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USE OF DATA ENVELOPMENT ANALYSIS FOR CERTAIN
CASE BASED EXPERT SYSTEM APPLICATIONS

M. D. Troutt
Arun Rai

Aimao Zhang
College of Business and Administration

Southern Illinois University

ABSTRACT

Data Envelopment Analysis is a technique for comparing efficiencies of productive units based on their
respective input and output data. The method is known as an efficient frontier technique and was
developed originally by Charnes, Cooper, and Rhodes. This paper shows how the technique may be
useful in an entirely different context - namely that of case or example based expert systems. In this
latter area, it is desired to make decisions, such as acceptance or rejection of credit risks, based on
examples which have previously been decided by an expert. This paper shows how Data Envelopment
Analysis (DEA) may be used to develop an acceptance boundary for use in case based expert systems.
Acceptability of cases is identified with cases which lie on or above the efficient frontier in the DEA
sense. The method requires convexity of the acceptable set to hold as its major condition. The method
also assumes that tile accepted cases are accurately classified by the expert with respect to Type II errors.

1. INTRODUCTION doubts about his or her acceptability. Such variables might
be called conditionally midmodal, suggesting optimal

Data Envelopment Analysis (DEA) was introduced by value(s) more central than extreme. While our method
Charnes, Cooper, and Rhodes (1978) as a method for considers only continuous variables which are conditionally
comparing efficiencies of Decision Making Units (DMUs) monotone, we suggest a promising approach for handling
based on their input and output data. In this paper, we midmodal variables in a later section. In case categorical

describe how DEA cali be used in the apparently unrelated variables are also present, our procedure can be carried out,
setting of case or example-based learning. The application in principle, for each category. Also it is assumed that all

we discuss is that of acceptalice or rejection of cases, such continuous conditionally monotonic variables are recoded, if
, as credit risks, based on a vector of variable values for each necessary, so that acceptability of a case increases with the

case. In this setting, DEA can be used to first find a value of the variable.

piecewise linear acceptance boundary and second to pro-
vide an acceptance/rejection rule for automatically classi- The second major assumption we make is that of the
fying future cases. The contribution of this paper is there- convexity of the set of acceptable cases. Specifically,
fore a demonstration of how to use DEA for case-based suppose x 1 and x2 are the vectors of two acceptable cases.

Then tlte convexity assumption requires that all cases of thelearning systems. form Xx1 + (1-X) x2, 1 2 0,1-1 2 0 must also be accept-
able. Interestingly, this assumption often appears reason-

We limit our discussion to situations in which atl conti- able but is typically violated by rule induction systems
nuous variables have the property called conditional mono- based on simple binary rules. For example, consider a
tonicity by Cronan, Glorfeld and Perry (1991). An example simple set of rules for two continuous variables xt and x2
in the credit risk situation would be gross family income. given by:
Higher values of this variable could only improve the credit
risk, indicating a inonotone increasing relationship to If x, 25 then accept.
acceptability of the case. A counter-example might be age Else if x 1 2 3 and
(without credit insurance). Other things being equal, a if x2 2 4.2 then accept.
credit applicant who is very old or very young may cause Else reject
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The following two cases, (5,2) and (3,5), are therefore LDA assumes a convex acceptance set, since all cases
both acceptable by these rules. However, the case midway within a given halfspace define the acceptable set of cases.
between them, namely (4,3.5) would clearly be rejected. DEA allows a piecewise linear acceptance boundary and
Hence we are able to make the important conclusion that therefore includes LDA as a special case. It is thus reason-
when convexity of the acceptable set holds, simple binary able to expect the performance of DEA to be superior to
rule based systems will not be appropriate for expert LDA.
systems use. Moreover, use of rule based systems of this
type would be expected to create numerous misclassifica- Little attention has so far been given to what may be called
tion opportunities. the presenting population from which all the cases are

instances: Here we propose a method which does not
Rule based expert systems can be built in two ways at depend on knowledge of this population. In a later section
present. First, a knowledge engineer could elicit the we discuss how such information may be used, if available.
knowledge from the expert. A variety of knowledge However it is necessary to assuine that the sample of cases
elicitation techniques have been reported in the literature to be used is at least representative of this iiiput population.
(Byrd, Cossick, and Zmud 1992). No mention has been While this concept is clear from the layman's perspective it
made in the literature of techniques that would enable is a difficult one to operationalize. For example, is it
adhering to the convexity assumption or on the implications sufficient that the sample have a centroid and variance-
of overlooking the same during the knowledge elicitation covariance matrix close to those of the population? How
exercise. close is sufficient? Due to the complexity of these ques-

tions, we leave it to the judgement of the analyst and expert
The second way is known as rule induction. Given the to pass on the acceptability of this assumption. A rule of
high costs of traditional knowledge engineering methods, thumb for regression analysis is to require a sample size of
increasingly rule induction techniques such as Quinlan' s at least ten times the number of independent variables. The
ID3 and RPA (see Cronan, Glorfeld and Perry 1991) are DEA method below fits a piecewise linear function to the
being advocated. None of these techniques in fact have the data and is therefore somewhat similar to regression. From
option of imposing the convexity constraint during rule these connections we therefore suggest to use a sample with
generation. at least that number of cases per category.

Convexity of the acceptable set of cases has therefore not Rules induced with differing ratios of the accepted and
been raised previously as an issue in the expert systems and rejected cases can lead to very different rule systems -
rule induction literature and deserves extended study: In both individual rules and the ordering within them. Among
the meantime, it appears necessary to interact with an other considerations, there needs to be a close match
expert, if possible, to determine the suitability of this between the density of the training data and the density of
assumption in a particular application domain. the test data in terms of ratio of accepted to rejected cases.

We experienced this practically when dealing with data
The main problem to be addressed in this paper can now be from a large consumer corporation.

stated precisely as follows for each category determined by
the categorical variables: Given a data set consisting of For example, consider a system developed using one
actions (accept or reject) and measurement vectors x, of hundred accepted cases and twenty-five rejected cases.
conditionally monotone variables, and the assumption of Consider two test sets: Set A with twenty-five accepted
convexity of the acceptable set, then determine an accep- cases and one hundred rejected cases and Set B with one
tance-rejection method for subsequent cases. hundred accepted cases and twenty-five rejected cases.

Clearly, the rule structure is designed for a set B type
The present problem is apparently distinct from the statis- situation and not a set A type situation. Present research
tical treatment of the discrimination problem. In that on induction techniques pays little attention to this issue.
setting (see, for example, Morrison 1976), it is assumed However, the principle is similar to the prior probability
that two or more distinct populations are involved. Here concept in discriminant analysis.
the cases all come from one population and the accept-
ability of cases is at issue. Presumably an expert forms The next issue to be raised is what may be termed selec-
some subjective impression of the expected profitability (or tivity of the expert and refers to the fraction of cases
probability of default) of a case and then accepts those for accepted by the expert from among those considered. In
which this value is sufficiently large (or small). Linear some settings, orgaiiizational policy may require ali expert
Discriminant Analysis (LDA) has been applied frequently to accept cases at a greater or lesser rate (e.g., temporary
in the present problem area. It is interesting to note that shortage of funds, special new customer promotions). If
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the expert is not restricted, then it may be presumed that he
E up Ydor she is also expected to decide on the appropriate fraction

of cases to accept. This has practical significance for any s.t. =   v x, 6 1, for auj
(2.2)

resulting expert system. It may later be desirable to adjust i
the selectivity to a given level without seeking a new expert
with a specified new selectivity rate. The method proposed

here will also address the selectivity adjustment feature.
U, ,5 2 0 3 (2.3)

Note that a different problem results for each DMU. Thus
The last assumption deals with what might be called the the optimal weights depend on jo as well. However, ap-
Error Type Emphasis of the expert. Let v(x) be a measure parently by tradition in the DEA literature, the notation
of value (or expected value)2 to the organization for a case

does not reflect this dependence (as in ui'j). Also it may bewilh attribute vector x. If v° is the lowest value for which noted that some normalization is needed to yield a unique
a case should be accepted, then the expert may be con- solution. Namely, if (u;, v) is an optimal solution, then so
sidered as estimating both v(x) and v°. That is, the expert is (cu;, c©, for c>O b y cancellation in all of the ratios.
accepts cases for which v(x) 2 v°. In particular, it is When the problem is solved using the Charnes and Cooper
assumed that all accepted cases in fact do have the property (1962) transformation, that method provides such a normal-
that v(x) 2 v°. This cal) be seen as equivalent to assuming ization automatically, as well as reduction to a linear
that the expert makes no Type II error  in which a case is programming problem.
accepted which should have been rejected. In turn, it must
be assumed that little control over Type I errors has been To see the geometric behavior of the model in a related
exerted by the expert. Tlie rationale for this assumption is special case, suppose there is only one output which is
that, in a credit risk situation, the Type II cost is likely to unity for all DMUs. In that case, clearly u* cannot be zero
be substantially greater than the Type I cost which is for any DMU and the model (2.1 - 2.3) is easily reduced to
merely an opportunity cost for rejecting a profitable case. min Ev, xg (2.4)

A s,iminary of Ihe assumptions is as follows:

s.t. Ev,xu 2 1 for allj
(2.5)

1. Conditional inonotonicity of all variables.
2. Convexity of the acceptable set.
3. Representivity of the sainple cases.

420 (2.6)
4. Selectivity is unrestricted.
5. The cases contain no Type II errors.

Thus, consider Figure 1.. If j.=1 and v' is used, then clearly
all points lie on or above (v', x) =1 and only point 1 lies
exactly on the line. Hence the minimum optimal objective

2. THE BASIC RATIO DEA MODEL value of unity (1) is achieved. Likewise this observation
holds for point 3. However, f'or any such supporting

It is useful to first review the basic ratio DEA model in its tangent at point 1 or 3, point 2 will lie strictly above it,
original context. Then the connection to the present prob- unable to achieve the minimum value of unity. More
lem may be developed. In the original context (Charnes, generally, it is easily seen that the model (2.4 - 2.6) identi-
Cooper, and Rhodes 1978), output data vectors y,j and input fies the extreme points of the convex hull of the x data
vectors x,j are given for j=l to N firms or units generically which are nearest to the origin in the sense of values of
referred to as Decision Making Units (DMUs). This model (v*, X>.
finds output multipliers u, and input multipliers vi according
to the following set of jo=l to N linear fractional program-
ming problems. 3. ACCEPTABILITY AND DEA EFFICIENCY

I u, Yd.
max h . r 4 - 1,N (2.1) Consider the following association between the efficiency

acceptable cases be assigned an output value of unity. Let
concept in DEA and the acceptability of cases. Let all

x  bean acceptable case. Then by the conditional mono-
tonicity assumption, we have that case x is also acceptable
if
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The proposed use of this efficiency/acceptability frontier is
xi E xi, for ani . (3.1) as follows. Given the set of training cases, compute the

efficiency frontier for the accepted cases. That is, solve the
DEA efficiency problems which identify the efficient

Now consider any feasible DEA weights u, and vi. We accepted cases. Under the assumption that all these cases
have are truly acceptable to the organization, this frontier will be

a conservative one. Nalnely, there may exist other accept-
ul able cases not on or above the frontier which were either

Ev, xi    vix, (3.2) omitted by the expert in fear of Type II error, or which
i were never presented for review. Let E* be the subset of

DEA efficient cases so identified. Then given a new case
I-, it is only necessary to determine whether x"* is on or

since ui, vi 2 0 and (3.1) must hold. It follows that point above the frontier determined by the cases in E*. We now
x is either of equal DEA efficiency to xA or point x is claim that the new case can be classified by the simple
technically inefficient. Hence the set of acceptable points DEA efficiency program
consists of all points which are DEA efficient or technically
inefficient, that is, all points on or above the efficiency mA, __-1 (3.3)
frontier. Figure 2 shows the DEA efficiency frontier for a Evt Xu
two variable set of hypothetical classified cases.
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s.t. 21- 6 i forall x, e E*U{x-1 (3.4) 4
U1

< 1 then accept the case (3.6)Evix# E VIC

Ul'V,20 , (3.5)
Else if Jr is efficient and does not alter E'

then accept the case (3.7)
along with the requirement that if x - is DEA efficient then Else reject the case
it lies within E*. This last condition is required in order to
assure that a new point is a convex combination of existing
efficient points. Without this restriction, a new point could Condition (3.6) would indicate that the case is not DEA
become a new addition to E*. This would in effect change efficient and therefore lies above the frontier determined by
the contour associated with E*. The decision rule can the E*. Condition (3.7) determines whether the point lies
therefore be stated as follows: Let u;, vi be optimal on the frontier itself. It may be noted that condition (3.7)
weights in problem (3.3) - (3.5). can be tested by determining the feasibility (Phase I prob-
Then lem) of the following linear program:
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following sense: Namely, assuming that the v(x) function
max L(X) (3.8) is continuous, there are likely to be acceptable case occur-

rences which lie below the estimated frontier, which will
later be rejected. On the other hand, if any of the E* cases

S.t. E kxil = Xr , should not have been accepted, then some future cases will
j (19) be incorrectly accepted. Under our assumption that ac-

cepted cases are accurately classified, the resulting system
for all i, j, x.. € E* will be expected to reject a few cases which might truly beU

acceptable but not conversely. We regard this as conserva-
tive, assuming that this type of error is less serious than
accepting undesirable cases.

9  11 1 (110)
j Given the above critical nature of the E* cases, additional

attention to them is warranted. For exainple, when possi-
ble, it would be desirable to ask the expert to evaluate a

J 2 0, (3.11) random sample of cases along the frontier. A possible
alternative is available when the selectivity rate can be

where L(k) is an arbitrary linear function of the kj. All the reduced. Shifting the frontier upward by transformations of
above rules may be simplified to the program given in the the form E*(d) = {x + d : x e E* } where d is a vector
following Tbeorem whose proof is provided in the appen- would evidently reduce the fraction of cases accepted while
dix. still using the same estimated frontier shape. At the same

time, this would clearly increase the v(x) score of all the
Theorem 1: A new case x°ew is acceptable if and only if accepted points.
the following linear program is feasible.

The foregoing discussion also suggests an approach to
max L(X) (3.12) selectivity adjustment of the system at later times of oper-

, ation. For example, consider E*(d) for vectors of the form
d = ce where e is the vector of units. Using the training

s.t. I kjX,j kl xi *new, cases, or an updated version, as a sample distribution for

j (3.13) the presenting population, values of c could be experimen-
tally adjusted upward until a desired fraction of cases are

for all i, j, xij e E. accepted.

These results also point out the need for caution in inter-
preting misclassification rates in comparative studies of

 Xj = 1 (3.14) approaches to such systems. A typical procedure is to train
j the system (e.g. induce rules as in Chung and Silver [1992],

Cronan, Glorfeld and Perry [1991 ]. and Liang [1992]) and
then compute misclassification rates on a hold out sample

A, 2 0 for all j , (3.15) of the cases. When the DEA approach provides an accu-
rate acceptance boundary, rules which are obtained from E*

To summarize, the training or learning phase of our method would be expected to give nearly perfect classificatiot,rates
uses DEA to find the efficient set of points, E*. Then the on a hold-out sample which lies well above the frontier.
operational phase tests a given new case, xx9*, using the Namely, cases far above the frontier would not be expected
program (3,12) - (3.15). If the program is feasible, the case to be affected by the nonconvexity of the rules near the
is accepted and otherwise it is rejected. acceptable frontier:

Iii some systems, as noted earlier, it may be appropriate to
4. DISCUSSION assume that the expert has tended to achieve low Type I

errors. In this case, it may be assumed that the rejected
The most critical assumption beyond convexity for use of cases are more accurate. A possible modification can be
the proposed method is that of the Type II accuracy of all suggested based on Figure 2 and the E*(d) translations
accepted cases. When this assumption is valid (particularly above. Namely, let d be chosen such that the frontier is
for the E* cases), the system will be conservative in the moved up just sufficiently to exclude all rejected cases. In
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7. ENDNOTES non-Archimedean parameter. To see the value of this
replacement suppose the data consists of a single output of

1. This is similar to what White (1988) has called the unity for all DMUs and two inputs x1 and x2· Consider
input space environment in the neural network litera- DMUs with input vectors (2,3) and (3,3). If the unre-
ture. (See also Hornik, Stinchcombe and White 1989.) stricted u5 = 0 for this DMU, then these points would be

declared of equal efficiency, despite the lower xt input of
2. Note that ordinarily v(x) could be normalized to have the first DMU. In the applications considered here, equal

efficiency (acceptability) of these points is desirable so thatrange 0 5 v(x) 51. Such a normalized v(x) could then E > 0 is not required.
be regarded as a membership function for the multiva-
riate fuzzy set of acceptable cases. In the terminology 4. Neural Network models have also been proposed for
of fuzzy sets, our method seeks a contour of minimum problems of the class being considered here. See for
membership function vatue for acceptable cases. example Tam (1991) and Zahedi (1991). It is possible

that training such a model on the E* set would be
3. It may sometimes be desirable to replace 0 by a small more time efficient, and perhaps more accurate, than

positive bound such as € = 10-6. This is known as the on the whole data for similar reasons.

APPENDIX

Proof of Theorem 1: Let the acceptance criterion of feasibility of problem (3.12-3.15) be denoted as problein Pl. To
prove the "if' part of the theorem, suppose x- is given and that k* is a feasible solution. Then IAj*xij 5 xj"ew for all j afid
Xij€ E*. Clearly x  therefore lies above the E* frontier. For the "only if' part suppose first that (3.6) holds. Then it
follows from (3.3-3.5) that x  is not efficient and lies above the E* frontier. It follows that (3.13) must hold for k so that
Pl is feasible. Finally, if (3.7) holds, then x* must either coincide with a point ei of E* (in which case At*=1). or x* is a
convex combination of a subset of E*. In either of these cases, the associated k provides feasibility for Pl. This concludes
the proof.
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