusion of the previous two sections is that proven models 

to determine the reliability and maintainability of a software 

product are limited. It was found that collecting and analyzing 

historical data from similar projects is probably a better 

instrument. With regard to reliability, it will support the use of 

software reliability prediction models to estimate pre-release 

development costs for further testing and the number of residual 

faults after product release. With respect to maintainability, it will 

support the estimation of expected post-release maintenance costs. 

The limited availability raises the question how software 

manufacturers make their release decisions in a practical context. 

How are estimated values for reliability and maintainability 

obtained in practice? Seven case studies were conducted. The 

selected environments varied with respect to the software 

manufacturer types (custom system written in-house versus 

commercial software), geographical locations (The Netherlands 

and Switzerland), the product version developed (new product 

versus new version of existing product), and the process maturity 

level (ranging from CMMI level 1 to 3). The obtained results are 

discussed in the next subsections (see [20] for a broader and more 

detailed overview and discussion). The presented results show to 

which extent reliability and maintainability are addressed and 

quantified during the: 

� specification phase as part of the (non-functional)  product 

requirements;

� design phase (deployment or breakdown of the specified 

requirements to the different subsystems and lower level 

components), and 

� testing phase (evaluation of the specified requirements). 

5.2 Reliability
Specification phase: In all cases, reliability was addressed in the 

specifications as an important project objective. Only in some of 

the cases was reliability defined in quantitative terms.  

Design phase: Only in case G was evidence found that, during the 

design or architecture phase, time and effort was spent to deploy 

reliability to identified components. This was however not done 

in quantitative terms. In case C, although not explicitly addressed 

and quantified during the design phase, very detailed design and 

coding rules were available with the objective of implicitly 

contributing to high reliability.  

Testing phase: In all the cases was reliability evaluated prior to 

the release decision. Software reliability prediction and estimation 

models were not used, although one organization was 

investigating the application of ODC at that time. In none of the 

cases, the achieved reliability could be quantified. 

Table 1. Case Study Results – Reliability [20]

Reliability Spec. Design Testing 

Case A Q A Q A Q 

A + - - - + - 

B + + - - + - 

C + + -/+ - + - 

D + - - - + - 

E + + - - + - 

F + + - - + - 

G + + + - + - 

Legend: A = addressed; Q = quantified 

The results are summarized in Table 1. 
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5.3 Maintainability
Specification phase: In all cases, maintainability was addressed in 

the specifications as an important project objective. However, in 

none of the cases was maintainability defined in quantitative 

terms.  

Design phase: Only in case G was evidence found that, during the 

design or architecture phase, time and effort was spent to deploy 

maintainability in identified components. This was however not 

done in quantitative terms. In case C, although not explicitly 

addressed and quantified during the design phase, very detailed 

design and coding rules were available with the objective of 

implicitly contributing to high product maintainability.  

Testing phase: In none of the cases was product maintainability 

evaluated prior to the release decision. It was not addressed at all 

and was not expressed in quantitative terms. Only in case C was it 

verified that the detailed design and coding rules were followed, 

implicitly contributing to high product maintainability. 

The results are summarized in Table 2. 

Table 2. Case Study Results – Maintainability [20] 

Maintainability Spec. Design Testing 

Case A Q A Q A Q 

A + - - - - - 

B + - - - - - 

C + - -/+ - - - 

D + - - - - - 

E + - - - - - 

F + - - - - - 

G + - + - - - 

Another important observation here is that the information 

regarding the availability of relevant documentation and the 

quality of this documentation was limited in several cases (A, B, 

E). This is expected to undermine the efficiency and effectiveness 

of correcting defects, or giving the product additional quality, 

especially when this discrepancy occurs during initial product 

development [4]. 

5.4 Conclusions
In the first place, it is concluded that software manufacturers face 

difficulties when deploying non-functional requirements to the 

level of components during the design phase and evaluating them 

once implemented. Available quality models like ISO/IEC 9126 

[12] are of limited support here, a problem also recognized by for 

instance Kitchenham and Pfleeger [15]. Existing quality models 

share certain common problems: 

� They lack a rationale for determining the hierarchy (between 

for instance characteristics and sub-characteristics in ISO/IEC 

9126) making it impossible to use the model as a reference to 

define all non-functional requirements.

� There is no description of how the lowest level metrics 

(indicators in ISO/IEC 9126) can be used to evaluate non-

functional requirements at a higher level.

Secondly, it is concluded that the estimate of post-release 

operational cost for short-term corrective activities and long-term 

product enhancements, prior to the release decision, is a difficult 

task due to problems in determining exact levels for the reliability 

level obtained, and the maintainability of the software product.  

Thirdly, as a consequence, in none of the cases studied the 

expected post-release maintenance effort or operational cost 

premium could be quantified: 

� The reliability level was uncertain, making it difficult to 

(accurately) estimate the expected number of post-release 

defects. 

� The average effort or cost for correcting a defect was hardly 

known. This means that even when the reliability level could be 

quantified, the corrective maintenance would difficult to 

quantify. 

� The maintainability of the product was basically unknown, 

making it difficult, if not impossible, to state the extent to which 

a product can be further adapted, or perfected, in the future and 

the associated costs. 

This often leads to situations where software is released 

prematurely with serious post-release problems. The case studies 

revealed (a combination of) the following non-analytical methods 

to decide when a software product is ‘good enough’ for release:

� A ‘sufficient’ percentage of test cases run successfully. 

� Statistics are gathered about what code is exercised during 

the execution of a test suite. 

� Defects are classified and numbers and trends are analysed. 

� Real users conduct beta testing and report problems that are 

analysed. 

� Developers analyse the number of reported problems in a 

certain period of time. When the number stabilizes, or remains 

below a certain threshold, the software is considered ‘good 

enough’.

Intuition seems to prevails, where as economic reasoning by 

sharing convincing information is required. Intuition on its own is 

not sufficient for software release decisions, especially in cases 

where large prospective financial loss outcomes to a software 

manufacturer and its customers/users are present.  

6. NEXT STEPS 
The NPVI-method presented in section 2 offers an instrument to 

evaluate and compare different release alternatives. However, to 

make it a good candidate for determining the optimal release time, 

information is required for the market window and the operational 

cost premium. This study revealed that software manufacturers 

are confronted with serious problems when trying to report the 

pre-release level of product reliability obtained and the expected 

post-release maintenance cost, based on the level of reliability and 

the maintainability of the resulting product. This hampers the 

economic reasoning about the optimal release time, where the 

decision-making process is characterized by sharing of 

convincing information. Further research is required into the 

following issues: 

� Deployment of non-functional requirements. It was 

concluded that existing quality models lack a rationale for 

determining the hierarchy and a description of how the lowest 

level metrics can be used to evaluate non-functional 

requirements at a higher level. This makes it difficult to address 

the deployment of non-functional requirements like reliability 

and maintainability requirements during the design phase. The 
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case studies confirmed that deployment is something software 

manufacturers either ignore or struggle with. It is therefore 

recommended to pursuit research in finding better ways to 

support this deployment process. 

� Evaluation of reliability requirements. It was concluded that 

traditional software reliability estimation models lack practical 

applicability. Most models assume a way of working that does 

not reflect reality. In none of the cases studied, such models 

were used. Therefore, future research should concentrate on 

revisiting the applicability of existing software reliability 

prediction models like COQUALMO and ODC and enforcing 

the development of new software reliability estimation 

approaches like Bayesian Nets and GSN. In addition, successful 

application of such approaches will require software 

manufacturers to collect and analyze historical data from 

different projects, thus enforcing the successful implementation 

of metrics programs as well.

� Evaluation of maintainability requirements. It was concluded 

that there is a lack of models supporting the evaluation of the 

achieved level of maintainability. In none of the cases studied, 

models were found supporting these estimates. This hampers 

software manufacturers in making strong statements about the 

post-release maintenance costs (operational cost premium), both 

and the short-term (corrective) and the long-term 

(adaptive/perfective). It is recommended to look into ways to 

support the evaluation of the level of maintainability achieved. 

In parallel, further research is planned regarding the applicability 

of the NPVI-method to determine its potential benefits in a 

practical context. This may possibly lead to further extensions 

and/or refinements of the method. It is assumed that in more 

mature environments information is increasingly perfect. 

Organizations interested in participation and/or contributions are 

invited to contact the authors. 
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