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A Methodology for Detecting the Change of Customer Behavior based on 
Association Rule Mining 

Hee Seok Song, Soung Hie Kim 
KAIST Graduate School of Management 

Jae Kyeong Kim 
KyungHee University 

 
Abstract  

Understanding and adapting to changes of customer behavior is an important aspect for a 
company to survive in continuously changing environment. The aim of this paper is to 
develop a methodology which detects changes of customer behavior automatically from 
customer profiles and sales data at different time snapshots. For this purpose, we first define 
three types of changes as emerging pattern, unexpected change and the added / perished rule. 
Then, we develop similarity and difference measures for rule matching to detect all types of 
change. Finally, the degree of change is evaluated to detect significantly changed rules. Our 
proposed methodology can evaluate degree of changes as well as detect all kinds of change 
automatically from different time snapshot data. A case study for evaluation and practical 
business implications for this methodology are also provided. 
 
Keywords : Data Mining, Association Rule Mining, Change Mining 

1. Introduction 

Understanding and adapting to changes of customer behavior is an important aspect of 
surviving in a continuously changing environment. Especially for businesses, knowing what 
is changing and how it has been changed is of crucial importance because it allows 
businesses to provide the right products and services to suit the changing market needs (Liu 
et al. 2000). Data mining is the process of exploration and analysis of large quantities of data 
in order to discover meaningful patterns and rules. But much of existing data mining research 
has been focused on devising techniques to build accurate models and to discover rules. 
Relatively little attention has been paid to mining changes in databases collected over time 
(Liu et al. 2000). In this paper, we develop a methodology which detects changes 
automatically from customer profiles and sales data at different periods of time. The most 
common approach to discover changes between two datasets is to generate rules from each 
dataset and directly compare the rules by rule matching. But this is not a simple process 
because of the following reasons. First, some rules cannot be easily compared due to different 
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rule structures. Second, even with matched rules, it is difficult to know what kind of change 
and how much change has occurred. To simplify these difficulties, we first define three types 
of changes as emerging pattern, unexpected change and the added / perished rule. Then we 
develop similarity and difference measures for rule matching to detect all types of change. 
Finally, the degree of change is evaluated to detect significantly changed rules. The proposed 
methodology can evaluate degree of changes as well as detect all kinds of changes 
automatically from different time snapshot data. Detected changes can be usefully applied to 
plan various niche marketing campaigns. For example, if a manager can find out that a 
certain customer’s preference has moved from a medium-size car to a large-size car, then that 
manager can establish a trade-in plan for customers who have a medium-size car and have the 
intention of buying a large-size car for replacement. Association rule mining finds interesting 
association relationships among a large set of data items (Agrawal et al. 1993). With massive 
amounts of data continuously being collected and stored, many industries are becoming 
interested in mining association rules from their databases. Association rule mining is used as 
a basic mining methodology in our research. 

2. Background 

2.1 Association Rule Mining 

A typical association rule has an implication of the form BA ⇒  where A  is an itemset 
and B  is an itemset that contains only a single atomic condition. The support of an 
association rule is the percentage of records containing itemsets A and B together. The 
confidence of a rule is the percentage of records containing itemset A  that also contain 
itemset B . Support represents the usefulness of discovered rule and the confidence 
represents certainty of the detected association rule. Figure 1 shows two association rules of 
which support is the same but the confidence of Rule 2 is larger than that of Rule 1. 

 [Figure 1] Dataset and discovered association rules 
Record ID Items Bought 

2000 A, B, C 
1000 A, C 
4000 A, D 
5000 B, E, F 

 
Discovered Association Rules 

Rule 1 : A ⇒  C (support: 50 %, confidence: 66.6 %)
Rule 2 : C ⇒  A (support: 50 %, confidence: 100 %) 

Association rule mining finds all collections of items in a database whose confidence and 
support meet or exceed pre-specified threshold value. Apriori algorithm is one of the 
prevalent techniques used to find association rules (Agrawal et al. 1993). Apriori operates in 
two phases. In the first phase, all large itemsets are generated. This phase utilizes the 
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downward closure property of support. The second phase of the algorithm generates rules 
from the set of all large itemsets. Please refer to the study of Agrawal et al. (1993) for a more 
detail. 

2.2 Data mining in a changing environment 

There are existing works that have been done on learning and mining (Bay and Pazzani 1999; 
Ganti et al. 1999; Han and Kamber 2001; Liu et al. 2000) in a changing environment. All the 
following related works focus on dynamic aspects or comparison between two different 
datasets or rules. The first research trend related to our work is to discover Emerging Patterns 
(Agrawal and Psaila 1995; Dong and Li 1999; Li et al. 2000). Their research tries to find 
Emerging Patterns (EPs) which are defined as itemsets whose supports increase significantly 
from one dataset to another. EPs can capture emerging trends in timestamped databases, or 
useful contrasts between data classes. But they do not consider the structural changes in the 
rules. For example, in a market basket, these techniques can discover significant rule changes 
which increase growth / decrease rate of consumption over time but cannot detect any 
unexpected changes such as a change from coffee⇒ tea to coffee⇒milk. The second 
research field is mining class comparisons to discriminate between different classes (Bay and 
Pazzani 1999; Ganti et al. 1999; Han and Kamber 2001). Ganti et al. (1999) presents a 
general framework for measuring changes in two models. Essentially, the difference between 
two models is quantified as the amount of work required to transform one model into the 
other. It provides deviations measure between two mining model or focused regions but 
cannot be directly applied to detect customer behavior changes because it does not provide 
which aspects are changed and what kind of changes have occurred. Bay and Pazzani (1999) 
and Han and Kamber (2001) also provide techniques for understanding the differences 
between several contrasting groups. But these techniques can only detect change about the 
same structured rule. Finally, Liu et al. (2000) presents a technique for change mining by 
overlapping two decision trees which are generated from different time snapshots. But the 
change mining technique using decision trees cannot detect complete sets of change. Since 
decision tree techniques run within a specified objective class, only changes about that 
designated consequent attribute can be detected. This approach can be used only in cases 
which have a specific research question. Also, this technique does not provide any 
information for the type of change and the degree of change. Besides of the above studies, the 
researches for rule maintenance and time series also handle dynamic situations but we omit 
the explanations because of page limitation. 

3. Problem 

In this section, we examine all possible types of change based on past research and business 
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requirements (Dong and Li 1999; Lanquillon 1999; Liu and Hsu 1996; Liu et al. 1997; 
Padmanabhan and Tuzhilin 1999; Suzuki 1997). After that, each type of change and change 
detection problem are defined. Let’s define the following notation. 

ktt DD +, : datasets at time t, t+k 
ktt RR +, : discovered association rulesets at time t, t+k 

kt
j

t
i rr +, : each rule from corresponding ruleset ktt RR +,  ,where ktt RjRi +== ,,2,1,,,2,1 LL  

)( i
t rSup : support of ir  in time t dataset 

Dong and Li (1999) introduced Emerging Patterns concept which captures significant 
changes and differences between datasets. Emerging patterns are defined as itemsets whose 
supports increase significantly from one dataset to another. We bring from study of Dong and 
Li (1999) the term emerging pattern with the following modified definition for our research. 

Definition 1] Emerging Patterns 
For rule kt

jr + , if the following two conditions are met, then we call it the rule of Emerging 
Pattern with respect to t

ir . 
(1) Conditional and consequent parts are the same between kt

j
t

i rr +,  
(2) Supports of two rules are significantly different 

Example 1] 
t

ir  :  Income = High, Age = High ⇒  Model = Large (Support = 0.1) 
kt

jr + :  Income = High, Age = High ⇒  Model = Large (Support = 0.13) 
In this case, kt

jr +  is the emerging pattern with respect to t
ir  if we specify minimum 

growth rate to be 0.2. This is because the two rules have same rule structure and their 
growth rate is 0.3. 

The other type of change is unexpectedness which is found from many studies about 
discovering interesting patterns (Liu and Hsu 1996; Liu et al. 1997; Padmanabhan and 
Tuzhilin 1999; Silberschatz and Tuzhilin 1996; Suzuki 1997). Liu and Hsu (1996) defined 
unexpected changes as rule similarity and difference aspects. They distinguished unexpected 
changes to unexpected condition changes and unexpected consequent changes based on a 
syntactic comparison between a rule and a belief. But we only adapt unexpected consequent 
changes because most unexpected condition changes usually make no sense. These 
unexpected consequent changes are the second type of change to detect which has a different 
rule structure over time. Therefore we redefine the term unexpected changes like the 
following from the study of Liu and Hsu (1996). 

Definition 2] Unexpected Changes (or Unexpected Consequent Changes) 
kt

jr +  is unexpected change with respect to t
ir  if the conditional parts of kt

j
t

i rr +,  are 
similar, but the consequent parts of the two rules are quite different. 

Example 2] 
t

ir  :  Income = High, Age = High ⇒  Model = Large 
kt

jr + :  Income = High, Age = High ⇒  Model = Medium 
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In this case, kt
jr +  is unexpected consequent change with respect to t

ir  since the 
conditional parts of kt

j
t

i rr +,  are similar, but the consequent parts of the two rules are quite 
different. 

Other types of change are added rules and perished rules (Lanquillon 1999). An added rule is 
a newly arisen rule which could not be found in the past and a perished rule is a disappeared 
rule which can be found only in the past but not the present. We define added and perished 
rule as follows. 

Definition 3] Added rules / Perished rules 
kt

jr +  is an added rule if all the conditions and consequents are quite different from any of 
t

ir  in tR  and t
ir  is a perished rule if all the conditions and consequents are quite 

different from any of kt
jr +  in ktR + . 

We used the terms “similar” and “quite different” in the above definitions. Those terms are 
used to compare two rules in syntactic aspects and to judge degree of similarity and 
difference. But the terms “similar” and “quite different” are quite subjective and different 
from each individual. Therefore we define Rule Matching Threshold (RMT) which can be 
differently decided by individual user. Figure 2 explains the concept of RMT and provides 
how the different types of change can be distinguished by RMT.  

[Figure 2] Different types of change in syntactic aspects 

 

 

 

 

Finally, we define the degree of change as the measure of how much change has occurred. 
The degree of change has to be evaluated differently by each type of change because of 
different characteristics. The main way of evaluating degree of change will be explained in 
the next section. Now, the change detection problem is defined as follows using the above 
definitions of each change type. 

Definition 4] Change detection problem 
The change detection problem consists of finding all emerging patterns, unexpected 
changes and added/perished rules between datasets which are collected from different 
periods and ranking the changed rules in each type by the degree of change. 

4. Methodology 

4.1 Overall procedure 

Completely 
Different 

Completely 
Same RMT 

Added/Perished 
Rule 

Unexpected
Change

Emerging 
Pattern 
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Now we suggest the methodology for the change detection problem. The methodology 
consists of the following three phases in Figure 3. 

[Figure 3] Overall procedure to detect change  

 

 

 

 

 

 

In phase I, two association rulesets are generated from each dataset by using Apriori 
algorithm (Agrawal et al. 1993). In phase II, the changed ruleset is generated by using the 
rule matching method which compares two rules selected from each ruleset. We adapted the 
rule matching method developed by Liu and Hsu (1996) and modified it to distinguish 
between the above three types of change. For efficient rule matching, similarity and 
difference measures are developed. Our rule matching method can detect all types of changed 
rules including emerging patterns, unexpected changes, added and perished rules. In phase III, 
various changed rules detected in phase II are ranked according to the predefined degree of 
change which is a measure to evaluate how much change has occurred.  

4.2 Discovery of association rule 

For the Apriori algorithm, we have to perform the discretization process (Hussain et al. 1999) 
to discover association rules. In this paper, all the values in the dataset are assumed to be 
discretized for the simplicity of explanation. We need two datasets collected at different times, 
minimum support levels and minimum confidence levels as inputs. In our experience, a lower 
minimum support level is preferred to discover association rules. If the minimum support 
level is set very high, we may lose the opportunity to detect the emerging patterns which have 
large growth (or decrease) rates but are rare items. 

4.3 Discovery of changed rule 

In this phase, various types of changed rules are detected using the rule matching method. 
The input of phase II is discovered rulesets at time t and t+k, and the Rule Matching 
Threshold (RMT) which is specified by the user. Phase II is composed of the following three 
steps. 

Generation of Association Rules using APRIORI Algorithm 

Input : 
ktt DD +, , Support / Confidence Threshold 

Output : 
ktt RR +,  

Phase I 

Phase II Discovery of Changed Rule using Rule Matching Method 
Input : 

ktt RR +, , RMT(Rule Matching Threshold) 

Output : Changed ruleset for each type of change 

Phase III Evaluating Degree of Change 
Input : Changed ruleset 

Output : Significantly changed ruleset 
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Step [1] Calculate the maximum similarity value for each rule in time t and t+k. 
Step [2] For each rule t

ir , calculate the difference measures between kt
j

t
i rr +, . 

Step [3] Classify the type of change for the rules using the maximum similarity value and 
       the difference measures. 

For the explanation of each step, some notations are briefly defined. 

ijδ : Difference measure. 
     Degree of difference between t

ir  and kt
jr + )10,11( ≤≤≤≤− ijij δδ  

  ijs : Similarity measure. Degree of similarity between t
ir  and kt

jr + )10( ≤≤ ijs  
  ijl : Degree of attribute match of the conditional parts    ),max(/ kt

j
t
iijij XXA +=l  

ijc : Degree of attribute match of the consequent parts  
ijA : Number of attributes common to both conditional parts of t

ir  and kt
jr +  

t
iX : Number of attributes in the conditional parts of t

ir  
kt

jX + : Number of attributes in the conditional parts of kt
jr +  

ijkx : Degree of value match of the kth matching attribute in ijA  
ijy : Degree of value match of the consequent attribute 





=
otherwise,0

attributeconsequentsameif,1
ijc   





=
otherwise,0

valuesameif,1
ijkx    





=
otherwise,0

valuesameif,1
ijy  

Now we provide similarity measure as follows, adapted from the study of Liu and Hsu (1996). 













=

≠

×××

=

∑
∈

0,0

0,

ij

ij
ij

ijij
Ak

ijkij

ij

Aif

Aif
A

ycx

s
ij

l

 

In ijs , ij
Ak

ijkij Ax
ij

/∑
∈

×l  represents a similarity of conditional part, and ijij yc × represents a 

similarity of consequent part between t
ir  and kt

jr + . If the conditional and consequent parts 

between t
ir  and kt

jr +  are the same, then the degree of similarity becomes 1. The similarity 

measure can take any value between 0 and 1. To detect added and perished rules, the 

maximum similarity value is provided as follows. 

  t
iRiiii rofValueSimilarityMaximumssss

kt
;),,,max( 21 +

⋅⋅⋅=  
    kt

jjRjjj rofValueSimilarityMaximumssss
t

+⋅⋅⋅= ;),,,max( 21  

The maximum similarity value indicates whether the rule is added or perished. If RMTsi < , 

then t
ir  is recognized as a perished rule. If RMTs j < , then the rule kt

jr +  becomes an 

added rule. 

Example 3] Assume the following rules are generated from each dataset tD and ktD + . 
tr1  : Income = High ⇒  Sales = High 
tr2  : Age = High, Preference = Price ⇒  Sales = High 

ktr +
1  : Income = High ⇒  Sales = High 

ktr +
2  : Age = High ⇒  Sales = High 
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ktr +
3  : Income = High, Preference = Price ⇒  Sales = Low 

We can compute the similarity measure between tr2 , ktr +
2  and the maximum similarity 

value of tr2  as follows. 

5.0)0,5.0,0max(,5.0
1

111
2
1

222 ===
×××

= tss  

In the same manner, we can compute the maximum similarity value of each rule. 
5.0)0,5.0,0max(1)0,0,1max( 21 ==== tt ss  

0)0,0max(5.0)5.0,0max(1)0,1max( 321 ====== +++ ktktkt sss  
If we specify RMT to be 0.4, then we can conclude that only ktr +

3  is an added rule.  

As we can see from example 3, the maximum similarity value in step [1] is used to discover 
added rules or perished rules. The purpose of step [2] is to detect unexpected changes and 
emerging patterns. To detect unexpected change, a difference measure is provided as follows. 













==−

=≠−

×

=

∑
∈

1,0,

1,0,

ijijij

ijijij
ij

Ak
ijkij

ij

cAify

cAify
A

x
ij

l

δ  

As defined above in the problem definition section, if conditional parts are similar but 

consequent parts are different, then this rule is called as an unexpected consequent. It means 

that the similarity of the conditional part is greater than that of the consequent part. Based on 

this measure, we can judge whether the rule kt
jr +  is an unexpected consequent change with 

respect to t
ir . In summary, if 0>ijδ , then rule kt

jr +  is an unexpected consequent change 

with respect to t
ir . If 0<ijδ , then rule kt

jr +  is an unexpected condition change with respect 

to t
ir . If 0=ijδ , then two rules t

ir  and kt
jr +  are the same rules or completely different 

rules. Therefore additional measures such as ijl , ijy , etc should be provided in case of 

0=ijδ . If these values are 1 then we can directly find that two rules are same. We compute 

difference measures only in the case of 1=ijc . If attributes of consequent parts between the 

two rules are different, it makes no sense to compare the degree of difference because these 

two rules are completely different rules. The step [3] classifies the rules as three types of 

change. To classify the type of change, additional computation is needed. For example, 

although kt
jr +  is judged to be an unexpected change with regard to t

ir  by the difference 

measure, we cannot conclude directly whether it is an unexpected change or not. Because 
kt

jr +  can be an emerging pattern with regard to t
mr  which has the same structure with kt

jr + . 

In this case, kt
jr +  should be classified into an emerging pattern and not to be classified as an 

unexpected change. As we cannot conclude based on ijδ  alone whether kt
jr +  is an 
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unexpected change or an emerging pattern, we provide the following modified difference 

measure. 



 =

=−=
otherwise

ssif
kwherek ji

ijijijij ,0
1),max(,1

,' δδ  

The fact that is  (or js ) is equal to 1 means that the same rule exists in another ruleset. That 

means kt
jr +  is likely to be classified into an emerging pattern. If '

ijδ  is greater than the pre-

specified RMT, then the rule kt
jr +  is concluded to be an unexpected change with respect to 

t
ir . 

Example 4]  
tr1  : Income = High, Preference = Price ⇒  Sales = Low 
tr2  : Age = High, Preference = Price ⇒  Sales = High 

ktr +
1  : Income = High ⇒  Sales = High 

ktr +
2  : Age = High ⇒  Sales = High 

ktr +
3  : Income = High, Preference = Price ⇒  Sales = Low 

With the association ruleset, we can compute the difference and modified difference 
measure between tr2  and ktr +

3 as follows. 
5.015.05.0 '

2323 −=−== δδ  
If we specify that RMT is equal to 0.4, we cannot conclude that ktr +

3  is an unexpected 
consequent change with respect to tr2  because ktr +

3  has a same rule structure with tr1 . 
Therefore, we can conclude that ktr +

3  is an emerging pattern of tr1 . And ktr +
3  is not 

thought to be an unexpected consequent change with respect to tr1 . 

Table 1 summarizes the value of each measure for each type of change. 

[Table 1] Value of measure for each type of change 
Type of Change Value of measure to classify 

Emerging Pattern )000(,0 >>>= ∑
∈

ijij
Ak

ijkij oryorx
ij

lδ  

Unexpected Consequent RMTijij ≥> ',0 δδ  

Added Rule (Perished Rule) )( RMTsRMTs ij <<  

4.4 Evaluating the degree of change 

All the changed rules have to be ranked by the degree of change. We will explain the idea of 
evaluating the degree of change for each type of change. First, let’s consider the unexpected 
change. The following example presents why additional measures should be required.  

t
ir  :  Income = High, Age = High ⇒  Model = Large 

kt
jr + :  Preference = Price, Age = High ⇒  Model = Small 
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If RMT value is set equal to 0.4, then the rule kt
jr +  becomes an unexpected consequent 

change with respect to t
ir  as 5.0=ijδ . But there exist two problems to conclude whether this 

change is significant. First, we cannot capture this change easily because conditional parts are 

not same. Second, although we can understand this change, we do not know how much 

change has occurred. Therefore additional logical judgement is required to conclude whether 

the degree of change is significant or not. For this purpose, we adapt the unexpectedness 

concept from the study of Padmanabhan and Tuzhilin (1999). They define unexpectedness 

using the exception rule concept (Hussain et al. 2000; Suzuki 1997) as follows. 

Definition 5] Unexpectedness 
If an association rule BA ⇒  is unexpected with respect to the belief YX ⇒ , then the 
following must hold. 
(1) FalseYAndB =  
(2) The rule BAX ⇒, holds. 

A new measure for the degree of change of unexpected consequent change is defined using 

definition 5. To measure the degree of unexpected consequent change, t
ir  is assumed to be a 

belief or existing knowledge. Every unexpected consequent change satisfies above (1) 

condition of definition 5 because of definition 2. Furthermore the support value of the 

conjunction rule should be evaluated to check whether (2) of definition 5 holds or not. For 

example, a conjunction rule of the above example is as follows.  

jir∩  :  Income = High, Age = High, Preference = Price ⇒  Model = Small 

If the above conjunction rule, jir∩ , is statistically large (i.e. has large support value), then we 

can conclude that kt
jr +  is an unexpected consequent change with respect to t

ir  by condition 

(2) of definition 5. Therefore, the support value of the conjunction rule can be regarded as the 

degree of change for unexpected consequent change. But the two conditions of definition 5 

are not sufficient. If the support value of the conjunction rule is relatively small by 

comparison to the support value of kt
jr + , then we cannot conclude that kt

jr +  is a significant 

unexpected consequent change with respect to t
ir . Additional conditions which should be 

included is that the support value of jir∩  should be enough large to represent kt
jr + . 

Therefore, the degree of change for unexpected consequent change should be composed of 

the support value of kt
jr +  and jir∩ . Figure 4 illustrates the above situation. In Figure 4, as 

more exceptional cases occur for certain existing beliefs or rules, we consider that more 

unexpected consequent changes have occurred. Now we are ready to provide the following 

measure for the degree of unexpected consequent change. 
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[Figure 4] Concept for degree of change of unexpected change 

 

In the case of emerging pattern, It is more simple to evaluate the significance level than the 

case of unexpected change. The growth or decrease rate are used as the measure for this type 

of change. To evaluate the degree of change for added and perished rule cases, the support 

value of those rules and the maximum similarity value are used. As mentioned before, the 

maximum similarity value of the rule represents the degree of similarity of the most similar 

rule to the other ruleset. If there is a situation that the support values of two added rules are 

same, we naturally place more importance on the rule which has less maximum similarity 

value. Such a rule gives more significance than the other rule. The measure of the degree of 

change, ijα , is summarized as follows. Based on the value of ijα , we can rank the changed 

rules in each type of change. 
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5. Evaluation 

For the evaluation of proposed methodology, the system is implemented using Visual Basic 
6.0. The case study has been conducted to evaluate how well the system performs its intended 
task of detecting significant changes. The dataset is prepared from an Korean online shopping 
mall which sells various consumer goods. The dataset contains customer profiles and 
purchasing history such as age, job, sex, address, registration year, cyber money, number of 

Income = High 

Age = High 

Customers who have tendency to buy 
large sized car ( Existing Belief ) 

Exception Cases : customers who expected to buy
large sized car but bought small sized car  

Preference
= PriceAge = High 

Income = High 

Preference 
= Price

[Small exception cases] [Large exception cases]

Customers who bought small sized car  
at period t+k ( New Discovered Rule ) 
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purchases, total purchase amount, number of visits, payment method during one year. We 
constructed a data warehouse which aggregated historical data by individual customer. We 
prepared two dataset to detect significant changes of purchasing behavior by their customers. 
The first dataset contains profiles and purchasing history information of certain customers 
who had bought more than one cosmetics from Feb/1/2000 to Jun/30/2000. The second 
dataset contains the same information but includes customers who had made one additional 
purchase of cosmetics from Jul/1/2000 to Jan/5/2001. After preprocessing the data for 
cleansing and discretization, an Apriori technique was applied to discover the association 
rules from each dataset. We selected the number of purchases and total sales amount as 
output variables. In the condition of 1 % minimum support, 80 % minimum confidence and 
maximum itemset of size 3, the system found 127 association rules for the first dataset and 
104 association rules for the second one. Given a 0.4 Rule Matching Threshold (RMT), the 
system found 101 changed rules and 24 significantly changed rules. The number of changed 
rules for each type of change is provided in Table 2. 

[Table 2] Number of changed rules for each type of change 
Type of change Number of changed rules Number of significant changed rules

Emerging Patterns 92 17 (Degree of change > 0.4) 
Unexpected Changes 6 4 (Degree of change > 0.3) 
Added/Perished Rules 3 3 (Degree of change > 0.01) 

Significant emerging patterns, unexpected changes, added/perished rules are summarized in 
Table 3, 4, and 5. 

[Table 3] Significant Emerging Patterns (Degree of change > 0.4) 
Rule Support t

ir  (Or kt
jr + ) 

)( i
t rSup  )( j

kt rSup +  )4.0( >ijα  

1) Visit=Low, Job=Specialist  OrdCnt=Low 0.037 0.078 1.11 

2) Visit=Low, ReservedMoney=Low  OrdCnt=Low 0.177 0.368 1.08 

3) Visit=Low, ReservedMoney=Low  Sales=Low 0.177 0.368 1.08 

4) Visit=High, Job=Specialist  OrdCnt=High 0.021 0.04 0.90 

5) Visit=High, Job=Specialist  Sales=High 0.021 0.04 0.90 

6) Visit=High, Addr=Daegu  OrdCnt=High 0.01 0.017 0.70 

7) Visit-High, Addr=Pusan  OrdCnt=High 0.015 0.025 0.67 

8) Visit=High, Addr=Pusan  Sales=High 0.015 0.025 0.67 

9) ReservedMoney=Low, Job=Student  Sales=Low 0.011 0.018 0.64 

……………………. … … … 

17) Visit=Low, Addr=ChungBuk  OrdCnt=Low 0.01 0.014 0.40 

 



 

883 

[Table 4] Significant Unexpected Changes (Degree of change > 0.3) 
t

ir  kt
jr +  

ijδ  '
ijδ  

ijα  

1) Sex=F, Addr=KyungNam  

 OrdCnt=Low         (Support : 0.034) 

Visit=High, Addr=KyungNam 

  OrdCnt=High     (Support : 0.015) 

0.5 0.5 0.85 

2) Registday=This_year, Addr=KyungNam 

 OrdCnt=Low         (Support : 0.032) 

Visit=High, Addr=KyungNam 

  OrdCnt=High     (Support : 0.015) 

0.5 0.5 0.79 

3) Payment=Cash, Addr=KyungNam 

 OrdCnt=Low         (Support : 0.021) 

Visit=High, Addr=KyungNam 

  OrdCnt=High     (Support : 0.015) 

0.5 0.5 0.58 

4) ReservedMoney=Low, Addr=KyungNam 

 OrdCnt=Low         (Support : 0.012) 

Visit=High, Addr=KyungNam 

  OrdCnt=High     (Support : 0.015) 

0.5 0.5 0.31 

 
[Table 5] Significant Added/Perished Rules (Degree of change > 0.01) 

t
ir  MSV Support ijα  

1) Age=Teen  Sales=Low 0 0.018 0.018 

2) Sex=F, Age=Teen  Sales=Low 0 0.015 0.015 

3) Age=Thirtith, Addr=Pusan  Sales=Low 0 0.012 0.012 

 
From changed rules 4) and 5) in Table 3, we can see the rapid growth (90 % growth) in sales 
for customers who are specialists and visit the mall frequently. Although the support value for 
them is low (0.021, 0.04), those customers have the possibility to become loyal customers in 
the near future because of high growth rate. Therefore, a marketing campaign to invoke the 
revisiting by those customers should be developed. We can also identify above trends in 
changed rule 1) of Table 3. From the changed rule 6), 7) and 8) in Table 3, we can see the 
rapid growth in sales for customers who live in Daegu, Pusan city and visit the mall 
frequently. Without the change detection methodology, the marketing manager may 
understand that customers who live in Daegu, Pusan city and visit the mall frequently are not 
important because of the low support value. With regard to unexpected changes, we identified 
4 significant changes. From the changed rule 1) of Table 4, we can find that sales for female 
customers who live in KyungNam are low from the first dataset. But in the second dataset, 
we can see that sales for female customers who visit the mall frequently are high even if they 
are female customers who live in KyungNam. It means that the importance of customers who 
live in KyungNam and visit the mall frequently is gradually increasing. Therefore, a 
modification for the existing marketing strategy and plan is required. Changed rules 2), 3) 
and 4) in Table 4 can be interpreted similarly. Finally, we three perished rules are found in 
Table 5. From Feb. to Jun. in 2000, most of their customers were aged twentith and sales for 
the other customers were very low. But nowadays, we can find a trend that the age of their 
customers covers a wider range. Therefore additional services and products for elders and 
teenagers should be also developed. 
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6. Conclusion 

In this paper, we developed a methodology which detects changes of customer behavior 
automatically from customer profiles and sales data at different time snapshots. The practical 
applications and opportunities to use for the methodology are as follows. First, in macro 
aspects, business mangers can follow the changing trends using change detection 
methodology. They need to analyze their customer’s changing behaviors in order to provide 
products and services that suit the changing needs of the customers. Second, in micro aspects, 
it can be possible for a business manager to understand customer needs more deeply and 
design additional niche marketing campaigns using this methodology. Knowing the history of 
customer behavior can give a better understanding of customer behavior. Some limitations of 
suggested methodology can be described as follows. With regard to the number of target 
datasets which should be compared, the methodology is suggested to only two datasets. If 
there are three or more datasets to be compared over time, then another methodology will 
have to be developed. The methodology is run on the datasets which have descretized values. 
If there is a dataset which has continuous values, then a pre-processing step for discretization 
is needed. Various techniques for discretization are summarized in the study of Hussain et al. 
(1999). The rules for the methodology is come from association rule mining. We do not 
consider rules generated from another rule induction method such as a decision tree. But 
these assumptions are easily loosened if we prepare functions for processing continuous 
variables. Finally, more sophisticated evaluation is needed. But we have plan to evaluate 
proposed measures and test significance of discovered change rule using statistical method. 
As a further research area, we plan to extend our methodology to discover changes of a more 
general nature than association rules. It will be also promising to setup the campaign 
management planning based on our suggested methodology. And it will be also interesting to 
check the effectiveness of the campaign. We have also plan to apply our methodology to 
detect the changes of individual level. We believe that the change detection problem will 
become more and more important as more data mining applications are implemented. 

References 

Agrawal, R., Imielinski, T., and Swami, A. “Mining association rules between sets of items in 
large databases,” Proceedings of the ACM SIGMOD Conference on Management of Data, 
1993. 

Agrawal, R., and Psaila, G. “Active data mining,” Proceedings of the First International 
Conference on Knowledge Discovery and Data Mining (KDD-95), 1995. 

Bay, S. D., and Pazzani, M. J. “Detecting Change in Categorical Data: Mining Contrast Sets,” 
Proceedings of the Fifth International Conference on Knowledge Discovery and Data 
Mining (KDD-99), 1999. 



 

885 

Dong, G., and Li, J. “Efficient Mining of Emerging Patterns : Discovering Trends and 
Differences,” Proceedings of the Fifth International Conference on Knowledge Discovery 
and Data Mining (KDD-99), 1999. 

Ganti, V., Gehrke, J., and Ramakrishnan, R. “A framework for measuring changes in data 
characteristics,” Proceedings of the Eighteenth ACM SIGACT-SIGMOD-SIGART 
Symposium on Principles of Database Systems (PODS-99), 1999. 

Han, J., and Kamber, M. Data Mining : Concepts and Techniques, Morgan Kaufmann 
Publishers, San Francisco, 2001, pp. 200-207. 

Hussain, F., Liu, H., Suzuki, E., and Lu, H. “Exception Rule Mining with a Relative 
Interestingness Measure,” Proceedings of Pacific Asia Conference on Knowledge 
Discovery in Databases (PAKDD), 2000, pp. 86-97. 

Hussain, F., Liu, H., Tan, C. L., and Dash, M. “Discretization: An Enabling Technique,” The 
National University of Singapore Technical Report TRC6/99, June 1999. 

Lanquillon, C. “Information filtering in changing domains,” Proceedings of the International 
Joint Conference on Artificial Intelligence (IJCAI99), 1999, pp. 41-48. 

Li, J., Dong, G., and Ramamohanarao, K. “Making Use of the Most Expressive Jumping 
Emerging Patterns for Classification,” Proceedings of Pacific Asia Conference on 
Knowledge Discovery in Databases (PAKDD), 2000. 

Liu, B., and Hsu, W. “Post-Analysis of Learned Rules,” Proceedings of the Thirteenth 
National Conference on Artificial Intelligence (AAAI-96), 1996. 

Liu, B., Hsu, W., and Chen, S. “Using general impressions to analyze discovered 
classification rules,” Proceedings of the Third International Conference on Knowledge 
Discovery and Data Mining (KDD-97), 1997. 

Liu, B., Hsu, W., Han, H. S., and Xia, Y. “Mining Changes for Real-Life Applications,” in 
Publishing in the Second International Conference on Data Warehousing and Knowledge 
Discovery (DaWaK 2000), Y. Kambayashi, M.K. Mohania, A.M. Tjoa (eds.), 2000. 

Nakhaeizadeh, G., Taylor, C., and Lanquillon, C. “Evaluating usefulness of dynamic 
classification,” Proceedings of the Fourth International Conference on Knowledge 
Discovery and Data Mining (KDD-98), 1998. 

Padmanabhan, B., and Tuzhilin, A. “Unexpectedness as a measure of interestingness in 
knowledge discovery,” Decision Support Systems (27), 1999, pp. 303-318. 

Silberschatz, A., and Tuzhilin, A. “What makes patterns interesting in knowledge discovery 
systems,” IEEE Trans. On Knowledge and Data Engineering (8:6), 1996, pp. 970-974. 

Suzuki, E. “Autonomous discovery of reliable exception rules,” Proceedings of the Third 
International Conference on Knowledge Discovery and Data Mining (KDD-97), 1997. 


	Association for Information Systems
	AIS Electronic Library (AISeL)
	December 2001

	A Methodology for Detecting the Change of Customer Behavior based on Association Rule Mining
	Hee-Seok Song
	Soung Kim
	Jae-Kyeong Kim
	Recommended Citation


	-----------------

