
Association for Information Systems
AIS Electronic Library (AISeL)

PACIS 2005 Proceedings Pacific Asia Conference on Information Systems
(PACIS)

December 2005

XML-Based Heterogeneous Database Integration
For Data Warehouse Creation
Frank Tseng
National Kaohsiung First University of Science and Technology

Follow this and additional works at: http://aisel.aisnet.org/pacis2005

This material is brought to you by the Pacific Asia Conference on Information Systems (PACIS) at AIS Electronic Library (AISeL). It has been
accepted for inclusion in PACIS 2005 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please
contact elibrary@aisnet.org.

Recommended Citation
Tseng, Frank, "XML-Based Heterogeneous Database Integration For Data Warehouse Creation" (2005). PACIS 2005 Proceedings. 48.
http://aisel.aisnet.org/pacis2005/48

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fpacis2005%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2005?utm_source=aisel.aisnet.org%2Fpacis2005%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis2005%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis2005%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2005?utm_source=aisel.aisnet.org%2Fpacis2005%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2005/48?utm_source=aisel.aisnet.org%2Fpacis2005%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

590

XML-Based Heterogeneous Database Integration
For Data Warehouse Creation∗

Frank S.C. Tseng1
Dept. of Information Management

National Kaohsiung First University of Science and Technology
1, University Road, YenChao, Kaohsiung County, Taiwan, 824 R.O.C.

imfrank@ccms.nkfust.edu.tw

Abstract

In the past decade, research works in heterogeneous database integration have established a
good and solid framework to alleviate this task. However, there are still works need to be
accomplished to bring these achievements to be easily implemented and integrated to Internet
applications. In this paper, by employing the metadata of participate sites, we propose using
XML, together with XSLT, as a general platform to achieve this task. We first define the
formal definitions for the problems of semantic conflicts among heterogeneous databases and
present their solutions. Then, some illustrative examples are presented to show that, by
requesting local sites to transform the data into XML format and prepare the corresponding
XSLT files on the global site, various kinds of schema integration problems can be unified
and integrated into a global view seamlessly. The proposed methodology is not only suitable
for heterogeneous database integration, but is also suitable for data warehouse creation and
World-Wide Web presentation.

Keywords: Data Warehouse, Heterogeneous Database Integration, Metadata, XML, and
XSLT.

1. Introduction
Database management systems (DBMS) pervade and proliferate tremendously throughout

industry in the past decades. However, due to the storage capacity and cost, most of the prior
database applications are mainly tailored to serve the information needs of people who handle
day-to-day or short-term operations, such as inventory or purchasing.

Thanks to the ever-increasing capability and decreasing price of storage devices, together
with the speed promotion of Internet technologies, it is now feasible to bring historical data
on-line to serve corporate decision-makers to access all the organization’s data, wherever it is
located. The challenge for organizations now is the need to turn their archives of data into an
integrated source of knowledge, such that a consolidated view of the organization’s data can
be presented for decision-making.

Contemporary business environments are more competitive and dynamic than ever. Since
Inmon (1993) proposed the concept of data warehouse, which describes a subject-oriented,
integrated, time-variant, and non-volatile collection of data in support of decision-making
process, database vendors have rushed to implement the functionalities for constructing data

∗ This research was partially supported by the National Science Council, Republic of China, under contract no.
NSC 93-2416-H-327-007.

1 To whom all correspondence should be sent. Tel: +886-7-6011000 Ext. 4113, Fax: +886-7-7659541

591

warehouses. With the new enterprise-wide decision support architecture now emerging, data
warehousing is gaining in popularity as organizations realize the benefits of being able to
perform multi-dimensional analyses of cumulated historical business data to help
contemporary administrative decision-making (Inmon and Kelley 1994; Kimball 1996;
Srivastava and Chen 1999). That makes on-line analytical processing (OLAP) emerge as
enabling technology for decision support systems. The successful implementation of a data
warehouse can reveal previously untapped or unavailable information, which will increase
productivity of corporate decision-makers.

However, since a data warehouse creation needs to integrate various enterprise-wide
corporate data into a single repository, from which users can query via various dimensions
and produce analysis reports. There are problems may arise in building a data warehouse with
pre-existing data, since it has various types of heterogeneity. That makes it a common
consensus that the ETL process (i.e., extraction, transformation, and loading) of data from
various sources is indispensable before constructing a data warehouse. Therefore, the general
conclusion is that the task has proven to be labor-intensive, error-prone, time-consuming and
generally frustrating, leading a number of data warehousing projects to be abandoned
mid-way through development. However, Trisolini et al. (1999) and Srivastava and Chen
(1999) have pointed out that the situation is not as tough as it appears. In fact, the
heterogeneity problems that are being encountered in data warehouse establishment are very
similar to those encountered in heterogeneous database integration, which have been well
studied in the past decade (ACM Computing Survey 1990; Batini et al. 1986; Breitbart et al.
1986; Breitbart 1990; Castano et al. 2001; IEEE Computer 1991; Hsiao 1992ab). Those
works accomplished in dealing with heterogeneous schema integration have established a
good framework to alleviate this task.

In this paper, we review the general problems of heterogeneous database schema
integration and intend to identify the common issues in data integration and data warehouse
creation. By employing the metadata of participate sites, we propose a framework for
integrating heterogeneous database for data warehouse creation through XML technologies.
We first define the formal definitions for the problems of semantic conflicts among
heterogeneous databases and present their solutions. Then, some illustrative examples are
presented to show that, by requesting local sites to transform the data into XML formats and
prepare the corresponding XSLT files (http://www.w3c.org/TR/xslt) on the global site,
various kinds of schema integration problems can be unified and integrated into a global view
to construct loosely coupled data warehouse systems.

We outline the general process of employing XML technology to integrate heterogeneous
databases for data warehouse creations in Figure 1. In this process, data stored in different
databases are respectively transformed into XML format and formatted to adhere to the
global schema by the XSLT transformation module. Then, the data will be further integrated
and stored as an integrated database for data warehouse creation, which can be further used
for on-line analytical processing for various business models. The proposed methodology is
not only suitable for heterogeneous database integration, but also suitable for data warehouse
creation and web presentation.

592

Figure 1: Loosely-Coupled Heterogeneous Database Integration by XML Technology.

2. Related Works
To integrate heterogeneous schemata and derive data in a heterogeneous database

environment, prior works can be classified into the following general approaches.
1. One is to provide a global schema for the independent databases by integrating their

schemas. Dayal and Hwang (1984) and Motro (1987) adopted this approach based on
functional model, while Breitbart et al. (1986) and Deen et al. (1987) were based on
relational model. Based on this approach, we have also proposed a probabilistic model to
integrate heterogeneous database systems in (Tseng et al. 1993). Another variation of this
approach does not require the creation of a global schema. On the other hand, for each
application, the database administrator creates a schema describing only data that the
application may access in the local databases. This type of system is also called a
federated database system (Heimbigner and McLeod 1985; Hsiao 1992ab). For a
comprehensive survey of methodologies developed for schema integration, readers are
referred to (Batini 1986; Bukhres and Elmagarmid 1996; Elmargamid and Pu 1990; Kim
and Seo 1991; IEEE Computer 1991).

2. The other approach is by providing users a multi-database query language (Grant et al.
1993). Users refer to the schemas and pose their queries against these schemas using the
multi-database query language. Litwin et al. (1987ab) and Czejdo et al. (1987) fell into
this category. A multi-database query language provides basic language constructs that
allow users to issue queries across multiple database systems with heterogeneities. Grant
et al. (1993) has proposed a theoretical foundation for such languages by extending the
relational algebra and calculus to a multi-relational algebra and calculus. In the following,
we only use the term heterogeneous database systems.
The schema integration process may present a large number of problems caused by

various aspects of semantic discrepancy due to the design autonomy of each participant. Prior
works of schema integration usually focus on resolving the incompatibility problems that
may exist in different databases for semantically related data (Breitbart 1990).

In (Kim and Seo 1991), schematic and data heterogeneity in heterogeneous database
systems are systematically classified. Reddy et al. (1994) also proposes a classification
scheme for various kinds of semantic incompatibilities and data inconsistencies and presents
a methodology covers both schema integration and database integration. Moreover, Lee et al.
(1995) establishes a similar classification and proposes a way of optimizing multi-database
queries, which takes advantage of the conflicts of schemas in searching for the execution plan
with the least execution cost.

In this paper, we adopt the classification scheme proposed by Lee et al. (1995), which

593

categorizes the types of conflicts as follows.
1. Value-to-value conflicts. These conflicts occur when databases use different

representations for the same data. This type of conflicts can be further distinguished into
the following types.

(a) Data representation conflicts. These conflicts occur when semantically related data
items are represented in different data types.

(b) Data scaling conflicts. These conflicts occur when semantically related data items are
represented in different databases using different units of measure.

(c) Inconsistent data. These conflicts occur when semantically related attributes for the
same entity have different definite data values in different databases. Agarwal et al.
(1995) present a good work on addressing the problem of dealing with data
inconsistencies while integrating data sets derived from multiple autonomous
relational databases.

2. Value-to-attribute conflicts. These conflicts occur when the same information is
expressed as attribute values in one database and as an attribute name in another database.

3. Value-to-table conflicts. These conflicts occur when the attribute values in one database
are expressed as table names in another database.

4. Attribute-to-attribute conflicts. This occurs when semantically related data items are
named differently or semantically unrelated data items are named equivalently. The
former case is also called synonyms and the latter case homonyms (Reedy et al. 1994).
Some classification schemes call both cases naming conflicts.

5. Attribute-to-table conflicts. These conflicts occur if an attribute name of a table in a
database is represented as a table name in another database.

6. Table-to-table conflicts. These conflicts occur when information of a set of semantically
equivalent tables are represented in a different number of tables in another databases.
When integrating relations with such conflicts into a global relation, null values are
usually generated. Such phenomenon is also called missing data.
We have further classified these types of conflict into the following two categories in

(Tseng et al. 1998).
1. Conflicts of similar schema structures. This category includes value-to-value conflicts,

attribute-to-attribute conflicts, and table-to-table conflicts.
2. Conflicts of different schema structures. This category includes value-to-attribute

conflicts, value-to-table conflicts, and attribute-to-table conflicts.
For tables with conflicts of similar schema structures, an outerjoin operation (Date 1983)

is usually employed to integrate the tables into a unified one. DeMichiel (1989) has shown
that some imprecise data, called partial values, which was proposed by Grant (1979), may be
derived due to scaling conflicts. We have also established some related result regarding the
incompatibility problems and partial values. We developed some efficient algorithms to
evaluate relational operations over partial values (Tseng et al. 1993a, 1996). Besides, we
generalized partial values into probabilistic partial values and proposed a general
methodology to integrate relations with conflicts of similar schema structures (Tseng et al.
1993b). Some properties that can be employed to refine partial values into more informative
ones or even definite values were also being studied (Tseng et al. 1993c).

However, for the integration of tables with conflicts of different schema structures, most

594

of the studies did not take into account the value-to-attribute conflicts, value-to-table conflicts,
or attribute-to-table conflicts. Krishnamurthy et al. (1991) advocates some language features
of a multi-database query language should be added to cover these types of conflicts. In
(Tseng et al. 1998), we have proposed an approach to integrating tables with different schema
conflicts.

Lee et al. (2002) established a framework to integrate heterogeneous information via
XML Schema and employ XQuery (Chamberlin 2002; http://www.w3.org/XML/Query) for
resolving conflicts in the integration processes. Under their framework, when integrating
heterogeneous information, we shall first decide a common data model, which may be
semi-structured or object-oriented. Then, after transforming heterogeneous information into
XML documents, there may be conflicts among the source XML documents. Therefore, they
defined some possible conflicts and use XML Schema as the target for integrating XML
documents via XQuerySD (XQuery For Schema Definition) (Lee et al. 2002) based on
XQuery.

In this paper, we propose another XML-based approach to integrating tables with
aforementioned schema conflicts. Our presentation is organized as follows. In Section 3, we
propose a general architecture of our approach, formally define the problems of schema
conflict, and present some examples to illustrate the problems. Section 4 devotes to our
approach to resolving the schema conflict problems by XML technologies. Finally, we draw
a conclusion and outline some future works in Section 5.

3. Basic Concepts and Definitions
3.1 The Proposed Architecture

In the following, we will focus on the inner module surrounded by dotted lines in Figure
1 to illustrate the proposed XML-based framework. This module is further detailed in Figure
2. In this illustration, the data warehouse creation module can be regarded as a user of the
heterogeneous database system. When a user pose a global query on the integrated system,
the global site decomposes the global query into sub-queries to request each participant to
return the data in XML format. This can be easily achieved in contemporary commercial
database products (e.g., MS SQL Server 2000, IBM DB2 Extender, and Oracle iFS). Besides,
the DBA in each site should prepare some XSLT format files, together with some necessary
template files, in advance to transform local data into the global schema format. Finally, the
transformed data are integrated into a consolidated view with the global query applied on it to
return global data to the user.

Our integration process utilizes the semantic knowledge of all participate local schemas.
We call these semantic knowledge metadata, which should be prepared or discovered before
integration.

3.2 Metadata
For a participate relation, the metadata should consist of the following components:

1. The domain of each attribute: We use Dom(A) = D to denote the domain of attribute A is
D.

2. The semantic description of each attribute: This is used to ensure local autonomous
systems to agree on the meaning of their exchanged data are not a trivial task. These
semantic descriptions often depend on context information, the database origin, the
applications, and so on. A very good work on formulating semantic information to
support heterogeneous database integration has been established in (Sciore et al. 1994).
By regarding context information as the metadata, the basic approach is based on the

595

concept of a semantic value, which is defined to be a piece of data together with its
associated context. To convert a semantic value from one context to another, conversions
functions will be employed.

databasedatabasedatabase

X
M

L

X
M

L X
M

L

 XSLT

A XSLT

B

 XSLT

C

Global Schema Integration

Global Site

Global Users

Site A Site B Site A

Metadata

Metadata

Metadata

Figure 2: The Heterogeneous Database Integration Architecture.

To describe a semantic description of an attribute, we employ the following notation
adopted from (Siegel and Madnick 1991):

Des(A) = {S1, S2, …, Sn}
to denote the necessary descriptions for schema integration and to supply the semantics of
attribute A, where S1 is called the primary description, which will be denoted Des*(A) = S1 in
the following. It represents the ‘actual’ meaning of the attribute values. When the attribute
name is clearly enough for self-explanatory (i.e., there is no need of a primary description),
then it can be replaced by an asterisk (*). The other Si’s are called the auxiliary descriptions,
which will be denoted Des’(A) = Des(A) − Des*(A) = {S2, …, Sn} in the following. They will
be used to supply auxiliary information of attribute A. If there is no need of any primary
description and auxiliary description for an attribute A, then Des(A) = ∅, which can be
regarded as an empty set or null.

To illustrate, for example, if the actual meaning of an attribute A is ‘amount of money’,
then there may be an auxiliary description representing ‘unit of currency’, and Des(A) =
{‘amount of money’, ‘unit of currency’}.

3.3 Formal Definitions for Schema Heterogeneities
In this section, we formally define the types of schema heterogeneity based on the

classification scheme proposed by Lee et al. (1995) and distinguish them into two groups
according to our prior work (Tseng et al. 1998), namely conflicts of similar schema structure
and conflicts of different schema structures. We will discuss the heterogeneous database
integration process based on these two categories.

We first define the following notations:
1. Sch(R) is used to represent the attribute set of a relation R.
2. For two attributes A and B, we say A and B are semantically equivalent, denoted A

⇔ B, if and only if (A = B) ∨ (A = Des*(B) ∨ (B = Des*(A)) ∨ (Des*(A) = Des*(B)),
where “=” means the items at the left-hand-side and right-hand-side are the same
but not homonyms.

596

3.3.1 The Conflicts of Similar Schema Structures
In this following, we present an example to illustrate the conflicts of similar schema

structures, namely the value-to-value, attribute-to-attribute, and table-to-table conflicts.
These conflicts are not exclusive, they may occur in any pair of relations at the same time.
Such heterogeneity occurs frequently in two distinct pre-existing databases, when different
databases are designed by different designers or by different considerations.

Example 1: Consider the scenario in Figure 3. There are two databases containing
semantically related information about books but in different formats. Sites X and Y contain
tables named Books and Booklist, respectively. Note that there exist some semantic
discrepancies between these sites. We list them as follows.

1. There are two attribute-to-attribute conflicts: The attributes Books.bno and
Books.title in Site X are respectively named Booklist.bid and Booklist.bookname in
Site Y.

2. There are three value-to-value conflicts: The Books.price stores the list price of
every book, but the Booklist.price stores the discounted price (with 20% off).
Besides, The Booklist.location stores more detailed data than Books.location.
Finally, Books.publisher stores publisher full name but the data in
Booklist.publisher are in a concise format.

3. There is a table-to-table conflict: The Books.pages is missing in the relation
Booklist. Besides, the Booklist.year is also missing in the relation Books.

Books
bno title author price publisher location pages

1 Database Theory Frank 200 IRWIN Company IN 730
2 Algorithms Jesse 250 SYBEX Company CA 620

(Site X)

Booklist
bid bookname author price publisher location year
1 Database Theory Frank 160 IRWIN Bloomington, IN 1980
2 Algorithms Jesse 200 SYBEX San Jose, CA 1983

(Site Y)

Figure 3: Two Sites with Conflicts of Similar Schema Structures.

3.3.2 The Conflicts of Different Schema Structures
For the conflicts of different schema structure, we also use an example for illustration.

Such conflicts of different schema structures include the value-to-attribute, value-to-table,
and attribute-to-table conflicts. These conflicts are not exclusive, they may occur in any pair
of relations at the same time.

Example 2: Consider the situation described in Figure 4. There are three databases
containing the same information for global stock markets but in different schema structure
formats. Site A contains a self-explanatory table named Stock_Markets. For the relation
Stock_Index in Site B, the attribute values of Tokyo, Taipei, and Bangkok in a record
represent their closed index numbers of a date, respectively. In Site C, all daily-closed index
in different markets are stored in different tables with the market names as the table names,
respectively. Although the three databases contain semantically equivalent data with respect
to dates, markets, and the index numbers, they appear to be in conflicting schema structures.
That is, there are value-to-attribute between Site A and Site B, value-to-table between Site A
and Site C, and attribute-to-table conflicts between Site B and Site C.

597

Stock_Markets
date stock index

9/5/2001 Tokyo 24600
9/5/2001 Taipei 4120
9/5/2001 Bangkok 780
9/6/2001 Tokyo 26065
9/6/2001 Taipei 4321
9/6/2001 Bangkok 803

(Site A)
Stock_Index

date Tokyo Taipei Bangkok
9/5/2001 24600 4120 780
9/6/2001 26065 4321 803

(Site B)
Tokyo Taipei Bangkok

date index date index date index
9/5/2001 24600 9/5/2001 4120 9/5/2001 780
9/6/2001 26065 9/6/2001 4321 9/6/2001 803

(Site C)

Figure 4: The Problems of Conflicts of Different Schema Structures.

4. Our Approach to Heterogeneous Database Integration
In the following, we will present our XML-based solutions to integrate heterogeneous

databases with semantic conflicts according to the two categories discussed in Section 3.2.

4.1 Resolving Conflicts of Similar Schema Structures
We have pointed out that the conflicts of similar schema structures may occur in any pair

of relations at the same time. Therefore, to resolve these conflicts between any pair of
relations, namely R and S with primary keys KR and KS respectively, at different sites the
following procedures should be conducted.

1. Resolve value-to-value conflicts:
(a) Identify all pairs of value-to-value conflicts between Sch(R) and Sch(S), namely

xi and yi, and define the corresponding mapping functions fi: Dom(xi)→Dom(yi)
to translate the values between Dom(xi) and Dom(yi).

(b) If the function fi is one-to-one and onto, then the transformation is easy to
accomplish and we can arbitrarily choose xi or yi as the target attribute in the
global relation. Note that if we choose xi as the target attribute, then we should
use the inverse function of f, i.e. f

-1
: Dom(y)→Dom(x), as the mapping function.

(c) Otherwise, if the function fi is many-to-one, then the transformation is easy if we
choose yi as the target attribute in the global relation. If we wish to choose xi as
the target attribute in the global relation, then the concept of partial value (Grant
1979) should be employed to capture all the values derived from the inverse
function of f2. This makes the process of schema integration more complicated;
we think such case is beyond the scope of this paper. Gentle readers are referred
to (DeMichiel 1989; Tseng et al. 1993b).

2 This is not a valid definition of function from the viewpoint of mathematics. However, we use the notation

here just for describing the implementation details.

598

2. Resolve attribute-to-attribute conflicts: Identify all pairs of attribute-to-attribute
conflicts between Sch(R) and Sch(S), namely xi and yi, and respectively define gi:
Sch(R)→Sch(S) as the mapping function defined for converting the conflicting
attribute names xi into another attribute names yi and choose yi as the target attribute
in the global relation.

3. Resolve table-to-table conflicts: Directly perform an outerjoin operation (Date 1983)
to integrate R and S to obtain the global relation.

These resolving procedures can be directly implemented in SQL commands. In the
following, we will elaborate to resolve the conflicts found in Example 1 by MS SQL Server
2000 with the XML extension in Transact-SQL, which has already been employed and
proven being effective to build loosely coupled systems over the Internet by Rys (2001).

Example 3: Suppose we wish to integrate both tables in Example 1 into a global relation
named BookData(bno, title, author, price, publisher, location, pages, year). Suppose we
wish to show BookData.price by the original list price, BookData.publisher by the full
names, and BookData.location by the concise names. Then, we may use two sets of XSLT
and template files to transform both tables into BookData, respectively. We use Figure 5(a)
and Figure 5(b) to show the XSLT and template files for Site X, respectively. For Site Y, the
XSLT and template files are illustrated in Figure 6(a) and Figure 6(b), respectively. After the
transformations, Books and Booklist can be respectively rendered as Figure 7 depicts. Finally,
both tables can be outer-joined into BookData as Figure 8 illustrates.

Books.xsl
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
 <xsl:template match = '*'>
 <xsl:apply-templates />
 </xsl:template>
 <xsl:template match = 'Books'>
 <TR><TD><xsl:value-of select = '@bno' /></TD>
 <TD><xsl:value-of select = '@title' /></TD>
 <TD><xsl:value-of select = '@author' /></TD>
 <TD><xsl:value-of select = '@price' /></TD>
 <TD><xsl:value-of select = '@publisher' /></TD>
 <TD><xsl:value-of select = '@location' /></TD>
 <TD><xsl:value-of select = '@pages' /></TD>
 </TR>
 </xsl:template>
 <xsl:template match = '/'>
 <HTML>
 <HEAD>
 <STYLE>th { background-color: #CCCCCC }</STYLE>
 </HEAD>
 <BODY>
 <TABLE border='1' style='width:600;'>
 <TR><TH colspan='7'>BookData</TH></TR>

<TR><TH>bno</TH><TH>title</TH><TH>author</TH><TH>price</TH>
<TH>publisher</TH><TH>location</TH><TH>pages</TH></TR>

 <xsl:apply-templates select = 'ROOT' />
 </TABLE>
 </BODY>
 </HTML>
 </xsl:template>
</xsl:stylesheet>

Figure 5(a): The XSLT for Site X
Books.xml

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql" sql:xsl="Books.xsl">
 <sql:query>
 SELECT bno, title, author, price, publisher, location, pages FROM Books
 FOR XML AUTO
 </sql:query>
</ROOT>

Figure 5(b): The Template file for Site X.

599

Booklist.xsl
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <xsl:template match = '*'>
 <xsl:apply-templates />
 </xsl:template>
 <xsl:template match = 'Booklist'>
 <TR>
 <TD><xsl:value-of select = '@bid' /></TD>
 <TD><xsl:value-of select = '@bookname' /></TD>
 <TD><xsl:value-of select = '@author' /></TD>
 <TD><xsl:value-of select = '@price' /></TD>
 <TD><xsl:value-of select = '@publisher' /></TD>
 <TD><xsl:value-of select = '@location' /></TD>
 <TD><xsl:value-of select = '@year' /></TD>
 </TR>
 </xsl:template>
 <xsl:template match = '/'>
 <HTML>
 <HEAD>
 <STYLE>th { background-color: #CCCCCC }</STYLE>
 </HEAD>
 <BODY>
 <TABLE border='1' style='width:600;'>
 <TR><TH colspan='7'>BookData</TH></TR>
 <TR><TH>bno</TH><TH>title</TH><TH>author</TH><TH>price</TH>

<TH>publisher</TH><TH>location</TH><TH>year</TH></TR>
 <xsl:apply-templates select = 'ROOT' />
 </TABLE>
 </BODY>
 </HTML>
 </xsl:template>

</xsl:stylesheet>
Figure 6(a): The XSLT for Site Y.

Booklist.xml
<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql" sql:xsl="Booklist.xsl">
 <sql:query>
 SELECT bid, bookname, author, price/0.8 as price,

rtrim(publisher) + ' Company' as publisher, right(rtrim(location), 2) as location, year
 FROM Booklist
 FOR XML AUTO
 </sql:query>
</ROOT>

Figure 6(b): The Template file for Site Y.

Books
bno title author price publisher location pages

1 Database Theory Frank 200 IRWIN Company IN 730
2 Algorithms Jesse 250 SYBEX Company CA 620

(Site X)

Booklist
bid bookname author price publisher location year
1 Database Theory Frank 200 IRWIN Company IN 1980
2 Algorithms Jesse 250 SYBEX Company CA 1983

(Site Y)
Figure 7: Two Sites with Conflicts of Similar Schema Structures.

BookData
bno title author price publisher location pages Year

1 Database Theory Frank 200 IRWIN Company IN 730 1980
2 Algorithms Jesse 250 SYBEX Company CA 620 1983

Figure 8: The Integrated Relation BookData in the Global Site.

4.2 Resolving Conflicts of Different Schema Structures
In such cases, the domain of an attribute of a table in Site A may be represented as a

subset of the attribute set of another relation in Site B, or in turn be a set of table names in

600

Site C. For data warehouse creations, we claim that the global schema structure should be
chosen to conform the schema structure of Site A. This is because the others hide the
necessary data in the attribute names or table names, which cannot be retrieved when creating
a data cube.

To create data warehouses under such circumstances, we only have to resolve the
value-to-attribute and value-to-table conflicts. This is because we choose the schema of Site
A as the global schema, and the attribute-to-table conflict is inherently resolved by resolving
the other two conflicts. To resolve the value-to-attribute and value-to-table conflicts, the
following procedures should be conducted.

1. Resolve value-to-attribute conflicts: If R and S with primary keys KR and KS
respectively have value-to-attribute conflict, then
(a) Directly use SQL command to retrieve all the data from R.

(b) For each x ∈ Sch(R) such that Dom(x) ∩ Sch(S) = {a1, a2,…, an} ≠ ∅ and (∀y ∈
Dom(x) ∩ Sch(S))(∃ z ∈ Sch(R) −{x})(y ⇔ z), directly retrieve all the data from
S by the following SQL command:

SELECT KS, ‘a1’ as x, a1 as z FROM S UNION
SELECT KS, ‘a2’ as x, a2 as z FROM S UNION

…
SELECT KS, ‘ai’ as x, ai as z FROM S UNION

…
SELECT KS, ‘an’ as x, an as z FROM S

2. Resolve value-to-table conflicts: If relation R with primary keys KR and a set of
relations S = {S1, S2,…, Si,…, Sk} with primary keys {KS1, KS2,…, KSi,…, KSk}
respectively, have value-to-table conflict, such that (∃ x ∈ Sch(R))(Si ∈ Dom(x) ∧ (∃ r
∈ Sch(R) −{x})(∃ s ∈ Sch(Si))(r ⇔ s)) then

(c) Directly use SQL command to retrieve all the data from R.

(d) For each Si ∈ S, directly retrieve and union all the data from Si by the following
SQL command:

SELECT KS1, ‘S1’ as r, s FROM S1 UNION
SELECT KS2, ‘S2’ as r, s FROM S2 UNION

…
SELECT KSi, ‘Si’ as r, s FROM Si UNION

…
SELECT KSk, ‘Sk’ as r, s FROM Sk

The resolving procedures can be derived analogously by Transact-SQL with the XML
extension in Transact-SQL. Due to the space limitations, we leave this part to the gentle
readers.

5. Summary and Future Directions
We have elaborated a heterogeneous databases integration scheme for data warehouse

creations through XML technologies. The mapping from heterogeneous database schemas to
XML documents can be prepared according to the proposed procedures. The whole process
can be smoothly implemented in a seamless manner.

The contribution of our work can be summarized as follows.

601

1. Simplicity and Flexibility─We proposed a simple and symmetric mapping scheme
between database schemas and XML documents to build loosely-coupled data
warehousing systems over the Internet. The mapping is shown to be effective and any
contemporary DBMS product supporting XML capabilities can be adopted to implement
the whole process.

2. Semantics and Efficiency─By employing the XSLT, each local site only has to prepare
their metadata and the XSLT files according to the local database semantics and the
global schema, respectively.

The integration of heterogeneous databases can be regarded as a vertical integration of
pre-existing databases. From the other point of view, we have to work toward the horizontal
integration of heterogeneous databases, which corresponds to inter-organizational workflow
streamline processes. In the next step, we intend to enhance the proposed approach to
manipulate XML documents over Web workflow applications in a more complete and subtle
way.

Besides, since our work does not take the data types into account. It just addresses the
data transformation framework. To make the integration of heterogeneous databases more
flexible, several problems remain to be further studied. For example, how to employ XML
schema (http://www.w3.org/XML/Schema; Roy and Ramanujan 2001) to enrich the
integration result needs to be further investigated.

References：
ACM Computing Surveys, A Special Issue on Heterogeneous Database, (22:3), Sep. 1990.
Agarwal, S., A.M. Keller, G. Wiederhold, and K. Saraswat, “Flexible Relation: An Approach
for Integrating Data from Multiple, Possibly Inconsistent Databases,” Proc. IEEE Int’l Conf.
Data Eng. 1995, pp. 495-504.
Batini, C., M. Lenzerini, and S.B. Navathe, “A Comparative Analysis of Methodologies for
Database Schema Integration,” ACM Computing Surveys (18:4), 1986, pp. 323-364.
Breitbart, Y., P.L. Olson, and G.R. Thompson, “Database Integration in a Distributed
Heterogeneous Database System,” Proc. IEEE International Conference on Data
Engineering, 1986, pp. 301-310.
Breitbart, Y., “Multidatabase Interoperability,” SIGMOD Record (19:3), 1990, pp. 53-60.
Bukhres, O.A. and A.K. Elmagarmid (Eds.), Object-Oriented Multidatabase Systems:
Solutions for Advanced Applications (Prentice-Hall, 1996).
Castano, S., V. De Antonellis, and S. De Capitani di Vimercai, “Global Viewing of
Heterogeneous Data Sources,” IEEE Trans. Knowledge & Data Engineering (13:2), 2001, pp.
277-297.
Chamberlin, Don, “XQuery: An XML query language,” IBM Systems Journal (41:4), 2002,
pp. 597-615.
Czejdo, B., M. Rusinkiewicz, and D.W. Embley, “An Approach to Schema Integration and
Query Formulation in Federated Database Systems,” Proc. IEEE Int’l Conf. on Data
Engineering, 1987, pp. 477-484.
Date C.J., “The Outer Join,” Proc. International Conference on Databases─ICOD’83,
Churchill College, Cambridge, 1983, pp. 76-106.
Dayal, U. and H.Y. Hwang, “View Definition and Generalization for Database Integration in
a Multi-database System,” IEEE Trans. on Software Engineering (10:6), 1984, pp. 628-644.
Deen, S.M., R.R. Amin, and M.C. Taylor, “Data Integration in Distributed Databases,” IEEE
Trans. on software Engineering (13:7), 1987, pp. 860-864.
DeMichiel, L.G., “Resolving Database Incompatibility: An Approach to Performing

602

Relational Operations over Mismatched Domains,” IEEE Trans. Knowledge and Data
Engineering (1:4), 1989, pp. 485-493.
Elmargamid, A. and C. Pu (Eds.), ACM Computing Surveys, (Special Issue on Heterogeneous
Databases) (22:3), 1990.
Grant, J., “Partial Values in a Tabular Database Model,” Information Processing Letters (9:2),
1979, pp. 97-99.
Grant, J., W. Litwin, N. Roussooulos, and T. Sellis, “Query Languages for Relational
Multidatabases,” The International Journal on Very Large Data Bases—The VLDB Journal
(2:2), 1993, pp. 153-171.
Heimbigner, D., D. McLeod, “A Federated Database Architecture for Information
Management,” ACM Transactions on Office Information Systems (3:3), 1985, pp. 253-278.
Hsiao, D., “Tutorial on Federated Databases and Systems (Part 1),” The International Journal
on Very Large Data Bases—The VLDB Journal (1:1), 1992, pp. 127-179.
Hsiao, D., “Tutorial on Federated Databases and Systems (Part 2),” The International Journal
on Very Large Data Bases—The VLDB Journal (1:2), 1992, pp. 285-322.
IEEE Computer, A Special Issue on Heterogeneous Distributed Database Systems, (24:12),
Dec., 1991.
Inmon, W.H., Building the Data Warehouse, New York, NY: John Wiley and Sons, 1993.
Inmon, W.H. and C. Kelley, “The 12 Rules of Data Warehouse for a Client/Server World,”
Data Management Review (4:5), 1994, pp. 6-16.
Kim, W., and J. Seo, “Classifying Schematic and Data Heterogeneity in Multidatabase
Systems,” IEEE Computer (24:12), 1991, pp. 12-18.
Kimball, R., The Data Warehouse Toolkit, John Wiley and Sons, Inc., 1996.
Krishnamurthy, R., W. Litwin, and W. Kent, “Language Features for Interoperability of
Databases with Schematic Discrepancies,” Proc. ACM SIGMOD—International Conference
on Management of Data, 1991, pp. 40-49.
Lee, C., C.-J. Chen, and H. Lu, “An Aspect of Query Optimization in Multidatabase
Systems,” ACM SIGMOD Record (24:3), 1995, pp. 28-33.
Lee, Kyong-Ha, et al., “Conflict classification and resolution in heterogeneous information
integration based on XML schema,” Proc. of IEEE TENCON’02, 2002.
Litwin, W. and A. Abdellatif, “An Overview of the Multi-Database Manipulation Language
MDSL,” Proc. of the IEEE (75:5), 1987, pp. 621-632.
Litwin, W., A. Abdellatif, B. Nicolas, Ph. Vigier, and A. Zeronnal, “MSQL: A Multidatabase
manipulation language,” Information Sciences: An International Journal (49:1), 1987, pp.
59-101.
Motro, A., Superviews: Virtual Integration of Multiple Databases, IEEE Trans. on Software
Engineering (13:7), 1987, pp. 785-798.
Rys, M., “Bringing the Internet to your database: using SQL Server 2000 and XML to Build
Loosely-Coupled Systems,” Proc. IEEE International Conf. on Data Engineering, 2001, pp.
465-472.
Reddy, M.P., B.E. Prasad, P.G. Reddy, and A. Gupta, “A Methodology for Integration of
Heterogeneous Databases,” IEEE Transactions on Knowledge and Data Engineering (6:6),
1994, pp. 920-933.
Roy, J. and A. Ramanujan, “XML schema language: taking XML to the next level,” IEEE IT
Professional (3:2), Mar/Apr 2001, pp. 37-40.
Sciore, E., M. Siegel, and A. Rosenthal, “Using Semantic Values to facilitate Interoperability
among Heterogeneous Information Systems,” ACM Trans. Database Systems (19:2), June,
1994, pp. 254-290.
Siegel, M. and S.E. Madnick, “A Metadata Approach to Resolving Semantic Conflicts,” Proc.
17th International Conference on Very Large Data Bases (VLDB), 1991, pp. 133-145.
Srivastava, J. and P.Y. Chen, “Warehouse Creation—A Potential Roadblock to Data
Warehousing,” IEEE Trans. Knowledge & Data Eng. (11:1), 1999, pp. 118-126.

603

Trisolini, S. M., M. Lenzerini and D. Nardi, “Data Integration and Warehousing in Telecom,”
Proc. the 1999 ACM SIGMOD Int’l Conf. on Management of Data, 1999, pp.538-539.
Tseng, F.S.C., A.L.P. Chen, and W.P. Yang, “Searching a Minimal Semantically-Equivalent
Subset of a Set of Partial Values,” The International Journal on Very Large Data Bases—the
VLDB Journal (2:4), (1993) pp.489-512.
Tseng, F.S.C., A.L.P. Chen and W.P. Yang, “Answering Heterogeneous Database Queries
with Degrees of Uncertainty,” Distributed and Parallel Databases—An International Journal
(1:1), 1993, pp.281-302.
Tseng, F.S.C., A.L.P. Chen and W.P. Yang, “Refining Imprecise Data by Integrity
Constraints,” Data and Knowledge Engineering (11:3), 1993, pp. 299-316.
Tseng, F.S.C., A.L.P. Chen, and W.P. Yang, “Implementing the Division Operation on a
Database Containing Uncertain Data,” Journal of Information Science and Engineering
(12:1), 1996, pp. 51-78.
Tseng, F.S.C., J.J. Chiang and W.P. Yang, “Integration of Relations with Conflicting Schema
Structures in Heterogeneous Database Systems,” Data & Knowledge Engineering (27:2),
1998, pp. 231-248.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	December 2005

	XML-Based Heterogeneous Database Integration For Data Warehouse Creation
	Frank Tseng
	Recommended Citation

	Microsoft Word - 191.doc

