Association for Information Systems

AIS Electronic Library (AISeL)

Pacific Asia Conference on Information Systems

PACIS 1997 Proceedings (PACIS)

December 1997

Software Testing for Specialised Applications-
Screenflow Engineering: A case study

John Paynter
University of Auckland

Follow this and additional works at: http://aisel.aisnet.org/pacis1997

Recommended Citation

Paynter, John, "Software Testing for Specialised Applications-Screenflow Engineering: A case study” (1997). PACIS 1997 Proceedings.
71.

http://aisel.aisnet.org/pacis1997/71

This material is brought to you by the Pacific Asia Conference on Information Systems (PACIS) at AIS Electronic Library (AISeL). It has been
accepted for inclusion in PACIS 1997 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please
contact elibrary@aisnet.org.

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fpacis1997%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis1997?utm_source=aisel.aisnet.org%2Fpacis1997%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis1997%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis1997%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis1997?utm_source=aisel.aisnet.org%2Fpacis1997%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis1997/71?utm_source=aisel.aisnet.org%2Fpacis1997%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

S

Software Testing for Specialised Applications
- Screenflow Engineering: A case study

John Paynter
University of Auckland, New Zealand,
j.paynter@auckland.ac.nz

Executive Summary
Software testing is a topic that has been widely researched over the past thity years, yielding a

multitude of different testing strategies, tools and technigues aimed at increasing the reliability of
software. Many of the methods developed for earlier paradigms appear to be insufficient for modern
applications. This paper introduces a method of software testing for data-driven applications based on

a New Zealand case.

The method used is part of the Screenfiow Engineering process. This process is based on the premise
that computer system applications should share a common pool of data that is updated on-line and made
available simultaneously to any user of any application. Itis generally accepted that relational databases
provide the best means of achieving this by presenting the data in a standard, easily understood and
easily accessible manner. The Screenflow systems development methodology provides an effeciive and
efficient means of creating applications based in stich a shared relational database environment. It offers
the following advantages:

o Applications structures are developed in cooperation with users in a diagrammatic manner that is
analogous to the development of data structures.

« The relationships between applications structure and data structure are explicitly stated and readily
understood by users and developers zlike.

« Screenflow applications allow users to browse and to update the database in a standard manner that .
is easily learned, natural and user-efficient by providing access paths that follow inherent relationships
within the data.

» The standardisation of application components maximises the opportunity for reusable code. This
results in substantial improvements in application testability, quality, reliability and maintainability
together with a large increase in development productivity. These factors are measurable.

The testing strategy uses a combination of white-box methods for testing the templates and black-box
methods for validating the applications. These are seen as complementary approaches that are likely
io uncover different classes of error. The white box tests are done at the time that the templates are
created or modified, the black box tests are conducted during development of the individual
applications. The approach is Top-Down using the subsystems's navigator as a driver (following the
navigation paths of the screenflow diagram) although this can be changed as circumstances reguire.

The testing method consists of creating a test template. For each application module this can be
changed to suit the special features and reguirements of the application. The resulting Function versus

- Program Mode matrix can be checked off or otherwise annotated as the testing progresses.

The advantages (eg. separation of white and black box testing to different stages of the SDLC) and
disadvantages (eg. the dangers of not adequately testing structures when the reuse is in a new
context) of such a method are discussed. :

This case demonstrates an example where testing using a combination of test plan, strategies and
techniques couid provide improvements to the outcome of the software development process and the
quality of the resultant applications. Some of the principles discussed in this case can be extended to
testing in other specialised environments such as object-oriented systems. '

Software Testing : ‘
Software testing is a critical element of software quality assurance and represents the ultimaie review

of specification, design and coding {Pressman, 1997). The increasing visibility of software as a system
element and the attendant "costs” of software failure are motivating forces for well-planned, thorough

755

4

testing. It is not unusuat for testing to take between 30 and 40 percent of the total project effart. The
objective is to design tests that systematically uncover different classes of errors and to do so with 2
minimum amount of time and effort. if testing is conducted successfully it will uricover errors in the
software and demonstrate that software functions appear to be working according fo specification and
that performance requirements appear to be met. [n addition, data collected as testing is conducted
provides a good indication of software reliability and some indication of software quality. Testing
however cannot guarantee the absence of defects, nor can it test-in’ quality.

Software testing templates

Testing is a set of activities that can be planned in advance and conducted systematically. Pressman
(1997) reasons that a template for software testing - a set of steps into which we can place specific
test case design techniques and testing methods - should be defined for the software engineering
process.

The importance of software testing

During the early years of computing when hardware costs comprised the highest percentage of the
overall cost of computer-based systems, [ittle emphasis was ptaced on testing- strategies and
techniques. The software testing components had little impact on the overall system implementation
fime.

in recent years, this situation has been reversed due to the decrease in hardware costs and the use of
advanced programming languages {(eg 4GLs). Software is now the most expensive component in the
majority of information systems projects (Conte, Dunsmore and Shen, 1986) requiring considerable
testing effort to ensure thet the software meets the requirements.

Many authors have frequently stressed the need for the creation of test plans early in the SOLC. Mullin
and Hope (1998) reported that for 35 student projects assessed over three years, testing was the
variable that could best predict software Quality. J

A brief overview of tésting methods ‘ |

Software (and other) products can be tested in one of two ways: (1) knowing the specified function that
a product has been designed to perform, tests can be conducted that demonstrate each function is
fully opérational, at the same time searching for errors in each function; (2) knowing the infernal
workings of a product, tests can be conducted to ensure that the operation performs according to
specification and all components have been adequately exercised. These test approaches are called

black-box testmg and wmte—b‘“‘ox Fstm@’res‘pe‘cttvely

A discussion on the re[atlve merits and weaknesses of all of these techmques is beyond the scope of
this paper. However, an important fact to note is that the majority of research has focused solely on
black box versus white box testing methods. This paper looks at use of such methods, before
considering a strategy for applying white-box and black box tests at different stages of a project.

Test Case Design :

The design of tests can be as rmportant as the initial product design. Yet testlng is often treated as an
afterthought. Test cases are scripted that may “feel right’ but have little assurance of being compléte.
Considering the objectives of testing, test cases must be created which have the highest likelihood of
finding the most errors with a minimum amount of time and efiort. Black and White Box methods are
used to-optimally select such test cases.

Black box testing

These models apply tests to the software interface. They: are used to demonstrate that software
functionis are eperational; that input-is properly accepted and output is correctly produced and that the
integrity of external information (ey database tables) is maintained. A black box test examines some
fundamental aspect of a system with little.regard for the internal logical structure of the software o

Black-box testing attempts to find errors in the following categories: (1) incorrect or missing functions,

(2) interface errors, (3) errors in data structures or external database access, (4) performance errors :
and (5) tnltlallsatton end termmatron &ITors., . o

756

Black-box testing technigues inciude graph-based testing methods, equivalence partitioning, boundary
value analysis and comparison testing.

White box testing
White box testing examines the internal logical structure of the software. Logical paths through the

software are tested by providing test cases that exercise specific sets of conditions and/or loops. The
status of the program can be examined at various points to determine if the expected or asserted
status corresponds to the actual status. White-box testing is a test case design method that uses the
control structure of the procedural design to derive test cases. Using white-box methods, the software
engineer can derive test cases that (1) guarantee that all independent paths within @ module have
been exercised; (2) exercise all logical decisions on their true and false vaiues; (3) execute all loops at
their boundaries and within their operational bounds; and exercise internal data structures to assure
their validity. White-box testing technigues include Basis Path (utilising Flow Graphs, Cyclometric
Complexity and Graph Matrices to derive test cases) and Control Structure Testing (Condition Testing,

Data Flow testing and Loop Testing).

Problems with testing motdlels.
A number of problems with testing models have been identified. The most important ones include

difficulties in exhaustively exercising all possible paths and combinations within a2 program.
Exhaustive testing is impossible for large software systems. Accordingly a limited number of important
Ingical paths should be selected and exercised. Important data structures can be probed for validity.
Black-box and White-box testing are not alternatives, rather they are complementary approaches that
are likely to uncover different classes of errors. The attributes for both black- and white-box testing can
be combined to provide an approach that validates the software interface and selectively assures that

the internal workings of the software are correct.

Testing for specialised environments and applications
As computer scftware has become more complex, the need for specialised testing approaches has

also grown. The white box and black box testing methods discussed are applicable across all
environments, architectures and applications, but unique guidefines and approaches fo testing are
sometimes warranted. Specialist areas include: Graphical User Interfaces (GUI), Client-Server
Architectures, Real-Time Systems and Object-Oriented Systems.

We will now examine one NZ case based on a template-approach to application building to see if it
can throw fight on the appropriateness of testing techniques.

Screenflow engineering
Screenflow Engineering (Snow and Paynter, 1992) derives its leverage in constructing applications from

two sources. The Scresnflow specifications (Figure 1) could be derived from the initial data model (Figure
2) and knowledge of the business procedures. While Data Diagrams describe the structure of the
database, Screenflow Diagrams describe the structure of the application.

The Screenfiow Diagram is central to the development of Screenflow applications, being the primary
document produced in the systems analysis phase. It is essentiat for detailed design and programming,
and Is useful in establishing and enhancing an understanding of the application between developers and
users. This diagram is also a key component in documenting the application from both the technical and

the user viewpoints.

The Screenflow and Data Diagrams
The Screenflow diagram shows the set of programs within a subsystem plus the relationship between

them, that is, how you move from one to another (ie how you navigate through a relational database).
This is controlled by the subsystem's navigator. The lines depict the paths that the user may follow in
moving from one program to another. These lines, and the paths that they represent, come in two
varieties. Each one-to-many relationship shown in the data diagram will normally be represented by a
downward move from one screenflow program to another. Where a given entity has several one-fo-many
relationships, then the screenflow diagram will be drawn to show the navigation between the different
programs sharing the same screentop. It is also possible to move between topless screens, These are
known as sideways moves and are selected from the side menu. Downward moves are similarly selected
from the down menu. For instance, a customer order screen will have the order (header) details on the

757

screentop and the order-line details on the screenboftom. Thess represant the one-to-many relationship
"one order may have many order-lines.”

Second, each screenflow program was based on a coresponding template program. There are ten basic
screenflow templates each one dependent on the relationship between the dafa (enfity-type) displayed on
the screen-top and that on the screen-bottom. In addition to the template programs and navigator
program, & security program conirolled the users' access to the various subsystems.

Each box on the Screenflow Diagram represents one application pregram. As, in general, each program
in a Screenflow application controls the input and output from one and only one screen panel, each box
on the Screenflow Diagram also represents one panel.

The box is divided into five horizontal segments. The top segment contains the program/panel title as
it appears centrally at the top of the panel. The second segment contains the program/panel name
and the identification number of the template program on which the application is based. (This is not
shown on the final documentation as it is irrelevant for the users.) The third segment contains a brief
description of the program's purpose, The fourth and fith segments coniain the file name of the
screeniop and screenbotiom tables respectively.

758

"reIBIP MO[JUIING T INILY

IMTHNSARADN INFNEADN
LORONPO] ;D)) SJUNOSSK] {51 seun yopdseq s
£Z0030W O30 S00030N
1600y UOHINPOL] Aogdsa wneag s8uUr} ySiodte s
| R '
RATINAEAON . S INOPEASIN INFHNGARAOW INGIWNRAOIN _
ANIINAON INSWAAOIN INSWRACA INVEAON
fUBHLIBADWN U] OO0 Hioleq SUBLIOAQN JORIO
uﬁ.&oﬁaﬁ;w B0S LSO LY 16030 \NORROW 10} {6 S 1) 40) s OIOdseq # m
OZEODFION LO0D30N SOODOW LLODIOW FOODION
Buoid TSRS WO [Reussson OO SBUN Jusluaron | [epio 10 seuoiodieq
INSWEAOW INFWEAOW INIWIAOW INIFWIAON INSWIADIN 17 INGWAADN
HINOLSND YINOISND HRNOISND HINQUSHD HINQISRD A0SO :
RUoEND e{0g SOION HaSQ/ el BRI TP
sopsecpiocseq i (3] weouowen SR vepio uowow [R—d woron [TT] petarcwos an [US] piopuois uoksow
ZLODIOW 0030 800DION 0LODIOW LOODION ZOOD3ION
1 yoyodseq - SBOS UKD £ LID RO WON HeQ/IPMD LHPKO) POBIEIOT) EI80X0) DIOPURIS
qQ . W:
1 of f of A)
xllllrllnlllll) . ‘
HINOIENT-DHO , .
SHO .
1 swogosuofio eu 1
LOODION
LIS

fype EALEABLE-TEM
o Joug-une-cocia

C13 | tem-code

Cla {sequenca-key

TyD8 JRETURN

L3 petum-taason
C30 - frot-recton-dese

1]

ay SALES-RETURN
- rmovament-nbe

€2 |inenty
C3 potan-recson

Cl jcomplate-fiag
N1 1.2igrs-xfar-price

N1 1.2{gst-amount
€1 |tem-fiag

€13 litem-code

CS [sarvice-code
C? . pelated-Kng-nbr
CS - [(deliveriodod
C§ - |botch-coda
N11 Hdiso-xter-piice
NILZftot-disc-price

1
movement-nie
line-nbe
discouni-code
discount-doezs
ckscount-ind
percont-isc
doltor-dise

BY
—
g
gunit-desc PF
CA g—mod‘-mme rﬁ I
KoylTyoe [STD-ORDER-LING.
PF 1 C9 | sta-order-nbr
C2 jlina-nbi
N9.2 {std-order-qly
F 1C13 [tam-code :
’ {1l - C2 ({relctad-line-nbr k:',
Type IORG-CUSTOMER Cs Keltvarto-loc
-G eustomaerntr 11|
C5 [ag-unil-cods
C15 | saquenca-key
RS |dstant-kms’
C5 |relght-xa-cole f .
Kevilyps lstanparo-orperd
: P [C? [sid-order-nbr
i 111 €3 Jweok-day PF
Type JGENERALTEXT Ci |Fequancy F
=3 W_: Nl fweak-nbr
o5 | key-vatue |Gl jtelephona-fag
3 |textEnentr = C30 jcontact-naome
c8 1radine maj C10 [phone-nbr
Cl0 |contact-tima Koy
Cac |instructions]
C8 |exphry-date
1C8 |next-asp-dote
N2 line-count .
F 1CS jcamiercode
F §C7 lcustorat-nbr
1F 1C5 jarg-unit-code .
fype |CUSTOMER v E
Cr o jousiomesntn il
CH0 jcustomarnama . g;
. - I .
Keyiiype IMoveEMENT
P 1C9 [mavemant-nbe
C30 [movement-detc
<8 |[movement-date
C4 imovemeni-lime -
T Cl' jcompiete-tag
Hype IMOE-QRDER i C1 jocknowladgment
LY Imovameni-nor by c% lretsrance-nbr = i
CE lorderdate C10 linterngl-raf F
Cé jpicing-date i Cl1 freloted-mvi-fag F
F [C? [|teiated-mvi-nby F
F iC1 jogeni-type-code
{F [C7 - pagenl-code
F [C& [locafion-code
F |C& |camarcoda
F {C8 Hruck-code
HF |C5 Jorg-unit-code

KoviTypa [ACENT-TYRE. 'F |C2 {move-type-cods

r 1 ClI jagent-lype-c 3 ' |N2 jHne-count
<X |agentdype-dese £ |C5 |sefing-org

I

Movilype im%'uﬁ'm-% ; -

FICIT Tmove-type-C keyltyoe inscounmrwe - ‘
€3 | move-type-dase TS " ascouni-code -1 -
€l {movedncrednd ez sertnome ; =5
€1 - | octiping-ind £¥ | dscount-desc

Figure 2. Data diagram.

760

2 discount-amaount

Template programs
There were ten basic screenflow templates, each dependent on the relationship between the data (entity-

type) displayed on the screen-top and that on the screen-bottom. Thus, the ten different types of data
relationships and access rights (that is, update or display only) are represented in one of each of the
programs. The template programs themselves differ only in the Medes present

The original template programs were created by two people over several weeks. The first system to be
developed using them was the Refrigerated Freight Lines Weekly Trip Summary application. This system
did not use the security application later adopted for all screenfiow systems, These initial template
programs were not robust enough during maintenance and enhancements. After six months, they were
replaced by 2 new generation of templates and used in an Order Entry Sysiem (Paynter, 1885). As
programs built with the old templates were maintained, the template program (ie. the basic program
structure) they were based on was updated. Any specialist code written into the application programs (for
example edit rules) was copied into the new version of the program, based on the new template,

These compongnts of data mode!, screens, screenflow and template programs can be put together o
create the screenflow engineering approach.

Screenflow and Object-Oriented Systems
The screenflow method lends itself to an Object-Oriented philosophy in that it is data driven. In common,

the single factor that gives the greatest productivity leverage is Reusability. In addition the screenflow
method whereby an entity is only maintained by one program - with its ADD, RELate, UPDate and
DELete (ie CRUD) modes - associates the procedures directly with the data, ie functions are a property
of data. Thus the data and functions of the entity (or Abstract Data Type) are encapsulated fogether.

This is taken one step further by the use of the template programs that enables you to focus on what you
want to do and not how. Thus the screenflow program, representing maintenance of the CRUD activities
of an entity, behaves like an Object Class. The focus on specifying the screenflow program concentrates
on the "methods” available to other interacting Object Classes. For the sake of simplicity, private
responsibilities (including the standard CRUD operations) common to all classes of objects are inferred
and are not therefore modelled in the screenflow diagram. The public responsibilities that usually involve
collaboration with one or more separate classes (invoked in a fashion reminiscent of subroutine calls} are
shown on the screenflow diagram as the sideways and downwards menu options (Figure 1).

Navigation from one screenflow program to another is akin to the transformation diagram as depicted in
Meyer (1988) Indeed the transformation diagram and screenflow diagram for an application are identical
in their structural representation. Both can be derived from the aggregation and association relationships
between entities (Meyer et al. 1891}, with the inheritance relationship additionally handled in the case of

OOPLs by delegation.

Meyer compares the object-oriented approach with classical functional decomposition {eg Gane and
Sarson, 1979), discussing the use of "states" to depict the transformation of the system from one step to
another. This was depicted for a hypothetical airline reservation system. The problem, as stated by
Meyer, "...is to come up with a design and implementation for such applications, achieving as much
generality and flexibility as possible." An equivalent screenflow can be constructed thus demenstrating
that screenflow diagrams represent such a design and screenflow programs their direct implementation

(Paynter, 1993}.

Testing Screenflow Applications ‘
Although, as described, templates were set up for the data model, screenflow diagram and the

screens, Help Screens and Programs; and boilerplate documentation for the system specifications, it
was not until the last project undertaken by the author that an attempt was made to create a testing

template.

Testing Strategy
Testing strategies can be based on either a Top-Down or Bottom-Up approach. It begins at the

module level and works “outward” toward the integration of the entire computer-based system.
Screenflow systems favaur the Top-Down approach. The navigator is equivalent to the ‘driver’ used to -

761

test many bottom-level programs. As it is relatively straightforward to build the driver it is only
necessary to define in it (as resources) the screenflow programs. Examination of the screenfiow
diagram (Figure 1) will reveal which programs can be written (and tested) first. Altemnatively the
navigator can be set to call any particular program and to pass the parameters required for that
program. During the life of the project though, the modules were written and tested in a top-down order
based on the screenflow, although sometimes the program that was to be initially invoked by the
navigator was changed for ancther also at the top-level.

Unit Testing

As outlined in the introductory section, the ITIEIJDF testing techniques involve either Biack box or White
box testing. The former is concemed with external function and validation, the latter with internal
structures and verification. To a large extent the white box testing was performed in verifying that the
templates worked. Consequently unit testing concentrated on black box methods. '

Verification Testing

As outlined, White Box testing concentrates on exercising control structures, decision logic and loops.
In testing the templates this involved checking the handling of 0, 1, n-1, n, n+1, and >2n records
{where n is the number of screenbotfom records). Parameter passing betwsen the navigator program
and the screenflow template programs was alse checked. The parameters included the entity
identifiers of the screentop enfity(s) and the stack of downwards moves (program calls). These
parameters thus represent the internal data structures of the application. The action of Insert, Add,
Update and Deletion operations was checked against the database.

An example of condition testing was the Y/N Delefion logic in the program’s Delete Mode. Another
example was the fransition from one mode to another (eg Related to List Mode). One aspect that was -
not tested thoroughly in the early templates was the handling of screenbottom scrolling when the
sequence keys (which determined the order in which records were displayed an the screenbattom)
were not unigue. This problem was not picked up until unit testing of some of the later applications.
The required modification was made to the second generation of screenflow programs.

Template Testing Strategy
it is not possible to directly test the template programs The parameters used by a program must be
entered (Snow and Paynter 1992) before the cade can be successfully compiled.

As mentioned earlier the approach was started with RFL. *The first programs were created mostly to
determine the functions they would perform. These programs were not pretty. So we then broke these
down into their parts and started on the generic model. We would add the function to the program and
then test only that portion that was added {eg. scroll forward, scrall backward) We did thls iteratively
until all the function was added to the one program (Top/Bottom update).

The rest basically were just copies of this one and were tested but not as much as TP01. The only

exception to this was the navigator template program, however, it went‘th,rough the same iterative
process during its development as well.™ (Tod Elbourne, personal communication, 22 October 1896.)

762

Table 1. MOECOO08 Test Template.

ProgramlID: MOECO08 J Program name: Maintain Orders

Function Mode
Related List Insert Add Delete Update

PF1 Help v v v v v v
PI2 Upd N/A N/A _N/A N/A N/A MVTL098v
PF3 Pop v v v v v v
PF4 Quit v v v v v v
PF5 Add | MVT1099Y - N/A - N/A N/A

Insert N/A - . N/A N/A N/A
PF6 Del Disabledv’ N/A N/A N/A - N/A
PF7 Bck v v N/A N/A N/A N/A.
PF8 Fwd v v N/A N/A N/A N/A
PF9 List - N/A - - - -
PF10 New v - - - - -
PFi1 Price v - - - - .
PF12 M.order v . - - - -
Sideways S,g’,]l)i, v S’g’g’ v N/A N/A N/A N/A
Down D,IE,M, v D,IEM, v N/A N/A N/A N/A
Sereentop v N/A N/A N/A N/A N/A
Sequence v v N/A N/A N/A N/A
Alt. keys - - N/A N/A N/A N/A
Special |P.M| ¥ |[PM| ¥ - - - -

Eg_end

N/A | Not applicable to template

XXxnnnn

Entity instance updated/created

S etc | Menu option

- Not applicable to this program | ¥

Function checked

Text Additional notes

763

Validation testing
in order to do this 2 matrix could be created which mappead the function against the program mode
(Table 1). Some functions did not pertain to certain modes or only could be performed in a specific
mode {eg Deletions could cnly be initiated in Related Mode and executed in Delete Mode). By
constructing this matrix is was possible io specify the tests to be performed for each mode. The
testers could then fill in the matrix as they exercised the program. This exercise did not specifically
cater for the various test cases required (eg using basis path testing). Each program had a series of
* edit rules. Any significant checks. that need to be made could be inserted into the test template for the
program (eg MOECO08 from Figure 1). li was necessary to test the program for Insertions, Adds and
Updates for data bath within and outside the range of valid values. For Delete mode it was necessary
to attemnpt to delete data where deletions were possible and also when they would be prevented (eg in
order to maintain referential integrity, in MOECO08 the DELete function is disabled). The test template
could be printed and anriotated or maintained on-line. Queries were developed to test each database
operation (ie Add, Update and Delete) on an entity. These represented the external data structures
used in the applications. When an-entity was set up a query was created to display its attributes. The
query was given a name corresponding to its three-character database name (eg MVT for the
" Movement entity). Where the entities had relationships to other entifies the query was given the
concatenated name (eg MVT-MVL for the Movement-lines corresponding to & particular entity). The
conditions (ie where clause) would be edited when the query was refrieved to reflect the desired test.
There could be separate queries set up for the different database operations where necessary (eg
MvT-MVL-DEL, MVT-UPD). '

During Integration testing, each of the havigaﬁon functions (Paop, Quit, Sideways and Downwards
moves) would be tested and checked off. System testing was straightforward as all screenfiow
subsystems had a common architectire, 1992).

. Discussion

Screenflow Software Testing ‘

As we have seen from this project, different testing techniques are appropriate at different points of
time. Verification refers to the set of activitiés that ensure that software corractly implements a specific
function. Validation refers to a different set of activities that ensure that the software that has been built
is traceable to customer requirements. Boehm (1981) states this a different way: “Verification - Are we
- building the product right? Validation - Are we building the right product?” Thus testing the template
and enhancements to the programs created from standard templates (White Box) tesfing is a
verification activity, whilst testing the resultant applications is a validation activity. .

Screenfiow engineering methods provide the foundation from which quality is built. Analysis, design
.and’ construetion methods (coding. from the.templates) act to enhance quality by providing uniform,
techniques and predictable results. Throughout the process, measurement and control are applied to
every element of the software configuration. Standards and procedures help ensure uniformity, and a
formal SQA process enforces a “total quality philosophy”.

Enhanced Screenfiow Software Testing

Non-standard screenfiow features could also be handled. These inciuded multiple sequencing and
search keys, changes fo the screentop (eg scrolling forward and back through financial periods) and
alternative screen bottoms in LIST mode.

Table 2. Estimation data for additional f_eatures.

Feature Time (hours)
Sideways 0.5
Downwards

Alternate sequence keys
Additional screenbottom
New Screentop Record
Screentop Changes

Q|]y —

764

As these figures show, enhancements could be made relatively rapidly. Hence no separate testing
times were recorded.

After two years the organisation embarked on some more ambitious projects (Paynter, 1995). These
were extensions .of the sales and manufacturing applications. In the former, sales figures were
summarised and presented on-ling in a variety of formats. The user could nominate the customer (or
customer-group}, product (or product-group} combination that they wished to look at and select the
time period involved. They could then scroli forward and back through the displayed records, change
the financial period or look at the data in another way (using a screenflow option). The programming of
this introduced a level of complexity over the standard database operations of retrieval and record
storage (ie a one to one correspondence between displayed and stored data did not apply). A
mechanism needed to be developed to index the retrieved data in working storage and to accumulate
the data so it could be presented. After much trial and error the first subsystem (Sales by Customer
group) containing the modified screenflow programs using this technique was put into production.

The second project involved creating front-end data gathering screens for the manufacturing
operation. In this case several timesheet records would be entered and accumulated for a variety of
personnel allocating their time across different work centres and jobs. At any stage the operator could
choose to interface these records to the manufacturing system. This operation either created new

. transactions, transaction fines and allotments or altered existing ones. Unlike the previous example,

updates were involved, thus the programming was inherently more complex. Mediating this however,
was the fact that some of the lessons learnt on the previous project (eg accumulating records,
switching time periods) could be put to good use. Relatively more time was spent on testing during
these projects as they invalved changes in the structure and funciion of the template programs.

Several classes of errors were encountered during these enhancements. Examples included date
manipulation in the sales summary system (the function to convert a system date to the calendar date
was not well documented); the pointer size used to hold the count of the number of records on the
sereen bottom was insufficient to hoid the array of summarised records in the Sales Summaries; and
record counters used in the Theoretical Consurmption program were difficult to maintain when two sets
of transactions, fransaction lines and the allotment records were involved. All of these were either non-
standard screenflow functions or using them for a purpose for which they were not initially intended.

Besides being time-consuming the testing process had other shortcomings. For instance, it was
tempting to take short cuts, but. this was dangerous where structures were used for purposes for
which they were not originally intended. When programs were cloned and not adequately tested it was
possible to introduce generations of errors, which cnce detecied had to be traced back to the

originating program.

Other problems posed for testing are inherint in the data-driven screenflow method. For instance
surrogate (ie machine-gererated) keys were used as unigue Ideniifiers. An implication of this
approach to testing is that the only way to ensure a stabie benchmark (for say, regression testingj is to
back-up a standard set of master-fle and transaction daia. Care also had to be taken in
debugging/antibugging - it was all too easy to forget to remove frace statements and the output from
these could fill up the production database. As programs were created from the templates or cloned
from application programs not ali the functionality of the source program was required. It was therefore
important to test for removed functicns (eg PF keys which should be disabled).

Screenflow and the Object-Oriented Paradigm

[t might be argued that as OOA and OOD mature, greater reuse of design pafterns will mitigate the
need for heavy testing of OO systems. However each reuse is a new context of usage and retesting is
prudent (Binder, 1994), as was found in the screenflow exampies where the basic functions were
enhanced to perform a different role. It seems likely that more, not less testing will be required to
obtain high reliability in object-oriented systems. This can be confirmed by reference to the above
discussion of screenflow applications. For instance, it is easy to propagate errors when cloning
programs. An audit frail must be kept of the program'’s ancestry in order to track and rectify any errors

infroduced.

765

To adequately test OO systems, three things must be done: (1) the definition of testing must be
broadened to include error discavery techniques applied to OOAD medels; (2) the strategy for unit and
integration testing must change significantly; and (3) the design of test cases must account for the
unique characteristics of OO software (Pressman, 1997). Whilst the lafter two points are outside the
scope of this paper, it can be seen from the screenflow example that the models (like OOAD models)
provide substantial information about the structure and behaviour of the system. For this reason the
models should be subjected to rigorous review before generaticn of the code from the template
programs. During analysis semantic correctness must be judged based on the model's conformance
to the real-world problem domain. If the model accurately reflects the real world (to a level of detail that
is appropriate to the stage of development at which the modei is reviewed) then it is semantically
corréct. To do this it is presented to domain experts to examine for omissions and ambiguity.

Like QO the focus of verification (e white-box) testing is on the screenflow program which
encapsulates the screentop and screenbottom entities’ attributes with the different program modes
(analogous fo services or methods). Thus-the screenfiow program is analogous to the OO paradigm’s
~ class. Unit (or class) testing then focuses on the operations {modes) encapsulated by the femplate
program and the state behaviour of the class.

Screenflow (like OO) system validation is black-box eriented and can be accomplished by applying the
same black-box methods discussed earlier for conventional software. However scenario-based testing
dominates the validation of OO systems, making the use case (Jacobson, 1992) a primary driver for
validation testing. - o : o
Summary . - , : N :

Software testing accounts for the highest. percentage of technical effort in the software process.
However we are only beginning to.understand the subtleties of systematic test planning, execution and
control. The objective of software testing is to uncover errors. To fulfil this objective a series of test
steps - unit, integration, validation; and system tests - are planned and executed. Unit and integration
tests concentrate on functional verification of a module and incorporation of modules into a program (in
this case, navigator) structure. Validation testing demonstrates traceability to software requirements,
and system testing validates software once it has been incorporated into a larger system. Each test
step is accomplished through a series of systematic test technigues that assist in the design of test
cases. With each testing step. the level of abstraction with which software is considered i$ broadened.

This case demonstrates the use of verification techniques (white box testing) to test the program
templates at the Design stage of the SDLC. Validation techniques {black bax testing) are then used to
check the application programs created from the templates. The . implications of reusability to the
testing process are examined in light of the shift to the Object-Oriented paradigm. | ’

References

Binder, R. “Object-Oriented Software Testing” Communications of the ACM, vol 37, no. 9, September 1994,
p29. : R - : o

Boehm, B.W., Software Engineering Economics. Prentice-Hall, New Jersey, 1881. _ '

Conte, S.D.; Dunsmore H.E.; and Shen, VY. “Software Engineering Metrics and Maodels”.
Benjamin/Cummings, California, 1986. . ' : :

Gane, C. and Sarson, T. “Structured Systemns- Analysis: tools and technigues”, Prentice-Hall, Ingelwood Cliffs,
New Jersey, 1979. : : : ECT. T :
Jacobson, |., Object-Otiented Sofiware Engineering, Addison. Wesley, 1992, - | _ -

Meyer, B. "Object-oriented Software Construction” Prentice-Hall, Ingelwood Cliffs, New Jersey, 1988.
Mullin, K and Hope, S. “An Applicaticn of Quantitative Techniques to the Question of What Gontributes to a
Successful Software Development Project’, Proceedings of the 1996 Software Engineering Coriference,
Melbourne, Australia 1996, pp. : - o ‘ '
Paynter, J. “Project Estimation using Screenflow Engineering”, Saftware Enginéering: Education and Practice; -
Otago, New Zealand, 1996, pp. 150-159,. =~~~ - : ;

Paynter, J., "Architecture of a System - a case study based in developing applications in.a RDBMS using a 4GL".
Proceedings of the Pan Pacific Business Association’ Conference, Dunedin and Queenstown, 1995, pp. 388-390.
Paynter, J; “Implementing "Object-Oriented Systems using Screenflow Engineering”. . Proceedings of the

Information résource Mariagement Asscciation Canference, Salt Lake City, 1993d pp..114-123. - ;
Pressman, R.S., Soffare Engineering: A Practitioner's Approach. 4th Edifion, McGraw-Hill, Singapore, 1997.
Snow, C. and Paynter J. "Screenflow Systems - An Engineering Approach to Building Data-driven Applications".”
Tamaki Report Series No. 1, University of Auckland. 1992. o ‘ TR
Sweet, F., “Building Database Applications”, Boxes and Arrows Publishing, 1986.

766

	Association for Information Systems
	AIS Electronic Library (AISeL)
	December 1997

	Software Testing for Specialised Applications-Screenflow Engineering: A case study
	John Paynter
	Recommended Citation

	tmp.1219229509.pdf.xYMNm

