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Event Detection for Supporting Environmental Scanning: 
An Information Extraction-based Approach 

 
Chih-Ping Wei and Yen-Hsien Lee 

Department of Information Management 
National Sun Yat-Sen University 

Kaohsiung, Taiwan, R.O.C. 
 

Abstract 
 
Environmental scanning, the acquisition and use of the information about events, trends, and 
relationships in an organization’s external environment, permits an organization to adapt to 
its environment and to develop effective responses to secure or improve the organization’s 
position in the future. Event detection technique that identifies the onset of new events from 
streams of news stories would facilitate the process of organization’s environmental scanning. 
However, traditional feature-based event detection techniques cannot capture the genuine 
properties of an event contained in a news story and cannot support event categorization and 
news stories filtering. In this study, we developed an information extraction-based event 
detection (NEED) technique that combines information extraction and text categorization 
techniques to address the problems inherent to traditional feature-based event detection 
techniques. Using a traditional feature-based event detection technique (INCR) as 
benchmarks, the empirical evaluation results showed that the proposed NEED technique 
improved the effectiveness of event detection measured by miss and false alarm rates. 
 
Keywords: event detection, information extraction, text categorization, environmental 
scanning 
 
 
1. Introduction 
 
As an organization’s environment becomes more complex and dynamic, uncertainty faced by 
the organization increases. Environmental scanning is the first link in the chain of perceptions 
and actions that permit an organization to adapt to its environment and subsequently to 
develop effective responses to secure or improve their position in the future (Choo, 1999). As 
defined by Choo (1999), environmental scanning refers to “the acquisition and use of 
information about events, trends and relationships in an organization’s external environment, 
the knowledge of which would assist management in planning the organization’s future 
course of action.” Empirical research results suggest that environmental scanning is linked 
with improved organizational performance (Ahituv et al., 1998). 
 
However, the advance of information technology and the proliferation of Internet have made 
the amount of scanning information exploded. The increases in scope and complexity of 
business environments also make the interval between scanning efforts needed shorten. As a 
result, environmental scanning becomes more difficult to handle and has been a burden to 
managers. Thus, an information system to facilitate organizational scanning of environments 
is essential. Specifically, the system needs to support detecting the onset of new events from 
news documents and tracking subsequent news stories that discuss an event of interest. 
 
Event detection is to identify the onset of new events from streams of news stories (Allan et 
al., 1998; Yang et al., 1999). Traditional event detection techniques usually adopted the 
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general feature co-occurrence approach. It identifies whether a news story contains an unseen 
event by comparing the similarity of features between the news story and past news stories. 
Because news stories discussing the same event tend to be temporally proximate, a combined 
measure of lexical similarity and temporal proximity as a criterion for event detection was 
often employed (Yang et al., 1999). Moreover, since a time gap between bursts of topically 
similar stories is often an indication of different events, the incorporation of a time window 
for event scoping was commonly adopted (Yang et al., 1999). 
 
Nevertheless, traditional feature-based event detection techniques incur several problems. 
First, there exist vocabulary discrepancies between reporters even when they describe the 
same event. For example, some may use “merger” or “purchase” to describe a business 
merger event, while others may use “acquisition” for the same event. Moreover, two news 
stories discussing the same event may be oriented from different angles, resulting in 
differences in features. Secondly, two news stories for different events may contain very 
similar feature sets since the events belong to the same event topic. For example, in the event 
topic of computer virus, the features “virus,” “computer,” “worm,” and “inflection” may 
appear in every virus news story. In this case, these news stories will be similar, even though 
they discuss two different computer viruses. Finally, it would be essential to not only 
detecting whether a news story contains an unseen event, but also classifying the news story 
into an appropriate event topic. With the event categorization, filtering of news stories that 
are not of interest to a specific user can easily be supported. However, traditional event 
detection techniques are not capable of supporting event categorization. 
 
To overcome the problems inherent to traditional event detection techniques, understanding 
of news stories is necessary. It can be achieved by classifying a news story into an 
appropriate event topic and subsequently extracting information on the event properties 
associated to the target event topic. Two news stories discuss different events if they are 
assigned to different topics or some of the event property values are different, regardless 
whether the features in the two news stories are similar. On the other hand, two news stories 
are assumed to describe the same event if they belong to the same event topic and their event 
property values are the same or similar. Thus, the first and second problems of traditional 
feature-based event detection techniques can be solved by performing event detection based 
on event property values embedded in news stories rather than features appearing in news 
stories. Since the event topics can serve as the categories for classifying or filtering new 
stories, the third problem inherent to traditional event detection techniques can be overcome.  
 
Motivating by the need for improving the event detection accuracy and supporting event 
categorization, the goal of this research is to develop an event detection technique based on 
the information extraction approach, called iNformation Extraction-based Event Detection 
(NEED) technique. The proposed technique will empirically be evaluated, using a traditional 
event detection technique as benchmarks. The rest of the paper is organized as follows. 
Section 2 reviews literatures relevant to this research. The development of the iNformation 
Extraction-based Event Detection (NEED) technique will be depicted in Section 3. An 
empirical evaluation using news stories from a news website will be conducted and 
summarized in Section 4. Finally, the contributions of this study as well as future research 
directions will be summarized in Section 5. 
 
2. Literature Review 
 
2.1 Event Detection 
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The objective of event detection is to identify stories in several continuous news streams that 
pertain to new or previously unidentified events (Yang et al., 1999). Event detection is 
subdivided into two forms: retrospective detection and online detection. The former entails 
the discovery of previously unidentified events in a chronologically ordered accumulation of 
documents (stories), and the latter strives to identify the onset of new events from live news 
feeds in real-time. Both forms of detection intentionally lack advance knowledge of novel 
events, but do have access to unlabelled historical news stories for use as contrast sets.  
 
Most of the proposed event detection algorithms, retrospective or online, were developed 
based on the document clustering approach. Yang et al. (1999) implemented two clustering 
methods for event detection: GAC and INCR. GAC, operating in a strict retrospective 
detection setting, performs agglomerative clustering, producing hierarchically organized 
document clusters. GAC employed the conventional vector space model to represent 
documents and clusters. Each document is represented using a vector of weighted terms, 
based on the TF×IDF (within-document frequency × inverse document frequency) scheme. 
 
For cluster representation, the normalized vector of documents in a cluster is summed and the 
k most significant terms called the prototype or centroid of the cluster are selected to 
represent the cluster. GAC is a divide-and-conquer version of a group-average clustering 
algorithm. Group-average clustering maximizes the average similarity between document 
pairs in the resulting clusters by merging clusters in a greedy, bottom-up fashion. To improve 
the computation efficiency and to preserve the characteristics that events tend to appear in 
news bursts, GAC adopted a divide-and-conquer strategy that grows clusters iteratively in a 
bottom-up fashion. In each iteration, the current pool of clusters is divided according to their 
order in time into evenly sized buckets. Subsequently, group-average clustering is applied to 
each bucket locally, merging smaller clusters into larger ones. Periodically, the stories within 
each of the top-level clusters are reclustered. Reclustering is useful when events straddle the 
initial temporal-bucket boundaries or when the bucketing causes undesirable groupings of 
stories about different events. 
 
On the other hand, INCR, designed for both retrospective and online detection, is a single-
pass incremental clustering algorithm that produces nonhierarchical clusters incrementally 
(Yang et al., 1999). For retrospective detection, the TF×IDF scheme was adopted to represent 
documents or clusters. However, to deal with the problem of continuously incoming 
documents that might affect term weighting and vector normalization during online detection, 
the incremental IDF was employed by INCR. Moreover, INCR incorporated a time penalty 
when calculating the similarity between a document x and any cluster c in the past. The time 
penalty can be a uniformly weighted time window (i.e., a time window of m documents 
before x is imposed) or a linear decaying-weight function (shown as below). 





 ×−=

otherwise0

 window timein themember any  has  if) ,()1( ) ,( ccxsimilarity
m
i

cxsimilarity  

where i is the number of documents between x and the most recent member document 
in c, and m is the time window of documents before x. 

 
For retrospective detection, INCR sequentially processes news documents. A document is 
absorbed by the most similar cluster in the past if the similarity between the document and 
cluster is larger than a pre-selected clustering threshold (tc); otherwise, the document 
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becomes the seed of a new cluster. For online detection, the novelty threshold (tn) was 
introduced. If the maximal similarity between the current document and any cluster in the 
past is no less than tn, the document is flagged as containing an old event.  
 
2.2 Text Categorization 
 
Text categorization refers to the assignment of textual documents, on the basis of their 
contents, to one or more pre-defined categories (Apté et al., 1994; Cohen and Singer, 1999; 
Dumais et al., 1998; Yang and Chute, 1994). The challenging research issue of text 
categorization is the development of statistical or inductive learning methods for 
automatically discovering text categorization patterns, based on a training set of manually 
categorized documents. In general, automatic learning text categorization patterns 
encompasses three main phases (Apté et al., 1994): feature extraction and selection, 
representation, and induction. 
 
The feature extraction and selection phase is undertaken to determine a set or sets of features 
(a universal dictionary or local dictionaries) that will be used for representing individual 
documents. The universal dictionary is created for all categories, while each local dictionary 
is created for a particular category. The text portion of the training documents is parsed to 
produce a list of nouns or noun phrases (called features) none of which either belongs to a 
pre-defined list of stop words or is a number or part of a proper name. After the feature 
extraction, the feature selection is initiated to reduce the number of unnecessary features. 
Several feature selection methods have been proposed in the literature (Dumais et al., 1998; 
Lewis and Ringuette, 1994; Ng et al., 1997; Schutze et al., 1995), including TF, TF×IDF, 
correlation coefficient, mutual information, and χ2 metric. The top k features with the highest 
feature selection metric score are selected as features for representing documents. 
 
In the representation phase, each individual document is represented in terms of features in 
the dictionary (universal or local) generated in the previous phase. A document is labeled to 
indicate its category membership and assigned a value for each feature in the dictionary, 
where the values can be either boolean (e.g., indicating whether or not the feature appears in 
the document), or numerical (e.g., frequency of occurrence in the document being processed). 
Different document representation methods have been proposed (Yang and Chute, 1994), 
including binary, TF, IDF and TF×IDF. 
 
The induction phase is designed to automatically discover text categorization patterns that 
distinguish categories from one another, based on a training set of manually categorized 
documents. The learning strategies for automatically learning text categorization patterns can 
essentially be subdivided into the following types: decision tree induction (Quinlan, 1993); 
decision rule induction (Apté et al., 1994; Cohen and Singer, 1999); k-nearest neighbor 
classification (Larkey and Croft, 1996, Masand et al., 1992; Yang, 1994); neural network (Ng 
et al., 1997); Naïve Bayes probabilistic classification (Baker and McCallum, 1998; Larkey 
and Croft, 1996; Lewis and Ringuette, 1994); and regression approach (Yang and Chute, 
1994). For interested readers, a more detailed summary and empirical comparisons can be 
found in (Yang and Liu, 1999). 
 
2.3 Information Extraction 
 
Information extraction is concerned with extracting relevant data from semi-structured or 
unstructured documents and transforming them into structured representations (Riloff and 
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Lehnert, 1994). Information extraction systems do not attempt in-depth understanding of text 
in documents. Rather, they analyze those portions of documents that contain information 
relevant to a pre-specified template that defines types of information to be extracted. 
Examples of template representation include case frames consisting of a set of slots (Riloff 
and Lehnert, 1994) and ontologies based on a semantic data model (Embley et al., 1998). A 
key element of information extraction systems is its set of extraction rules that is used to 
extract from each document the information relevant to a particular extraction task (Muslea, 
1999). Extraction rules are typically based on a combination of syntactic (i.e., syntactic 
relations between words) and semantic (i.e., semantic classes of words) constraints that help 
identify the relevant information within a document.  
 
The extraction rules can be manually coded or generated from training examples by using 
inductive learning techniques. Several information extraction learning system have been 
proposed in the literature. For example, WHISK adopted the top-down induction approach 
for learning extraction rules. WHISK begins with an empty rule and then extends the rule by 
adding terms. Terms are added to a rule one at a time until the errors are reduced to zero or a 
pre-pruning criterion has been satisfied. The process is repeated until a set of rules has been 
generated that cover all possible extractions from the training, at which time post-pruning is 
conducted to remove insignificant rules to prevent from overfitting. For interested readers, a 
survey of different information extraction learning systems can be found in (Muslea, 1999; 
Soderland, 1999; Eikvil, 1999). 
 
Given a template and extraction rules relevant to a particular extraction task, several steps are 
often required before extracting relevant information from a target document, including 
syntactic analysis, semantic tagging, and discourse analysis (Muslea, 1999; Soderland, 1999; 
Eikvil, 1999; Cowie and Lehnert, 1996). Syntactic analysis allows preliminary recognition of 
phrasal units in sentences and parses the target document into a syntactic parse structure by 
using a syntactic grammar. Semantic tagging applies semantic interpretation rules or semantic 
dictionaries for recognizing the semantic classes of phrasal units, including company names, 
places, people’s names, currencies, etc. Discourse analysis makes inference across sentence 
boundaries, involving co-reference resolution that refers to the problem of knowing when a 
new noun phrase refers back to a previously encountered referent. Subsequently, matching 
extraction rules on the pre-processed document is conducted for desired information 
extraction. 
 
3. Information Extraction-based Event Detection (NEED) Technique 
 
To overcome the disadvantages of traditional feature-based event detection techniques, a new 
event detection technique, called iNformation Extraction-based Event Detection (NEED) 
technique, was proposed. As mentioned, the proposed approach employs the information 
extraction method and the text categorization technique as a basis for event detection. The 
use of the information extraction turns event detection from feature-based into event 
property-based. This shift has the potential to improving the event detection accuracy and 
facilitating subsequent event tracking. On the other hand, the use of text categorization is to 
facilitate information extraction at the event topic level and support event categorization and 
filtering. Accordingly, the NEED technique comprises two main processes: learning and 
detection. From a set of news stories with known event topics (called training news stories), 
the learning process is to induce event categorization patterns for each event topic. When a 
new news story arrives, the detection process is applied to identify to which event topic the 
news story should belong and whether the news story discusses a new event. 



 

891 

 
3.1 Learning Process 
 
The learning process is to induce event categorization patterns from a set of manually 
categorized news documents. Same as the text categorization mentioned previously, the 
learning process (as shown in Figure 1) consists of three steps including feature extraction 
and selection, document representation, and induction. 
 

Feature
Extraction and

Selection
Feature Sets for 

Event Topics

Event
Categorization 

Patterns

News Story
with Known
Event Topics

Induction

Document 
Representation

 
Figure 1: Learning Process of NEED Technique 

 
Feature Extraction and Selection: A set of nouns and noun phrases from training news 
documents is first extracted. In this study, a rule-based part of speech tagger proposed by 
Brill (1994) was adopted for syntactically tagging each word in the news documents. For 
extracting noun phrases from syntactically tagged documents, a noun phrase parser proposed 
by Voutilainen (1993) was implemented. Subsequently, representative features for each event 
topic will be selected based on some feature selection metric. In this study, local dictionaries 
were constructed based on the correlation coefficient or TF×IDF feature selection method. 
 
Document Representation: Each news story is then represented using the features set for the 
event topic to which the news story belongs. The binary and TF schemes were adopted as 
alternative document representation methods in this study. 
 
Induction: This step is to induce for each event topic the event categorization patterns that 
will be used to categorize future news stories into appropriate event topics by the detection 
process. As mentioned in Section 2, several text categorization approaches have been 
proposed in the literature. The decision tree induction and decision rule induction approaches 
were adopted as the induction techniques in this study. Specifically, we incorporated C4.5 
(Quinlan, 1993) and CN2 (Clark and Boswell, 1991) as alternative induction algorithms in 
the learning process of the NEED technique.  
 
3.2 Detection Process 
 
The detection process is to identify to which event topic a newly arrived news story will 
belong and to detect whether the news story discusses a new event. To achieve this, the 
detection process consists of three steps: event topic reasoning, event extraction, and 
similarity comparison, as shown in Figure 2. 
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Event Topic
Reasoning

Event
Extraction

Feature Sets for 
Event Topics

Feature Sets for 
Event Topics

Event
Categorization 

Patterns

Event
Categorization 

Patterns

Similarity
Comparison

New
News Story

Event
Ontology

Event
Ontology

Event
Instantiation

Base

Event
Instantiation

Base

Event Topic of
the News Story

New or Existing
Event

event topic of
the news story

ontology of
selected event

topic(s)

event instantiation(s)
of the news story

event
instantiation 

of the news story

existing event
instantiations

of selected
event topic(s)

   
Figure 2: Detection Process of NEED Technique 

 
Event Topic Reasoning: Based on the event categorization patterns induced previously in 
the learning process, the event topic reasoning step is to categorize the new news story into 
an appropriate event topic. Each new news story should first be represented according to the 
feature set for each event topic. In this study, the binary or the within document frequency 
(TF) method was employed. Accordingly, the reasoning with the event categorization 
patterns is performed. We assumed that a news story could belong to at most one event topic. 
Since the decision on whether the news story is classified into each event topic is made 
independently, two special cases arise; that is, the news story may be classified into more 
than one event topic or cannot be classified into any event topic. In the first special case, the 
conflict resolution is needed. Conflicts are resolved in this study by comparing the net 
support ratio. For each event topic with positive decision, the net support ratio is the number 
of training examples that satisfies the condition(s) of the fired rule(s) minus the number of 
training examples that satisfies the condition(s) but does not satisfy the decision of the fired 
rule(s), divided by the total number of training examples. For example, suppose a news story 
ni can be classified into the event topic A, based on 20 training examples. Assume that 7 
training examples satisfy the condition(s) of the fired rule(s) but 3 of them have a decision 
contradicting to the fired rule(s) for the event topic A. Thus, the net support ratio for the event 
topic A is (7-3)/20 = 0.2. 
 
In the second case when the new news story cannot be classified into any event topic, the 
detection process could stop further processing and suggest that this news story is not 
belonging to any known event topics. Alternatively, the detection process could consider the 
event topic for this news story as undecided. In this view, this news story will be processed in 
every event topic at the subsequent steps and the decision on whether this news story contains 
an unseen event will be made across all event topics (to be explained in more detailed later). 
 
Event Extraction: After the new news story is classified into an event topic, the event 
extraction step is to create an event instantiation (called target event instantiation) by 
extracting event property values from the news story based on the template and information 
extraction rules (called the event ontology) of the event topic. The ontology-based 
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information extraction system proposed by Embley et al. (1998) was adopted in this study for 
event extraction. If the event topic for the news story is undecided in the previous step, an 
event instantiation for the news story will be created for every event topic.  
 
Similarity Comparison: The target event instantiation will then be compared with existing 
event instantiations of the same event topic. Within the event topic, the similarity is measured 
between the target event instantiation and each known event consisting of a set of existing 
event instantiations. The similarity function proposed for the NEED technique is defined as 
follows. For each slot in the template of the selected event topic, the target event instantiation 
is compared with every event instantiation belonging to the same event. The maximal 
similarity is obtained as the contribution of the slot to the overall similarity between the target 
news story and the event. 
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where  TIi is the target event instantiation of the new news story, 
ISj is a set of existing event instantiations belonging to the event j, 
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and the event is set to 0. 
 
Similar to traditional feature-based event detection techniques, a linear decaying-weight 
similarity function was employed for the NEED technique: 
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where i is the time gap measured in the number of days between TIi and the most recent 
member instantiation in ISj, and m is the time window measured in days prior to TIi. 

 
After the similarities between the target event instantiation and all of the known events in the 
selected event topic are obtained, the NEED technique labels the target news story containing 
a new event if the maximal similarity score between the target event instantiation and known 
events in the selected event topic is below a pre-specified novelty threshold (tn); otherwise, 
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the target news story is labeled as containing an old event. As mentioned, if the news story 
whose event topic is undecided in the event topic reasoning step, its event instantiation was 
created in every event topic. Thus, the NEED technique labels the target news story a new 
event if the maximal similarity score between the news story and known events in all event 
topics is below the novelty threshold; otherwise, the news story is labeled as an old event. In 
the latter case, the news story will be assigned to the event topic where the maximal 
similarity score was attained. 
 
Finally, the target event instantiation is stored in Event Instantiation Base for future event 
detection use. If the news story is specified as containing an old event, its event instantiation 
is absorbed by the event to which the new news story is associated; otherwise, it forms an 
event on its own. 
 
4. Empirical Evaluation 
 
This section reports the empirical evaluation of the proposed NEED technique, using a 
traditional feature-based event detection technique as performance benchmarks. News stories 
from November 1999 to December 1999 were collected from a news website, excite.com. 
Five event topics were identified and selected, including airplane crash, adjustment of interest 
rate, business merger, business partnership, and computer virus. 492 news stories (where 244 
news from November and 248 news from December 1999) pertaining to the five event topics 
were manually identified. The event contained in each news story was also coded manually. 
For each event topic, the event ontology, as required by the NEED technique, was engineered 
manually in this study.  
 
4.1 Evaluation Criteria 
 
The effectiveness of an event detection technique is measured by the miss and false alarm 
rates. The miss rate is defined as the percentage of that an event detection technique fails to 
detect a new event, while the false alarm rate is defined as the percentage of that an event 
detection technique fails to detect an old event. To address the inevitable tradeoffs between 
miss and false alarm rates, Detection Error Tradeoff (DET) curves were employed (Yang et 
al., 1999; Allan et al., 1998). An event detection technique with its DET curve closer to the 
origin would be more desirable. In the context of supporting environmental scanning, a low 
miss rate may improve an organization’s responsiveness to changes of its external 
environment and therefore can enhance the organization’s adaptability to its environment. On 
the other hand, an improvement in the false alarm rate reduces an organization’s load in 
filtering news stories containing known events. Because of ever-increasing complexity and 
dynamics of an organization’s environment, responsiveness and adaptability of the 
organization clearly are more desirable than efficiency of environmental scanning. In this 
light, event detection should aim at achieving the lowest attainable miss rate while 
maintaining false alarm rate at a satisfactory level. 
 
4.2 Performance Benchmarks 
 
A traditional feature-based event detection technique was used to provide the desired 
effectiveness benchmarks. Specifically, the single-pass incremental clustering (INCR) for 
event detection proposed by Yang et al. (1999), was employed. Without loss of generality, we 
modified its linear time-decaying similarity function by changing the time window from the 
number of prior news stories to the number of days, as follows: 
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where  i is the number of days between x and the most recent document in c, and  
m is the time window of days before x. 

 
4.3 Parameter Tuning Experiments for INCR 
 
The INCR technique involves three parameters: the number of features k, time window w and 
novelty threshold tn. The news stories of November 1999 were employed as the data set for 
parameter tuning. Specifically, the news stories from the first n days in the tuning set were 
used as historical news stories, while the rest of news stories in the tuning set were included 
as the testing set. Three different n were investigated in this study: 10, 15 and 20. To detect 
whether a news story in the testing set contained a new event by using the INCR technique, 
the news story was compared to all news stories (including historical ones) prior to the testing 
news story. Thus, the tuning experiment was performed three times and the overall detection 
effectiveness was estimated by averaging the performance across all iterations. 
 
We investigated the number of features k ranging from 50 to infinite (k = 50, 100, 150, 200 
and infinite), the time window w ranging from 7 to 30 (w = 7, 14 and 30 days), and the 
novelty threshold tn ranging from 0.1 to 0.2 at 0.01 increments. At any level of w investigated, 
the Detection Error Tradeoff (DET) curve, in general, was getting closer to the origin as k 
increased from 50 to infinite (INF). On the other hand, when k = INF, the DET curve of the 
INCR technique moved toward to the origin as w grew from 7 to 30 (as shown in Figure 3). 
The increase of the novelty threshold resulted in the decrease of miss rate at the cost of false 
alarm rate. When w was 30 and k was infinite, the best performance was achieved at the 
novelty threshold of 0.19 (where the minimal Euclidean distance to the origin was attained). 
Thus, we selected 30 for the time window and infinite for the number of features for the 
INCR technique. 
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Figure 3: Detection Error Tradeoff Curves of the INCR Technique (k = Infinite) 
 
4.4 Parameter Tuning Experiments for NEED 
 
The NEED technique consists of two main processes: learning and detection. The learning 
process involved four decisions, including the feature selection method (correlation 
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coefficient or TF×IDF), the number of features (ranging from 50 to 200 at 50 increments, the 
representation method (binary or TF), and the induction algorithm (C4.5 or CN2). Similar to 
the tuning experiments for INCR, the news stories of November 1999 were employed as the 
data set for tuning. Specifically, we adopted the tenfold cross-validation technique, with 
which the included news stories were randomly divided into ten mutually exclusive data sets 
of equal size. The learning-and-testing proceeded in an iterative manner. In each learning-
and-testing iteration, one data set was chosen as the testing data and the others were used for 
learning purpose. Thus, the overall learning performance was estimated by averaging the 
performance across the ten iterations. 
 
As shown in Table 1, when CN2 was used as the induction algorithm, the TF representation 
outperformed the binary one in event categorization at almost any number of features 
investigated. When the number of features (k) was increased from 50 to 200, the average 
event categorization accuracy was generally decreased in any combination of feature 
selection and representation methods. In contrast, when C4.5 was employed (as shown in 
Table 2), the binary representation achieved better categorization accuracy at almost any 
number of features examined. The increment of the number of features generally resulted in 
lower categorization accuracy. In general, C4.5 appeared to outperform CN2 in event 
categorization accuracy. Among all experiments, the combinations of (induction algorithm = 
C4.5, feature selection = TF×IDF, representation = TF, k = 50) and (induction algorithm = 
C4.5, feature selection = correlation coefficient, representation = binary, k = 50) achieved the 
highest categorization accuracy. Thus, in this study, C4.5 with the TF×IDF feature selection 
method, the TF representation method and the number of features as 50 was adopted as the 
parameter setting for further experiments. 
 

Table 1: Average Accuracy of Event Categorization (Adopting CN2 for Learning) 
Number of Features (k) Feature Selection 

Method 
Representation 

Method 50 100 150 200 
Binary 84.43% 84.02% 83.61% 81.56%Correlation 

Coefficient TF 84.02% 85.25% 85.25% 85.66%
Binary 82.38% 83.20% 82.79% 84.02%

TF×IDF TF 85.66% 86.48% 84.43% 84.43%
 

Table 2: Average Accuracy of Event categorization (Adopting C4.5 for Learning) 
Number of Features (k) Feature Selection 

Method 
Representation 

Method 50 100 150 200 
Binary 88.52% 87.30% 87.30% 87.70%Correlation 

Coefficient TF 85.25% 84.84% 84.84% 84.43%
Binary 87.70% 88.11% 86.89% 87.30%

TF×IDF TF 88.52% 88.11% 86.48% 86.48%
 
Once the parameter values for the learning process were determined, tuning experiments for 
the detection process of the NEED technique were conducted. As mentioned, the detection 
process involves two parameters: time window w and novelty threshold tn. The news stories 
of November 1999 were employed as the data set for parameter tuning purpose. Specifically, 
the news stories from the first n (where n = 10, 15 or 20) days in the tuning set were used as 
historical news stories for event detection purpose and as training news stories for inducing 
event categorization patterns, while the rest of news stories in the tuning set were included as 
the testing set. To detect whether a news story in the testing set containing a new event, the 
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news story was first assigned to an event topic based on event categorization patterns induced 
from the historical news stories. As a result, the news story was compared to all news stories 
(including historical ones) that were prior to and were in the same event topic as the target 
testing news story. Three different n values were experiments and the overall detection 
effectiveness was estimated by averaging the performance across the three trials. 
 
We investigated the time window ranging from 7 to 60 (w = 7, 14, 30, to 60). Since NEED 
takes into account only essential event property values rather than features in news stories 
during event detection, the appropriate range of the novelty threshold for NEED should be 
higher than that for INCR. Specifically, we investigated and the novelty threshold ranging 
from 0.51 to 1.0 at 0.01 increments. The DET curves of the NEED technique over different w 
and tn are shown in Figure 4. As shown, the DET curves of the NEED technique shifted 
slightly toward the origin as the time window increased. The NEED technique arrived at the 
best performance when w was 60 and the novelty threshold was 0.59. We decided on the time 
window of 60 for the NEED technique, which appeared to achieve better performance when 
considering the tradeoff between miss rate and false alarm rate. 
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Figure 4: Detection Error Tradeoff Curves of the NEED Technique 
 
4.5 Comparative Evaluation of Event Detection Techniques 
 
The traditional feature-based event detection (INCR) and information extraction-based event 
detection (NEED) techniques were compared using the parameter values determined in the 
previous subsections. Similar to previous tuning experiments, the data corpus was divided 
into two sets: historical (including news stories in November 1999) and testing (including 
news stories in December 1999). Since the NEED technique requires inducing event 
categorization patterns, the historical data set was also used for the learning purpose. To 
expand the number of trials, 70% of news stories were randomly selected from the historical 
and the testing set, respectively, and the random selection process was repeated 30 times. In 
each trial, the reduced historical set was used for inducing event categorization patterns, as 
required by the NEED technique. To detect whether a news story in the reduced testing set 
contained a new event, the news story was compared to all news stories (including those in 
the reduced historical set) prior to the testing news story (by using the INCR technique) or 
compared to all news stories that were prior to the target testing news story and were in the 
same event topic as the target testing news story (by using the NEED technique). The overall 
detection effectiveness was estimated by averaging the performance across all trials. 
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We investigated the novelty threshold tn for INCR ranging from 0.01 to 0.5 and that for 
NEED ranging from 0.51 to 1.0 at 0.01 increments. As shown in Figure 5, at almost any level 
of false alarm rate that was lower than 45%, the INCR technique achieved lower miss rates 
than the NEED technique did. However, if a low miss rate was desirable, the NEED 
technique outperformed its counterpart at almost any level of miss rate lower than 4%. In 
general, the miss rate achieved by the NEED technique was lower than 8% at any novelty 
threshold investigated. As mentioned, in the context of supporting environmental scanning, a 
low miss rate attainable by an event detection technique is more important than a low false 
alarm rate. Hence, the NEED technique was superior to the INCR technique.  
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Figure 5: Detection Error Tradeoff Curves of Different Event Detection Techniques 
 
5. Conclusion and Future Research Directions 
 
Environmental scanning is an important process of strategic management that permits an 
organization to adapt to its environment and subsequently to develop effective responses to 
secure or improve their position in the future. Event detection that detects the onset of new 
events from news documents is essential to facilitating an organization’s environmental 
scanning activity. Traditional feature-based event detection techniques detect events by 
comparing the similarity between features of news stories and incur several problems. For 
example, being a feature-based approach, it cannot capture the genuine properties of an event 
contained in a news story and cannot support event categorization and news stories filtering. 
In this study, we developed an information extraction-based event detection (NEED) 
technique that combines text categorization and information extraction techniques to address 
the problems inherent to traditional feature-based event detection techniques. Using a 
traditional feature-based event detection technique (i.e., INCR) as benchmarks, the empirical 
evaluation results showed that the proposed NEED technique improved the effectiveness of 
event detection measured by miss and false alarm rates. 
 
Some future research works related to this study should be continued. The detection 
effectiveness of the NEED technique would be based on accurate and complete extraction 
rules for each event topic. However, the manual engineering of extraction rules is often time-
consuming and error-prone. Thus, a mechanism for learning extraction rules for each event 
topic is essential to the NEED technique. Furthermore, the experimental data set used to 
evaluate the NEED technique only comprised news stories across two months and of five 
event topics. A larger data set with more event topics for empirical evaluation of the proposed 
technique is desirable. Finally, the lexical and temporal similarity function was employed in 
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the NEED technique. However, the incorporation of domain knowledge can improve the 
effectiveness of the proposed technique. For example, two event property values, “IBM” and 
“International Business Machine” will be evaluated as two completely different values by the 
existing similarity function. However, with the inclusion of domain knowledge (e.g., a 
company name may exist in an acronym form) in the similarity function, “IBM“ and 
“International Business Machine” can successfully be evaluated as an equivalent value. 
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