
Association for Information Systems
AIS Electronic Library (AISeL)

PACIS 2001 Proceedings Pacific Asia Conference on Information Systems
(PACIS)

December 2001

Model and Solver Integration for Interoperability
between Options and their Evaluation Algorithms
in Financial Decision Support Systems
Keun-Woo Lee
Graduate School of Management, Korea Advanced Institute of Science and Technology

Soon-Young Huh
Graduate School of Management, Korea Advanced Institute of Science and Technology

Follow this and additional works at: http://aisel.aisnet.org/pacis2001

This material is brought to you by the Pacific Asia Conference on Information Systems (PACIS) at AIS Electronic Library (AISeL). It has been
accepted for inclusion in PACIS 2001 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please
contact elibrary@aisnet.org.

Recommended Citation
Lee, Keun-Woo and Huh, Soon-Young, "Model and Solver Integration for Interoperability between Options and their Evaluation
Algorithms in Financial Decision Support Systems" (2001). PACIS 2001 Proceedings. 84.
http://aisel.aisnet.org/pacis2001/84

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fpacis2001%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2001?utm_source=aisel.aisnet.org%2Fpacis2001%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis2001%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis2001%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2001?utm_source=aisel.aisnet.org%2Fpacis2001%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2001/84?utm_source=aisel.aisnet.org%2Fpacis2001%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

1195

Model and Solver Integration
For Interoperability Between Options and Their Evaluation Algorithms

In Financial Decision Support Systems

Keun-Woo Lee and Soon-Young Huh
Graduate School of Management

Korea Advanced Institute of Science and Technology

Abstract
As the financial option markets grow, financial decision support systems need an efficient
framework that enables us to mix and match options and their various evaluation algorithms
according to diverse pricing and evaluation purposes. Under such many-to-many
relationships between options and algorithms, the systems often encounter inefficiency
problems caused by duplicated developments of their interfaces when adding or modifying
the options or the algorithms. To resolve such problems, this paper proposes a system
framework for dynamic integration of options and algorithms based on the model
management system perspective. Specifically, the detailed mapping relationships between the
parameters of options and those of algorithms are managed with a separate mapping table, so
the addition or the modification is easily incorporated only with altering the table without
affecting the integration processes.

Keywords: Model Management, Model and Solver Integration, Financial Decision Support
Systems, and Financial Options

1. Introduction

As financial markets grow, financial options [6, 17] have become increasingly important with
the contingent properties suitable to meet the market needs being diverse and advanced. Since
huge volumes of options are traded outside exchanges [17], financial institutions that are the
participants in trading the options can make the options more complicated or create new ones
if need be. On the other hand, financial researchers are introducing various evaluation
algorithms to calculate theoretical prices and predict future-time market values of the options
[17]. Thus, a variety of options and algorithms exist in the markets and they are also
continuously evolved. In order to manage such properties of the options and the algorithms,
financial decision support systems (DSS) accommodating the two and providing accuracy,
timeliness, and easiness in the computation have been widely adopted. In terms of model
management systems (MMS) of DSSs, a real option can be conceptualized as a model that

1196

specifies the properties and behaviors of the option [13] and an evaluation algorithm as a
solver that is invoked and analyzes options when the options need to be analyzed [7,13]. In
this capacity, we define options and evaluation algorithms as option models and option
solvers, respectively.

Proliferation and evolution of option models and solvers pose a new challenge to
management of them in financial DSSs. This is because it is often the case that a single
option solver (e.g., Black-Scholes method) is used in multiple option models and, conversely
a single option model (e.g., stock option) also needs multiple option solvers (e.g., Black-
Scholes method, Binomial method, and Finite Difference method) due to diverse pricing and
evaluation purposes [17]. Moreover, as a new option solver is created, it has to be adopted
incrementally without requesting the redevelopment or recompilation of the whole financial
DSS. By the same token, when a new option model is introduced, it has to be immediately
supported by reusing existing option solvers.

In traditional MMSs, an option model should provide its information as pre-defined
parameter values (i.e., value order and data type) to an associated option solver and then the
option solver returns the result as a pre-defined parameter value. For example, to compute the
theoretical price of a stock option (option model) using the Black-Scholes method (option
solver), four parameters of the stock option including exercise price, market price of the
underlying asset, volatility of the market price, and maturity date should be passed to the
Black-Scholes method. Then, these parameters should be ordered and have data types
according to the pre-defined parameter passing rules from the stock option to the Black-
Sholes method. However, when a new option solver is created in the MMS and it requires
more information from related option models than other existing option solvers, then the
option models should be modified accordingly in order to support the new option solver. The
more frequently new option solvers are created, the more seriously the maintenance cost
should be considered.

To overcome such difficulties, in this paper, we propose a model and solver integration
framework and facilitate interoperability between option models and option solvers.
Specifically, we address the following three issues, which also constitute the definition of the
interoperability: (1) How can the financial DSS make it possible to dynamically mix and
match option models with option solvers for satisfying various needs of individual end users?
(2) How can an option model or an option solver be newly added or modified into the
financial DSS without requiring any modification of the financial DSS? (3) When a new
option model (option solver) is added into the financial DSS, how can it be integrated with
existing option solvers (option models) without any modification of the existing ones? In
addressing these questions, we first define core constructs constituting the integration
framework that can be applied to all kinds of option models and option solvers. With these
generally defined constructs, we can implement a financial DSS that can manage

1197

continuously created or modified option models and option solvers. In presenting system
procedures of the architecture, we especially offer a dynamic parameter transformation
method to gear a financial DSS towards the interoperability between option models and
option solvers.

The paper is organized as follows. In section 2, we briefly review the literatures on
integration of models and solvers. In section 3, we define the core constructs for option
models and option solvers, and address the integration scheme based on the constructs. In
section 4, we provide a few system procedures needed to manage and integrate the option
models and solvers with the defined constructs. Finally, in section 5, we summarize our
research contributions and propose future research plans.

2. Literature Review

Early researches for the model management system (MMS) focused on the model

representation [1,3,10,13] and the independence of data and model [13,21]. They aimed for
effective modeling of problems, model reusing, and model sharing. As the research goes on,
solving procedures for models are separated from the models to solvers, and implies that a
user can solve a single model with multiple problem-solving purposes and apply different
models to the same solver [12]. To properly achieve benefits from the model-solver
independence, appropriate integration procedure of them is required. Three approaches can be
referenced for the integration of models and solvers.

The first approach encodes solvers into a software program at a development time to
provide a problem-solving software package in MS/OR domains. Then, an end user imports a
model into the program, selects an appropriate solver among available ones of the program,
and gets a result by executing the solver [10,13]. Though this approach supports the
integration of models and solvers, it still has a serious maintenance problem since the entire
software program should be modified and recompiled to add new solvers. Thus, when the
program is widely dispersed, it is quite difficult, sometimes impossible, for end users to add
solvers containing their proprietary evaluation algorithms for their specific needs. Moreover,
this approach lacks applicability for complex problems such as option evaluation algorithms
since it deals with only well-defined problems having fixed structures such as a linear
programming.

The second approach adopts object-oriented methodologies to achieve flexible
management of models and solvers [15,21,22,23]. In this approach, the existing models and
solvers can be reused or extended easily due to the polymorphism and inheritance properties
of the object-oriented methodologies. Also, the encapsulation property provides an inherent
integration method of models and solvers since an object representing a model contains

1198

solvers corresponding to the model as its member operations. However, this approach
assumes that each solver corresponds to only one model but this assumption is not true as
stated in the previous section. Thus, logically same solvers may exist in multiple objects and
such redundancy brings about a maintenance problem. That is, when a new model is added,
solvers that can be applied to the model should be duplicated in the model object. And a new
solver is also duplicated for all applicable models.

The third approach also uses object-oriented methodologies and attempts to facilitate
dynamic integration of models and solvers at a run time by separating models and solvers as
different objects [8,29]. Specifically, Zhang and Sternbach [29] provided detailed object-
oriented designs based on the design pattern [11] to show the applicability of this approach in
financial domains. However, in this approach, since the rules for parameter passing that are
used to integrate models and solvers are not flexible, a newly created model or solver should
obey these pre-defined rules to ensure the interoperability with existing solvers or models.
Thus, despite the support of the dynamic integration at a run time, this approach still has
limitations. In this sense, the three approaches are only partially successful in supporting the
integration of models and solvers, but are still unsatisfactory in the interoperability between
them.

[Figure 1] Conceptual Framework for the Integration of Models and Solvers

Model Management System
(Financial DSS)

Option ModelsOption Models Option SolversOption Solvers

Currency Option

Stock Option
CALL, European
Maturity: 2001/3/17
Exercise: 100

Binomial

Black-Scholes

Parameter
Mapping Table

Parameter
Mapping Table

Option
Model

Option
Solver

)(

)(

2

1

dNXe

dSNc
rτ−−

=

Integration procedure

Investment
Decision Maker

Investment
Decision Maker

Financial
Engineer
Financial
Engineer

Analysis value Model and solver changes

1199

3. Core Constructs For The Integration Framework

In this section, we investigate the structures of core constructs constituting the proposed
integration framework. [Figure 1] shows the conceptual framework with the constructs. As
the base components, the option models and the option solvers are defined, and the financial
engineer manages them. For supporting the investment decision maker, the models and the
solvers are integrated dynamically on the problem solving requests. In doing this, detailed
parameter mapping information for each specific model and solver pair is supplied from the
parameter mapping table.

[Figure 2] Inheritance Hierachy of Option Models

Stock Option

Currency Option

Stock Index
Option

(a) A Variety of Financial Products

Product ModelProduct Model

Currency OptionCurrency Option Stock Index
Option

Stock Index
OptionStock OptionStock Option

(b) Hierarchy of Option Models

Option Model

3.1 Option Models and Option Solvers

The first step to achieve the interoperability between models and solvers is representing a
variety of option models and option solvers in a uniform way. We can get this uniformity
using the inheritance mechanism in object-oriented programming. [Figure 2] shows an
example of inheritance hierarchy of a few option products. In the top of the hierarchy, an
option model is defined as an abstract model and identifies a general structure that can be
uniformly applied to all the option products. It has all the structural cornerstones to preserve
various data for all option products, and a set of operations such as management of financial
market conventions, manipulation of business days, and so on. Option models representing
specific option products and actually used by the system (e.g., Stock Option, Currency
Option, and Stock Index Option in [Figure 2]) are inherited from the abstract option model.

1200

Thus, the abstract option model becomes the uniform representation of all option products.
In order to define the generic structure of the abstract option model and build the

inheritance hierarchy, we identify all option models as sets of parameters. [Figure 3] shows
this structure with a stock option example. The objective of option models in the financial
DSS is calculating various evaluation values that are needed for the investment decision
makers. Such evaluation values include net present values (NPV) and a few sensitivity
indicators [17], and they are calculated from the properties of the option and general market
factors such as interest rates and exchanges rates. For example, suppose the financial DSS
calculates NPV of a stock option that is a kind of option product upon a stock as its
underlying asset, the NPV is calculated from the properties of the option including option
kind (put or call), option type (European or American), exercise price, and maturity date, and
also from the market interest rates that are general market factors. Thus, we classify the
attributes of an option model into three categories: properties of the corresponding product,
general market factors, and evaluation values of the product. Based on this identification, the
abstract option model provides a generic structure for these parameter group and elemental
parameters.

[Figure 3] Structure of Option Models

ParametersGroups of ParametersOption Model ParametersGroups of ParametersOption Model

Product Properties

Market Factors

Analysis Values

Option Kind: CALL

Option Type: European

Maturity: 2001/3/17

Exercise: 100
Stock

Option

…

On the other hand, option solvers take the input values of option models and calculate

the analysis values that are needed by the clients. Since the input values and analysis values
are parameters of the solvers, we can also consider option solvers as sets of parameters like
the models. Thus, an inheritance hierarchy of option solvers similar to that of models is
defined. In the top of the solver hierarchy, the abstract option solver provides all concrete
solvers (e.g., Black-Scholes method, Binomial method, etc.) with the general structures for

1201

the parameters. Thus, for the solvers, the uniform representation is the abstract option solver.

3.2 Model-Solver Integration Scheme and Parameter Mapping Table

Based on the structures of option models and solvers, we investigate the model and solver
integration procedures in detail. The integration is divided into four steps: transfer of input
parameters to the solver, execution of solving operations in the solver, obtainment of solving
results in the solver, and transfer of output parameters to the model. The classification of
input and output parameter is based on whether a parameter is an input value or output value
of the solving operations. In order to clarify the parameter relationships between models and
solvers, we apply the classification to not only parameters of solvers but also those of models.
[Figure 4(a)] shows the integration procedure. When the system solves a model, the data
values in input parameters of the model are transferred to the input parameters of a solver that
is assigned to the model (). Then the solver calculates its output values using solving
operations taking its input parameter values as the inputs for the operations (), and its
output parameters hold the result values of the operations (). And finally, the output
parameter values of the solver are returned to the output parameters of the model ().

[Figure 4] Model and Solver Integration Scheme

Model

Input parameters

Output parameters

Solver

Input parameters

Output parameters

Solving
Operations

STOCK_OPTION

OPTION_KIND

OPTION_TYPE

MATURITY_DATE

EXERCISE_PRICE

NPV

DELTA

BLACK_SCHOLES

OPTION_KIND

OPTION_TYPE

MATURITY_DATE

EXERCISE_PRICE

NPV

DELTA

(a) Model and solver integration (b) Individual parameter mappings between STOCK_OPTION
and BLACK_SCHOLES

The individual parameter relationships in this integration procedure are presented in

[Figure 4(b)] with an example model and solver, STOCK_OPTION and BLACK_SCHOLES.
The parameter relationships are obvious and straightforward to understand the interaction
scheme between models and solvers. However, when we try to incorporate changes that can
occur in option models or option solvers, a few issues arise to be answered. For example, if a
financial DSS supporting STOCK_OPTION and BLACK_SCHOLES currently and start to
support a new option solver, BINOMIAL, that can evaluate the STOCK_OPTION using
Binomial method, then the STOCK_OPTION should be changed to be able to interact with

1202

the new solver like the way with the BLACK_SCHOLES. Since we cannot confirm that the
parameter relationships between the STOCK_OPTION and the BINOMIAL are same as
those of the STOCK_OPTION and the BLACK_SCHOLES, we should implement every
relationship for each model and solver pair. These duplicated implementation problems also
occur when a new option solver is added or modified. Due to these problems, additional
construct, parameter mapping table is defined. Its role is separating detailed mapping
information between model parameters and solver parameters from the integration procedures
so that the procedures are independent of the kinds of option models and solvers.

[Figure 5] An Example Context of the Parameter Mapping Table

Stock Option

CALL, European
Maturity: 2001/3/17
Exercise: 100

Stock Option

CALL, European
Maturity: 2001/3/17
Exercise: 100

Black-ScholesBlack-Scholes

)(

)(

2

1

dNXe

dSNc
rτ−−

=

Input/Output
type

Solver
parameterSolverModel

parameterModel

OutputNPVBlack-ScholesNPVStock Option

InputExerciseBlack-ScholesExerciseStock Option

InputMaturityBlack-ScholesMaturityStock Option

Input/Output
type

Solver
parameterSolverModel

parameterModel

OutputNPVBlack-ScholesNPVStock Option

InputExerciseBlack-ScholesExerciseStock Option

InputMaturityBlack-ScholesMaturityStock Option

…… … … …

Parameter Mapping Table

Parameter mapping information is dynamically registered and removed when a new

option model or a new option solver is added or an existing one is changed. The parameter
mapping table is a dedicated tool set for managing such dynamically changing parameter
mapping information in a general and efficient way. [Figure 5] shows the conceptual structure
of the parameter mapping table with a stock index option and Black-Scholes example. The
parameter mapping table maintains model-solver pair to be matched, parameter pair of the
matched model and solver, and the input/output type. With the table, we can get the following
three advantages. First, we can make the integration procedure independent of individual
parameter mapping information. Second, management of parameter mapping information can
be treated like management of data in database system tables, so manipulation of parameter
mapping information becomes very easy and familiar for the system users. Last, the existence
of the parameter mapping information indicates legitimation of an integration of certain
model and solver pair, and identifies interface context of the integration.

Upon the structure of the parameter mapping table, three types of primary manipulation
operations are provided: addition, deletion, and retrieval of mapping information for a
specific model-solver pair. All transfers of parameter values between option models and
option solvers use the retrieval operations to get the mapping information, so the retrieval
operations are base operations for the interoperability between models and solvers.
Introduction of a new model or a new solver can be incorporated into the integration
framework with the addition operations by adding all the necessary parameter mapping
information into the parameter mapping table. Modification of the existing parameter

1203

mapping information due to changes of models or solvers is also reflected through adding
related parameter mapping information or deleting unnecessary mapping information.

4. System Procedures of the Integration Framework

In this section, we supply system procedures operating on the integration framework
developed until now. The procedures include integrating models and solvers, adding new
models or solvers, and changing solvers.

[Figure 6] System Procedures for Integrating Models and Solvers

MMS

Option Models

Currency Option

Stock Option
CALL, European
Maturity: 2001/3/17
Exercise: 100

Investment
Decision Maker

Investment
Decision Maker

Financial
Engineer
Financial
Engineer

Option Solvers

Binomial

Black-Scholes

)(

)(

2

1

dNXe

dSNc
rτ−−

=

Parameter Mapping
Table

1) Stock Option:
Setting solver (Black-Scholes)

2) Stock option:
Request (NPV)

3) Request
input parameter mapping
(Stock Option, Black-Scholes)

4) Parameter mapping information
(Exercise, Exercise),
(Maturity, Maturity), …

5) Black-Scholes: Setting parameter values
(Exercise=100, Maturity=2001/3/17, …)

6) Black-Scholes: Request (NPV)

7) Request
output parameter mapping
(Stock Option, Black-Scholes)

8) Parameter mapping information
(NPV, NPV)

9) Stock Option: Setting parameter values
(NPV=12)

10) Analysis Values
(NPV=12)

4.1 Integrating Model and Solver

[Figure 6] shows an example process where the investment decision maker solves the NPV of
the Stock Option with the Black-Scholes method. First, 1) he sets the solver Black-Scholes,
and 2) requests the NPV output parameter value. Then, 3) the option will get all the
parameter mapping information from the parameter mapping table. 4) Upon the received
information, only the input parameter values of the model are retrieved and 5) assigned into
the corresponding input parameters of the solver. After setting all the input values needed to

1204

solve the model, 6) the model requests the NPV on the solver. After solving the NPV of the
option, the solver 7) request the parameter mapping information from the parameter mapping
table for the output parameters holding the solved results. 8) Receiving the parameter
mapping information, 9) the output parameter values of the model are assigned and 10) the
NPV is informed to the investment decision maker.

As shown in the example, all the processes working in the integration framework are
general and perfectly independent of the specific parameter mapping information. Thus, the
processes can be applied to any kinds of option models and option solvers, and adaptable to
any changes occurred in the parameter mapping information, namely, the interfaces between
the models and the solvers.

[Figure 7] System Procedures for Adding a New Option Model

MMS

Option Models

Currency Option

Stock Option
CALL, European
Maturity: 2001/3/17
Exercise: 100

Investment
Decision Maker

Investment
Decision Maker

Financial
Engineer
Financial
Engineer

Option Solvers

Binomial

Black-Scholes

)(

)(

2

1

dNXe

dSNc
rτ−−

=

Parameter Mapping
Table

Stock Index Option

CALL, European
Maturity: 2001/3/17
Exercise: 100

OutputNPVBlack-
Scholes

NPVStock Index
Option

InputExer
-cise

Black-
Scholes

Exer
-cise

Stock Index
Option

OutputNPVBlack-
Scholes

NPVStock Index
Option

InputExer
-cise

Black-
Scholes

Exer
-cise

Stock Index
Option

… … … … …

1) Create a new model3) Insert the model

4) Insert the
parameter mappings

2) Define all
the parameter
mapping
information

4.2 Adding New Model

[Figure 7] shows an example process where the financial engineer adds a new option model,
the Stock Index Option, and updates the mapping information came from the addition. For
the new model, all the operations should be done by the financial engineer are only adding it
and updating the parameter mapping information properly. 1) He creates the new model and
2) makes appropriate parameter mappings for the models and legitimate solvers. Then, 3) he

1205

inserts the new model into the model repository and 4) does the parameter mappings into the
parameter mapping table. After that, the newly inserted model is integrated with the solvers in
exactly same way with other models as described in [Figure 6].

Similarly with the addition of new model, addition of new solver and modification of
existing solver are performed without affecting the integration procedures except the
parameter mapping table.

5. Conclusions

In this paper, we propose a system framework for integrating option models and solvers to
facilitate the interoperability between them. We define core constructs as base building blocks
for the framework generically to embrace various option models and option solvers. In doing
this, we consider option models and option solvers as sets of parameters, and integration of
them as parameter mapping relationships. With the generalized option models and option
solvers, the parameter mapping table managing their specific parameter matching information
is also defined for the framework to be independent of the kinds of option models and option
solvers. The parameter mapping table takes charge of adding, deleting, and updating the sets
of individual parameter mapping information. Based on these three constructs, the integration
framework can perform dynamic and type-less integration of option models and option
solvers.

In future research, the intent is to focus on two avenues: refinement of the core
constructs and resolution of parameter type mismatch. Refinement of the core constructs will
include the elaboration of the structures and concrete representation with a formal object-
oriented modeling language such as the UML [2]. Resolution of parameter type mismatch is
geared to match parameters that have different data types or domains.

REFERENCES

[1] Blanning, R.W. “An entity-relationship approach to model management,” Decision

support Systems (2), 1986, pp. 65-72
[2] Booch, G., Rumbaugh, J., and Jacobson, I. The unified modeling language user guide,

Addison Wesley Longman, 1999.
[3] Brennan, J.J., and Elam, J.J. “Understanding and validating results in model-based

decision support systems,” Decision Support Systems (2), 1986, pp. 49-54
[4] Chang, A.-M., Holsapple, H.C., and Whinston, A.B. “Model management issues and

directions,” Decision Support Systems (9), 1993, pp. 19-37

1206

[5] Chou, S.T. “Migrating to the web: a web financial information system server,”
Decision Support Systems (23:1), 1998, pp. 29-40

[6] Copeland, T.E., and Weston, J.F. Financial theory and corporate policy, 3rd ed.,
Addison-Wesley, Reading, MA, 1992.

[7] Eck, R.D., Philippakis, A., and Ramirez, R. “Solver representation for model
management systems,” Proceedings of the 21st Hawaii International Conference on
Systems Sciences, 1990, pp. 474-483

[8] Eggenschwiler, T., and Gamma, E. “ET++SwapsManager: using object technology in
the financial engineering domain,” Proceedings of the conference on object-oriented
programming systems, languages, and applications, Vancouver, B.C. Canada, 18-22
Oct., 1992, pp. 166-177

[9] Fedorowicz, J., and Williams, G.B. “Representing modeling knowledge in an intelligent
decision support system,” Decision Support Systems (2), 1986, pp. 3-14

[10] Fourer, F., Gay, D.M., and Kernighan, B.W. “A modeling language for mathematical
programming,” Management Science (36:5), 1990, pp. 519-554

[11] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design patterns: elements of
reusable object-oriented software, Addison-Wesley, Reading, MA, 1995.

[12] Geoffrion, A.M. “An introduction to structured modeling,” Management Science (33:5),
1987, pp. 547-588

[13] Geoffrion, A.M. “The formal aspects of structured modeling,” Operations Research
(37:1), 1989, pp. 30-51

[14] Hiller, F.S., and Gerald, J.L. Introduction to operations research, 5th ed., McGraw-Hill,
1990.

[15] Huh, S.-Y. “Modelbase construction with object-oriented constructs,” Decision Science
(24:2), 1993, pp. 409-434

[16] Huh, S.-Y., and Chung, Q.B. “A model management framework for heterogeneous
algebraic models: object-oriented database management systems approach,” Omega,
Int. J. Mgmt Sci. (23:3), 1995, pp. 235-256

[17] Hull, J.C. Options, futures, and other derivatives, 3rd ed., Prentice Hall, NJ, 1997.
[18] Kruglinski, D.J. Inside visual C++, 3rd ed., version 4.0, Microsoft Press, 1995.
[19] Lawrence, M., and Sim, W. “Prototyping a financial DSS,” Omega, Int. J. Mgmt Sci.

(27:4), 1999, pp. 445-450
[20] Lenard, M.L. “An object-oriented approach to model management,” Decision Support

Systems (9), 1993, pp. 67-73
[21] Liang, T.-P. “Integrating model management with data management in decision support

systems,” Decision Support Systems (1), 1985, pp. 221-232
[22] Ma, J. “An object-oriented framework for model management,” Decision Support

Systems (13:2), 1995, pp. 133-139

1207

[23] Ma, J. “Type and inheritance theory for model management,” Decision Support
Systems (19:1), 1997, pp. 53-60

[24] Pindyck, R.S., and Rubinfeld, D.L. Econometric models and Economic forecasts, 3rd
ed., McGraw-Hill, 1991.

[25] Pritchard, J. COM and CORBA® side by side: architectures, strategies, and
implementations, Addison-Wesley, Reading, MA, 1999.

[26] Raghu, R., and Gehrke, J. Database Management Systems, 2nd ed., McGraw-Hill, 2000.
[27] Rizzoli, A.E., Davis, J.R., and Abel, D.J. “Model and data integration and re-use in

environmental decision support systems,” Decision Support Systems (24:2), 1998, pp.
127-144

[28] Turban, E. Decision Support and Expert Systems, Prentice Hall, 1995.
[29] Zhang, J.Q., and Sternbach, E.J. “Financial software design patterns,” Journal of

Object-Oriented Programming (8:9), 1996, pp. 6-12

	Association for Information Systems
	AIS Electronic Library (AISeL)
	December 2001

	Model and Solver Integration for Interoperability between Options and their Evaluation Algorithms in Financial Decision Support Systems
	Keun-Woo Lee
	Soon-Young Huh
	Recommended Citation
