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Abstract. In the human interaction with CAs, research has shown that elements 

of persuasive system design, such as praise, are perceived differently when 

compared to traditional graphical interfaces.  

In this experimental study, we will extend our knowledge regarding the relation 

of persuasiveness (namely dialog support), anthropomorphically designed CAs, 

and task performance. Within a three-conditions-between-subjects design, two 

instances of the CA are applied within an online experiment with 120 

participants. Our results show that anthropomorphically designed CAs increase 

perceived dialog support and performance but adding persuasive design elements 

can be counterproductive. Thus, the results are embedded in the discourse of CA 

design for task support. 

Keywords: Conversational Agents, Persuasive System Design, Task 

Performance, Dialog Support, Chatbot, human computer interaction 

1 Introduction 

Information Systems (IS) can be designed to attain various goals. Following Benbasat 

[1], one of the goals is to increase the effectiveness and efficiency of users in the 

completion of a task, such as finding and purchasing a product online. However, IS also 

exhibits substantial potential to influence individual beliefs and behavior [2], for 

instance, regarding environmental sustainability [3] or health [4]. Studies in the context 

of persuasive systems and their design have received increasing attention recently, 

which is reflected in calls for more research [5].  



While the vast majority of studies in the area of persuasive system design focuses on 

software with graphical user interfaces [6], we follow the notion that conversational 

agents (CAs) offer the opportunity to design even more persuasive IS. CAs, defined as 

software with which users interact through natural language (i.e. written or spoken 

word) [7], have been shown to trigger mindless social responses (i.e. users treat 

computers like it is a human being [8]) as formulated in the paradigm of computers-

are-social-actors (CASA) [8], [9]. Due to the social nature of human interaction with 

CAs, we argue that elements of persuasive system design, such as praise or social roles 

[10], can be leveraged to influence individual behavior. 

Initial work in the area of persuasive and anthropomorphic CAs underlines this 

potential. For example, Diederich, Lichtenberg, et al. [11] investigated how persuasive 

messages of a CA can influence an individual’s environmental sustainability beliefs, 

finding that a anthropomorphic design of a CA increase the perceived persuasiveness. 

Similarly, Gnewuch et al. [12] argue that CAs can be a useful means to enable more 

sustainable energy consumption behavior of consumers, due to their feedback provided 

for the user. However, we still lack an understanding of whether persuasive CAs can 

extend beyond the scope of emotion and cognition, influencing actual user behavior 

(e.g., task performance).  

In this experimental study, we address this research gap regarding the relation of 

persuasive, anthropomorphic CAs, and actual behavior in the form of performance. The 

performance of an individual can be measured by the number of completed tasks (e.g., 

in the context of gamification, by completed rounds [13], or the number of steps per 

day [14]). We conducted an experiment with three different treatment groups (no CA, 

anthropomorphic CA and anthropomorphic CA extended with persuasive features) in a 

task completion setting. Specifically, participants had to complete a certain number of 

tasks, with the option to voluntarily complete more of them. Against this background, 

this study aims to answer the following research question: 

RQ: How can persuasive and anthropomorphic design of conversational agents 

positively influence performance? 

2 Research Background 

The following section contains the relevant background information for understanding 

this work: (1) persuasive system design and performance and (2) anthropomorphic 

conversational agents and social response theory. 

2.1 Persuasive System Design and Performance 

The observation that technology can influence human cognition, emotion, and behavior 

has been made around two decades ago. On this basis, the paradigm of CASA [9], [11], 

[16] has been formulated. The paradigm of CASA posits that individuals mindlessly 

apply social rules and expectations to computers once they receive cues associated with 

human traits or behavior [17]. Against this background, research in the domain of 

persuasive design investigates the social responses people show to computers [9], [10]. 



Research in this context entails the development and application of design elements 

intended to shape user perception and promote desired behavior. An example of this is 

the display of anthropomorphic communication features, such as humor, empathy, and 

praise, to trigger social dynamics, such as competition or cooperation [10]. 

These persuasive design elements can be distinguished into five types of social cues 

Fogg [2]: physical (e.g., touch, facial expressions, movement), psychological (e.g., 

empathy, humor), language (e.g., written or spoken language, turn-taking in a 

conversation), social dynamics (e.g., praise, judgment), and social roles (e.g., guide, 

partner). In sum, designers are provided with a wide selection of design elements and 

cues that can be used to persuade individuals in a variety of application domains, such 

as environmental sustainability, work, or education [18]. Regarding the effects of these 

social cues, four different categories can be distinguished [10]: (1) primary task support 

(e.g., individual tailoring of information), (2) dialog support (e.g., providing praise), (3) 

credibility support (e.g., displaying trustworthiness), and (4) social support (e.g., 

referring to social facilitation). 

In the domain of work and performance, persuasive design offers the opportunity to 

incline individuals to perform their primary task [10]. In the context of performance, 

for instance, this can mean enabling an individual to measure their primary task 

progress via self-monitoring [6] (e.g., displaying heart rate while exercising to ensure 

progress and commitment [19]). Similar examples can be found in the context of the 

academic performance of students [20], promoting physical activity at the workplace 

[4] and provoke “work-like” performance in experimental contexts [21], [22]. Dialog 

support has shown that users are encouraged to use the enhanced IS and consecutively 

motivated to perform their primary task [23]. One example is praise in the form of 

images, symbols, or words [6] to support a person in achieving his or her goals (e.g., 

increase the number of steps per day [14]). 

2.2 Anthropomorphic Conversational Agents and Social Response Theory 

Through technological progress regarding natural language processing and machine 

learning, CA-related technology has become widely available [24]. Consequently, CAs 

are currently attracting strong interest from research and practice [7], [24], [25] . Users 

can interact with CAs using written (e.g., chatbots) or spoken language (e.g., personal 

assistants like Siri or Microsoft Cortana). Furthermore, CAs can be disembodied, have 

a virtual embodiment [26], or a physical embodiment, e.g. service robots [27]. Through 

various means, CAs can display human characteristics, such as having a human name 

and participating in a dialogue with turn-taking [28]. These anthropomorphic 

characteristics trigger mindless social responses by users [28], [29], as postulated in the 

social response theory [17], [30]. 

The intensity of these social responses varies according to the degree of perceived 

anthropomorphism (i.e., human-likeness) of a CA [31]. Current studies on CA design 

found that a higher degree of anthropomorphism can lead to various positive effects, 

such as an increase in service satisfaction [32], trustworthiness [33], and persuasiveness 

[11]. In order to better understand the relation of anthropomorphic CA design, 

perceived anthropomorphism, and related benefits, CAs are studied in various 



application areas, such as customer service (e.g., marketing and sales [34]), and 

healthcare [35]). Synthesizing current research on anthropomorphic CA design, Seeger 

et al. [15] developed a conceptual framework that comprises three dimensions: (1) 

human identity, (2) verbal cues, and (3) non-verbal cues. The dimension of human 

identity includes cues regarding the representation of the agent, for example, having an 

avatar [31]. The second dimension of verbal cues comprises the language used by a 

CA, for instance, using self-references (“I think that…” [36]), expressing artificial 

thoughts and emotions (“In my experience…” [37]), or variability in syntax and word 

choice [15]. The third dimension of non-verbal cues includes conveying information 

on attitudes or emotional state [38], such as indicating thinking through dynamic 

response times depending on message length and complexity [32] or using emoticons 

to express emotions [39]. 

3 Research Model and Hypotheses 

Our research will contribute to a better understanding of the relation between CA 

design, its perception, and user performance. Our research model is depicted in Figure 

1. Specifically, we hypothesize that CAs equipped with social cues as part of an 

anthropomorphic design [15] persuade users to complete a higher number of tasks when 

combined with persuasive design elements, such as dialog support [40].  

 

Figure 1. Research Model 

Based on the paradigm of CASA [17], [30], technology influences individual beliefs 

and behavior [2]. CAs equipped with anthropomorphic characteristics, such as a human 

name and participating in a dialogue with turn-taking [28], trigger social responses by 

users [28], [29]. The human appearance leads individuals to perceive the CA as more 

persuasive, giving it the potential to influence the beliefs and behavior of individuals. 

Specifically, CAs provide users with the option to interact with the system via written 

dialog, providing dialog support [23]. Thus, we formulate the following hypothesis: 

H1a: An anthropomorphically designed chatbot yields a higher level of perceived 

dialog support than no chatbot. 

In the context of this study, we focus on CAs that are praising the user for their 

performance and award points for certain achievements, thereby providing dialog 

support [23]. Kamali et al. [41] were able to show that praise was expected (i.e., for 

specific behavior) when elderly people interact with a CA. Similarly, receiving points 



for certain behavior increases participation [42]. Therefore, we formulate our next 

hypothesis as follows: 

H1b: A persuasively and anthropomorphically designed chatbot yields a higher level 

of perceived dialog support than an anthropomorphically designed chatbot. 

Furthermore, CAs offer various possibilities for anthropomorphic design. An agent 

equipped with a name, gender, and avatar [31], displaying emotions through verbal cues 

[8], and applying nonverbal cues, such as dynamic response delays to indicate thinking 

or typing [32], can contribute to the perception of the agent as more anthropomorphic, 

even when users are aware of the artificial nature of it. Thus, we propose the following 

hypothesis: 

H2a: An anthropomorphically designed chatbot yields a higher level of perceived 

anthropomorphism than no chatbot. 

Furthermore, CAs additionally displaying persuasive cues, such as praising their 

user, add further to the anthropomorphic perception [10]. For instance, the study of Xu 

and Lombard [43] have shown that even a small cue (e.g., the name of the CA) can 

change the perception of the CA. Therefore, we hypothesize that such cues contribute 

to users anthropomorphizing the agent: 

H2b: A persuasively and anthropomorphically designed chatbot yields a higher level 

of perceived anthropomorphism than an anthropomorphically designed chatbot. 

Recent studies, which explore the interaction of anthropomorphic design of CAs and 

their persuasiveness, suggest that perceived anthropomorphism can increase the 

persuasiveness of the agent. For instance, Harjunen et al. [44] found that virtual offers 

are more likely to be accepted when the agent shows typical human behavior, such as 

smiling or touching (with a haptic glove). Similarly, Adler et al. [45] showed that a CA 

displaying positive emotions leads to a higher degree of perceived persuasiveness 

compared to a CA without emotionally loaded language. Against this background, we 

hypothesize: 

H3: Perceived anthropomorphism positively impacts perceived dialog support. 

Following Lehto et al. [23], persuasive design elements have the potential to 

reinforce, change, or shape the behavior of individuals by increasing the overall 

persuasiveness of information systems. Superficially, dialog support has shown to 

encourage users to perform their primary task, such as increasing the amount of 

physical exercise [14]. Thus, we propose the following hypothesis: 

H4: Perceived dialog support positively impacts performance. 

4 Research Design 

To test our hypotheses, we conducted an online experiment with three-conditions (no 

design, anthropomorphic design, and persuasive design) in a between-subjects design, 

avoiding carryover effects [46]. We conducted an a priori power analysis using GPower 

[47] to estimate the required sample size. We assume a large effect and estimated a 

minimum amount of 102 participants, given an effect size f = 0.4, alpha = .05 and power 

(beta) = 0.95). We collected data from the 2nd to the 15th of October 2019 until we had 

at least forty observations per treatment, resulting in a total of 120 participants. Overall, 



the sample consisted of 37% of females (5% of the participants preferred not to specify 

their gender). The age of the participants ranges from 18 to 83 (mean 33), and all 

participants are currently residing in Germany. 

4.1 Data Collection Procedure and Sample 

The experiment consisted of four steps: (1) Explanation of the experiment, (2) chat with 

the chatbot, (3) perform the task, and (4) fill out the questionnaire. In the first step, the 

participants received a briefing screen, which explained the context [48] and the 

structure of the experiment (completing five of 15 slider tasks with a subsequent 

survey) and described the tasks. Every participant received the same explanations to 

make sure that all participants have the same information [49]. Following the 

instructions, participants got two attempts to answer three comprehension questions. 

Those who failed both attempts were excluded from the experiment. This procedure 

ensures that no participant completed more tasks because the rules related to the number 

of completed tasks were not understood properly. After this step, all participants were 

randomly assigned to one of the three treatments and proceeded to step 2. The second 

step is divided into two sub-steps: (2a) chat with chatbot and (2b) perform the task. In 

step 2a, the participants had to chat with a chatbot. Via the chatbot, participants were 

able to start a task and end the experiment (see Control and Treatment Configuration 

section for details). If the participant was not in a chatbot treatment, the start of a task, 

and the end of the experiment could be triggered by a button. In step 2b, users had to 

perform slider tasks [48]. For the slider task, the participants had to set five sliders from 

0 to 50 by using the mouse pointer. After completing each task, the participants returned 

to step 2a. When five tasks were completed, participants had the option to proceed to 

the questionnaire or complete up to ten more tasks. In step (3), participants had to fill 

out a questionnaire (see Measures section for details). 

 

Figure 2. Procedure of the Experiment 

4.2 Control and Treatment Configurations 

Our experiment had three conditions: (1) no chatbot (control treatment), (2) 

anthropomorphic chatbot, and (3) persuasive chatbot. Every participant was randomly 



assigned to one experimental condition (between-subjects design). For condition (1), 

users did not have the option to communicate with a chatbot. For conditions (2) and 

(3), two chatbots were developed via the natural language processing platform 

Dialogflow by Google. Both chatbots received the same training phrases (i.e., 

exemplary statements that users might make during the interaction) to train them to 

understand a user’s intent and provide the correct reply. The chatbots were able to 

process different variations of sentences with the same meaning and could extract 

parameters, such as the intention to proceed to the next task or to exit the experiment 

and react appropriately. We further implemented a custom-built web interface to 

provide convenient access to the chatbots, ensure device independence, and minimize 

distraction.  

 

Figure 3. Slider Task 

 

Figure 4. Persuasive Chatbot 



Both chatbots were equipped with various cues for anthropomorphic CA design 

according to the three dimensions (human identity, verbal, non-verbal) as suggested by 

Seeger et al. [19] to establish a baseline for perceived anthropomorphism. Regarding 

the human identity, we equipped the chatbot with the name “Laura,” a female gender, 

and a human pictogram representing a female individual. Concerning verbal 

communication, the CA was designed to use self-references, turn-taking, and a personal 

introduction (“Hi! I am Laura and I will…”), including a greeting in the form of a 

welcome message. Regarding the non-verbal anthropomorphic CA design dimension, 

we implemented blinking dots in combination with dynamic response delays depending 

on the length of the previous message to simulate thinking and typing of replies by the 

CAs [32].  

Overall, both chatbot instances were identical except for the addition of persuasive 

messages for condition (3). The chatbot provides dialog support by using praise, 

suggestions, and rewards [10]. The persuasive chatbot praises users after every task 

completed (“Wow! You finished your task very quickly.”), whereas the 

anthropomorphic chatbot renounces praise. Furthermore, in case users want to end the 

experiment and proceed to the questionnaire, the chatbots suggests continuing and 

completing more tasks (“Maybe you can hold on a little longer? Would you like to 

continue?”). Lastly, the chatbot introduces a point system, rewarding the user with one 

point for every completed task (“You now have a total of X points”). 

4.3 Measures and Descriptive Statistics 

Our research variables included experimentally manipulated variables, questionnaire-

based variables (i.e., dialogue support and control variables), and the task outcome 

variable.  

Table 1. Questionnaire Items (Note that the items are translated from German to English.) 

Constructs and Items FL REF 

Perceived Dialogue Support ( = .911) 

I believe that the tool has supported me with appropriate feedback. 

I believe that the tool has encouraged me to continue working on the task. 

I believe that the tool motivated me to complete the task by praise. 

 

.873 

.909 

.889 

 

[23] 

Perceived Anthropomorphism(  = .934) 

I believe that the tool has a mind. 

I believe that the tool has a purpose. 

I believe that the tool has free will. 

I believe that the tool has a consciousness. 

I believe that the tool desires something. 

I believe that the tool has beliefs. 

I believe that the tool has the ability to experience emotions. 

 

.759 

.305 

.909 

.926 

.857 

.912 

.602 

[15] 

Perceived Persuasiveness (Single Scale) 

I believe that the tool convinced me to perform the task. 

 

- 
[23] 

FL = factor loadings, REF = reference,  = Cronbach’s alpha; 

First, the effect of the experimentally manipulated variables for the different types 

of chatbots. As the three treatments build on one another, we detangled the different 



effects and coded variables that capture commonalities and differences between the 

treatments. Second, dialog support, anthropomorphism, and control variables in terms 

of age, gender, education, and experience with chatbots were captured using a 

questionnaire. All items were measured on a scale from 1 (strongly disagree) to 7 

(strongly agree). For the design of the survey, only established constructs from previous 

studies were considered. Additionally, we included attention checks by asking two 

questions that prompt the participant to select a specific number on a scale. If the 

participant failed to answer the questions correctly, the data was not considered for the 

analysis. Perceived dialog support was measured using a 7-Point Likert scale adapted 

from [23]. Perceived anthropomorphism is based on a 7-Point Likert scale adapted from 

[15]. Additionally, we measured perceived persuasiveness [23] as a single-scale item 

to conduct a manipulation check. The items are displayed in Table 1. Third, the outcome 

variable of the task was measured in terms of the number of completed tasks, where the 

number of completed tasks equals the times a participant positioned all sliders correctly. 

5 Results 

In the following two sub-sections, we will present our results regarding the descriptive 

statistics and structural model. 

5.1 Descriptive Statistics 

The group averages of the performance show that the anthropomorphic chatbot 

(M=7.375, SD=5.309) and anthropomorphic chatbot with persuasive elements (M=4.3, 

SD=2.893) differ from the control group, which yields a lower number of tasks 

performed (M=3.150, SD=3.519). Similarly, we observed that the perceived dialog 

support is lower for the control group (M=2.45, SD=1.693) when compared to the 

anthropomorphic chatbot (M=5.15, SD=1.743) and anthropomorphic chatbot with 

persuasive elements (M=2.858, SD=1.571). As for anthropomorphism, the system is 

perceived lower in the control group (M=2.107, SD=1.318) when compared to the 

treatments anthropomorphic chatbot (M=3.279, SD=1.734) and anthropomorphic 

chatbot with persuasive elements (M=2.504, SD=1.045) (see Table 2).  

To test whether our manipulation of the interface designs for the three different 

treatments was successful, we assessed users’ perceived social persuasiveness. A test 

for variances homogeneity was not significant (F(2, 117) = 13.467; p = .597). Based on 

this result, we conducted a one-way ANOVA. The ANOVA was significant with 

F(2,117) 13.467; p < .001. The result of a Tuskey HSD post hoc comparison revealed 

following significant differences between for control (M=2.7; SD=1.951) – 

anthropomorphic chatbot (M=4.88; SD=1.977) (p < .001), and anthropomorphic 

chatbot - anthropomorphic chatbot with persuasive elements (M=3.08; SD=1.789) (p < 

.001). We applied PLS (partial least squares) to evaluate the measurement model and 

estimate the structural model. As our analysis includes dialog support as a latent 

variable, we applied a structural equation approach. We used partial least squares (PLS) 

path modeling and employed SmartPLS 3.2.9. In the following paragraph, we first 



inspect the measurement models and will then estimate and interpret the structural 

model. 

Table 2. Descriptive Statistics 

Dependent Variables 
Treatments 

(N = 40 for all treatments) 

 All Control AC ACwPE 

Performance 
Mean 

SD 

4.942 

4.387 

3.150 

3.519 

7.375 

5.309 

4.300 

2.893 

Perceived Dialogue Support 
Mean 

SD 

3.486 

2.042 

2.450 

1.693 

5.150 

1.743 

2.858 

1.571 

Perceived Anthropomorphism 
Mean 

SD 

2.629 

1.467 

2.107 

1.318 

3.279 

1.734 

2.504 

1.045 

Perceived Persuasiveness 

(Manipulation Check) 

Mean 

SD 

3.55 

1.903 

2.7 

1.951 

4.88 

1.977 

3.08 

1.789 

SD = Standard deviation, AC = Anthropomorphic, ACwPE = AC  with Persuasive Elements 

5.2 Measurement Model and Structural Model 

The measurement model includes manifest variables in terms of the experimentally 

manipulated variables, the number of completed tasks, and reflective constructs. From 

the experimental treatments, we derived four variables (see Table 3). The no chatbot 

variable (control treatment) was not included (reference group). 

Table 3. Inter-Construct Correlations, CR, and AVE 

(Latent) Variable CR AVE 1 2 3 4 5 

1. Number of Completed Tasks - - -     

2. Dialogue Support .95 .86 .43 .93    

3. Anthropomorphism .94 .69 .33 .53 .83   

4. Anthropomorphic Chatbot Design - - .17 .14 .08 -  

5. Persuasive Chatbot Design - - -.11 -.25 -.11 .58 - 
CR = composite reliability, AVE = average variance extracted 

 

Figure 5. PLS Structural Model ***p ≤ .001, **p ≤ .01, *p ≤ .05 

We then assessed the reflective measurement model of anthropomorphism and 

dialogue support for individual item reliability, convergent validity, and discriminant 



validity. The model displays good measurement properties: all factor loadings are 

meaningful and significant, the composite reliability is above .7, the average variance 

extracted is above .5, and the Fornell–Larker criterion is satisfied. We then applied a 

bootstrap resampling procedure (with 4999 samples) to test the relationships. We favor 

the SEM for our research design with latent variables because it takes into account 

measurement errors or multidimensional structures of theoretical constructs [50] . The 

PLS estimator has advantages with respect to restrictive assumptions and is therefore 

widely used in experimental research [51], [52]. The different experimental conditions 

(no chatbot, anthropomorphically designed chatbot, persuasively and 

anthropomorphically designed chatbot) were dummy coded for our structural model, to 

compare the manipulations with a baseline condition (no chatbot). The structural model 

explains variances in Anthropomorphism (R² = .213, f² = .156), Dialog Support (R² = 

.503, f² = .312) and Performance (measured as number of completed tasks) (R² = .291). 

The results of the PLS estimation are illustrated in Figure 5.  

Table 4. Results for Hypotheses 

Hypothesis Β t  

1 

a) An anthropomorphically designed chatbot yields a higher 

level of perceived dialog support than no chatbot. 
.51*** 6.11 s 

b) A persuasively and anthropomorphically designed chatbot 

yields a higher level of perceived dialog support than an 

anthropomorphically designed chatbot. 

-.44*** 5.25 c 

2 

a) An anthropomorphically designed chatbot yields a higher 

level of perceived anthropomorphism than no chatbot. 
.38*** 4.02 s 

b) A persuasively and anthropomorphically designed chatbot 

yields a higher level of perceived anthropomorphism than an 

anthropomorphically designed chatbot. 

-.24* 2.49 c 

3 
Perceived anthropomorphism positively impacts perceived 

dialog support. 
.31** 3.96 s 

4 
Perceived dialog support positively impacts the number of 

completed tasks. 
.49*** 6.41 s 

 s = supported, c = contradicted, ns = non-supported, B = path coefficient 

In summary, we find support for hypotheses H1a, H2a, H3, and H4. We find 

contradicting results for H1b and H2b, namely the role of the persuasive design (see 

Table 4). Concerning, our control variables, we find significant effects for prior 

experience with chatbots on Anthropomorphism (β = -.239, p < .05). Moreover, we find 

a significant effect on Gender on Number of Completed Tasks (β = -.181, p < .05), with 

male participants completing fewer tasks. 

6 Discussion 

Our experiment aimed to explore the relationship between the persuasive and 

anthropomorphic design of conversational agents and performance. The results have 

implications for CA and persuasive system design. In this regard, we provide empirical 



evidence for the relation of anthropomorphism and persuasive design in CAs. We found 

contradicting evidence for our hypotheses that persuasive cues (explicitly praise, 

suggestion, and rewards) lead to higher perceived anthropomorphism and dialogue 

support. These results can be explained from different perspectives. 

6.1 Implications for Research 

First, when looking at CA literature, Seeger et al. [15] state that simply applying 

more social cues and anthropomorphic design elements will not automatically lead to a 

higher level of perceived anthropomorphism. Selecting and combining them should be 

done with caution. In this context, Clark et al. [53] see the expectations of a user as 

decisive. Users are experienced with the interaction with humans and know the 

mistakes they make in an interaction. However, computers make errors that can rarely 

be found in humans. Therefore, these errors are unexpected. Regarding our CA design, 

the anthropomorphic chatbot was well perceived, leading to higher perceived 

anthropomorphism and dialog support. However, by adding the intended-to-be-

persuasive elements to the design, the perception of the chatbot is vastly different from 

the other one. This observation indicates that users did not expect the added social cues.  

Second, it could also be hypothesized that the persuasive chatbot appears to be 

disingenuous. A slider task does not require specific skills, qualifications, or knowledge 

[48]. Furthermore, unlike tasks in crowdsourcing, such as labeling pictures, performing 

a slider task has no trigger for enjoyment (task enjoyment leading to increased 

performance [54]), has no deeper meaning (perceived meaning is linked with 

satisfaction and performance [55]), and does not enable a user to contribute to a greater 

good (like voluntary work where the reward is intrinsic to the act of volunteering [56]). 

Hence, we would suggest that individuals perceive the high level of praise, combined 

with suggestions to keep going and receiving arbitrary point rewards, as disingenuous 

and not fitting the task. 

Lastly, the negative perception of the persuasive chatbot might be explained by the 

cognitive fit theory [57]. The theory proposes that the fit between task and presentation 

of supporting information shapes the task performance. Our results indicate that an 

anthropomorphic CA provides a better information presentation in terms of dialog 

support, fitting the task at hand. This fit leads to higher performance. Thus, through the 

lens of the cognitive fit theory, the addition of persuasive elements appears to reduce 

the fit between task and task support. 

In summary, our results can be embedded in the current discourse of CA design for 

task support. However, the significant negative change in the CA’s perception by 

adding persuasive elements was unexpected. Thus, our results highlight a research 

opportunity to investigate the design of CAs for task support. Specifically, the framing 

and nature of a task appear to interact with the perception of a CA. CAs should meet 

expectations, appear genuine, and be adapted to the nature of the task. However, 

understanding how to design such a CA has yet to be addressed. 



6.2 Implications for Practice 

For practice, our result indicates that using a CA to frame and support tasks can be 

beneficial. To be specific, we would relate our results to the context of crowdworking. 

In crowdworking, crowd workers perform multiple tasks [58], which fits the 

experimental setup of this study. Our participants were inclined to complete more tasks 

than necessary. This indicates that adding the option to perform more tasks, 

accompanied by an anthropomorphic CA, can lead crowd workers to do more tasks. 

Furthermore, our study provides a blueprint regarding the design of such an 

anthropomorphic CA. Specifically, we would advise against adding persuasive 

messages or other design elements to an anthropomorphic CA that is intended to 

provide dialog support. Therefore, our results can be used to better design chatbots in 

the context of (crowdworking) tasks. 

6.3 Limitations and Future Research 

Our study is not free of limitations and offers different opportunities for future research. 

We conducted the online experiment in a rather controlled setting, with a set of specific 

tasks that every participant was asked to complete, and a single interaction with the 

conversational agent. Moreover, we did not compare the provided CA’s with a CA 

without any social cues. Thus, we benefitted from control yet lacked realism in our 

research design [49]. Similarly, our results are limited by the selection and 

reimbursement of participants. In a real-world work environment, individuals are under 

the constant influence of expecting and receiving payment for work. For instance, 

crowd workers primarily perform tasks to be paid [58]. In our setting, participants did 

not receive a comparable form of pay. They were allowed to participate in a raffle for 

10€ online shopping vouchers. Thus, it is safe to assume that participants were 

motivated by other factors, such as curiosity or escaping boredom. 

7 Conclusion 

In this study, we set out to explore the relation of persuasive and anthropomorphic CA 

design and performance (measured as the number of completed tasks). By means of a 

three-condition online experiment with two chatbots and 120 participants, we find 

empirical evidence for the positive influence an anthropomorphic CA has on an 

individual’s perceived dialog support, mediated by the perceived anthropomorphism. 

However, a CA that displays the same anthropomorphic features and additionally 

provides persuasive messages, intended to provide further dialog support, is negatively 

perceived. This observation supports the proposition of Seeger et al. [15] that merely 

adding social cues and anthropomorphic characteristics to a CA is not always 

beneficial. In this context, our results indicate that a chatbot that provides dialog support 

(in our case praise, suggestions, and rewards) for simple tasks appears to be 

disingenuous. Therefore, our results indicate a potential for future research regarding 

the interaction of task and persuasive CA design. Our study makes three main 

contributions: First, we empirically demonstrate how the application of 



anthropomorphic characteristics and persuasive messages can influence performance. 

Thereby, we add to the body of knowledge regarding the perception and influence 

anthropomorphic IS has on users. Second, we present CAs as a new type of persuasive 

IS that triggers social responses by users and offers new opportunities for interface and 

task design. Third, we bridge the gap between knowledge on persuasions and 

anthropomorphism of IS and the design of CA for dialog support.  
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