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Abstract: 

Given the rapid advancements in information communication technology (ICT), researchers and practitioners need to 
understand the impact that emerging phenomena, such as artificial intelligence (AI), have on existing social and 
economic challenges. We conducted a hermeneutic literature review to present the current state of the digital divide, 
developments in AI, and AI’s potential impact on the digital divide. We propose three theoretical framings: 1) 
conceptualizing the divide, 2) modeling the divide, and 3) analyzing the divide. These framings synthesize the digital 
divide’s essence in relation to AI and provide the foundation for a socio-technical research agenda for the digital divide 
in light of the evolving phenomena of AI. 
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1 Introduction 

Advancements in artificial intelligence (AI) have begun to transform social interaction and business 
operations. These advancements have impacted diverse business functions, including financial fraud 
detection (Abbasi, Albrecht, Vance, & Hansen, 2012), risk profiling in healthcare (Lin, Chen, Brown, Li, & 
Yang, 2017), decision making (Meyer et al., 2014), and advertising (Gong, Abhisek, & Li, 2018). 
Organizations have increasingly invested financial and human resources in AI-related initiatives. In 
February, 2019, the United States (US) Federal Government made a commitment to dedicate more 
resources to AI research and initiatives (Pamuk & Shepardson, 2019). In addition to the US, other countries 
have also invested in developing AI technologies. For instance, Tianjin, a Chinese metropolis, has 
established a US$15.7 billion AI fund to develop AI-related projects and initiatives (Jing, 2018). McKinsey 
Global Institute (MGI)’s recent report concluded that AI may boost global economic output by US$13-15 
trillion between now and 2030 (Wladawsky-Berger, 2019). 

While digital innovations have delivered numerous benefits to society, they also result in unintentional, 
adverse effects—especially when these innovations result in inequity that separates those who have access 
to the technology (e.g., people, companies, and governments) and those who do not (Dewan & Riggins, 
2005). Despite decades of initiatives that have focused on eliminating the digital divide, it has persisted 
(Bose, 2018) and evolved. Additional elements of the divide have emerged, such as skills (Bélanger & 
Carter, 2009) and outcomes (Scheerder et al., 2017). 

AI innovations proliferate faster than policies and regulations that ensure their ethical and equitable diffusion 
through society. AI innovations result in pronounced advantages for individuals and organizations who can 
capitalize on this technology and disadvantages for individuals and organizations who lack the necessary 
technological skills to harness it effectively. In surveying more than 3,000 business managers, executives, 
and analysts in 112 countries, Columbus (2020) found that more than 80 percent of respondents expected 
AI to give their organization a competitive advantage and boost productivity. 

The diffusion of AI initiatives will accelerate organizational transformation and introduce new business 
models. This revolution may generate new digital divide patterns. Given the growing investment in AI and 
its potential to revolutionize product and service delivery, Bryson and Winfield (2017) have highlighted the 
need for more research on the technology’s potential challenges and consequences. 

Researchers have started to explore AI ethics and fairness (Robert, Bansal, & Lütge, 2020a). However, few 
studies have systematically and comprehensively reviewed the digital divide in relation to AI. Dwivedi et al. 
(2019) have called for more research on AI’s societal impacts in light of the digital divide. In response to this 
call, we conducted a hermeneutic review of the literature using a “specific theorizing review” (Leidner, 2018). 
We synthesized insights at the intersection between the digital divide and artificial intelligence. 

With this study, we make several contributions to the information systems (IS) literature. First, we synthesize 
three theoretical framings at the intersection between the digital divide and AI. Second, we provide a 
comprehensive conceptual model of the digital divide in relation to AI. Finally, we use the theoretical 
framings to provide a research agenda for the digital divide in light of evolving phenomena, such as AI. 

2 Methodology 

In this study, we operationalize Boell and Cecez-Kecmanovic’s (2014) literature review method. This 
approach encourages researchers to iteratively engage with and continuously discover a body of literature 
and, thereby, gradually develop deep understanding and insights. A hermeneutic literature review highlights 
two major hermeneutic circles: 1) a “search and acquisition” circle (inner circle) and 2) an “analysis and 
interpretation” circle (wider circle) (Boell & Cecez-Kecmanovic, 2014). In the hermeneutic framework, the 
two circles of literature review activities harmoniously intertwine: they follow each other not in a simple linear 
manner but in an iterative process and help researchers incrementally understand the literature they focus 
on. 
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Figure 1. Hermeneutic Systematic Review (Boell & Cecez-Kecmanovic, 2014) 

We used the hermeneutic approach in our study for three reasons. First, in the hermeneutic review process, 
one typically discovers and understands literature in an interpretive, iterative, and incremental manner (Boell 
& Cecez-Kecmanovic, 2014), which suited our study since many synonymous and relevant concepts 
associated with AI exist (e.g., deep learning, machine learning, robotics, natural language understanding, 
natural language processing, super intelligence, digital intelligence, and augmented intelligence) in the 
literature. Second, the hermeneutic review framework enables researchers to begin the review process by 
retrieving highly relevant publications rather than relying on huge sets of documents whose relevance they 
cannot sufficiently judge (e.g., ProQuest displays 2,902 results when searching for “AI” in the abstract field). 
The digital divide in relation to AI is an emerging rather than stable phenomena. Hence, we used the 
hermeneutic approach to iteratively identify relevant literature. Third, understanding the digital divide in 
relation to AI requires in-depth and multi-faceted insights from a socio-technical perspective, and the 
hermeneutic process allows one to discover such insights. 

In the wider “analysis and interpretation” circle, we began by defining our research focus: “AI implications 
for the digital divide.” Then, we proceeded with the “search and acquisition” circle. Finally, we used literature 
mapping and classification, critical assessment, and argument development to help develop our research 
problems and support new circles of searching, reading, mapping, and classifying. We continued the 
process iteratively to formulate and refine our research questions and synthesize our research findings 
(Boell & Cecez-Kecmanovic, 2014). Per Boell and Cecez-Kecmanovic (2014), in conducting our mapping 
and classifying activity in the analysis and interpretation hermeneutic circle, we analyzed and classified 
relevant ideas (e.g., concepts) and obtained findings that pertain to our research question in the body of 
literature. In the critical-assessment stage, we addressed the body of literature by broadly analyzing and 
synthesizing what we know, how we have acquired such knowledge, how we can use such knowledge to 
understand our research problem, and the boundaries and weaknesses of existing research (Boell & Cecez-
Kecmanovic, 2014). 

In the search and acquisition circle, we identified highly relevant publications on the digital divide and AI in 
leading IS journals, which included papers that investigated some perspective of the digital divide and 
papers that articulated AI’s impact, consequences, and ethical issues. We started the first-round 
hermeneutic iteration with the Senior Scholars’ basket of eight journals. In that round, we identified 21 
papers on the digital divide and 25 papers on AI. We summarize these papers in Appendices A and B (e.g., 
findings, theories, and technologies). In our review process, we passed through the hermeneutic circles 
(both the wider circle and the inner circle) three times in total. The final literature corpus comprised 118 
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papers (109 research papers such as academic journal papers, conference papers, and book chapters and 
nine newspaper articles). We identified all publications based on their relevance to our research focus. 

Table 1. Summary of Reviewed Studies 

Papers Topics Count 

Research papers (academic journal papers, conference 
papers, and book chapters) 

Digital divide (DD) 53 

Artificial Intelligence (AI) 56 

Newspaper articles DD or AI relevant 9 

 Total 118 

As Boell and Cecez-Kecmanovic (2014) suggest, we read the papers analytically to understand them. 
Accordingly, we mapped and classified the publications and their findings to identify the state of knowledge 
about our research problem. We synthesized the relevant literature into a compact classification based on 
their major concepts and views pertaining to our research interest based on the rationale that concept-
centric classification and synthesis may help researchers structure literature to support critical assessment 
(Webster & Watson, 2002; Boell & Cecez-Kecmanovic, 2014). 

From our initial search, we observed that review or theoretical papers synthesized the digital divide research 
in various ways. Dewan and Riggins (2005) provided a framework for conceptualizing research on the digital 
divide that differentiated between two inequality types (ICT access and ICT use) and three levels of analysis 
(global, organizational, and individual). Hilbert (2011) stated: “it is neither theoretically feasible, nor 
empirically justifiable to aim for one single definition of the digital divide” (p. 715). Instead, he proposed an 
approach to specify the essential elements when modeling the digital divide: to answer the questions “who,” 
“with which kinds of characteristics,” “connects how,” and “to what.” Hilbert’s (2011) four-element model 
complements Dewan and Riggins’ (2005) conceptualization framework to accommodate various digital 
inequities. Recently, Scheerder, van Deursen, and van Dijk (2017) posited that “digital divide research is 
largely limited to sociodemographic and socioeconomic determinants” (p. 1607). 

Synthesis in a review procedure ensures researchers can globally represent the literature, especially when 
they need a review framework to map research findings (Rowe, 2014). Researchers can either select or 
develop such a framework (Rowe, 2014). We propose a three-part review framework for synthesizing the 
literature: conceptualizing, modeling, and analyzing the AI divide. The first theoretical framing (i.e., 
conceptualizing the AI divide) defines the AI divide and research scope. The second framing (i.e., modeling 
the AI divide) highlights the technologies that contribute to and the entities impacted by the AI divide. The 
third framing (i.e., analyzing the AI divide) elucidates various determinants and metrics that researchers and 
practitioners have used to analyze and measure the AI divide. We used the three theoretical framings to 
map and classify emerging concepts. These framings synthesize the digital divide’s essence, specifically in 
the AI context, and provide insight into its socio-technical dimensions. 

3 Theoretical Framing 1: Conceptualizing the AI Divide 

3.1 The Digital Divide 

Early on, Rogers (1962) conceptualized the digital divide in recognizing a digital gap between users and 
potential users. However, Rogers’s theory highlights only the impact that users’ requirements have on ICT 
access and use. It does not include other factors such as individual attributes (e.g., demographics), technical 
conditions, and social environments (e.g., regulations) on users’ behavior (Minghetti & Buhalis, 2010). 

While academic investigations into the digital divide include various settings (e.g., the Internet, mobile 
device, e-government, and education-related technology), a widely adopted definition refers to the digital 
divide as “the gap between individuals, households, businesses and geographic areas at different socio-
economic levels with regard both to their opportunities to access ICT and to their use of the Internet for a 
wide variety of activities” (OECD, 2001, p. 4). In other words, the digital divide implies that a portion of the 
population cannot access ICT that, like access to such public facilities as parks, museums, and libraries, 
everyone should be able to access (Robinson, DiMaggio, & Hargittai, 2003). This disparity differentiates life 
quality and opportunities between technologically enabled and non-technologically enabled individuals 
(Helbig, Gil-Garcia, & Ferro, 2009).  
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Researchers who conceptualized the digital divide early on explored the inequity in access to technologies 
such as computers and the Internet (Van Dijk, 2006). Going beyond “the distinction between the information 
haves and have-nots” (p.132), Bélanger and Carter (2009) focused on the gap between the literate and the 
illiterate that discriminates computer use. The digital divide is not a monolithic divide that exists only in 
computer and technology but any disequilibrium that may exist in any digital innovation. For example, 
Minghetti and Buhalis (2010) define the digital divide in tourism as the “unequal access and use of ICTs for 
tourists and destinations” (p. 267). In the healthcare context, an age-based digital divide may have 
significance in regard to accessing and using mobile health technology because, “despite having the ability 
to adopt, [older adults] nonetheless abstain or adopt selectively” (p. 1008). Wei, Teo, Chan, and Tan (2011, 
p. 170) identified three levels of the digital divide: 

The digital access divide (the first-level digital divide) is the inequality of access to information 
technology (IT) in homes and schools. The digital capability divide (the second-level digital divide) 
is the inequality of the capability to exploit IT arising from the first-level digital divide and other 
contextual factors. The digital outcome divide (the third-level digital divide) is the inequality of 
outcomes (e.g., learning and productivity) of exploiting IT arising from the second-level digital 
divide and other contextual factors. 

Extant research on the digital divide has mainly addressed the first- and second-level effects (Dewan & 
Riggins, 2005). For instance, the second-level divide exists when apartment seekers may have access to 
the online portal Zillow Rentals via the Internet but cannot use it effectively due to reasons such as literacy, 
trust, and language skills. Scheerder et al. (2017) suggested a shift from a focus on the first-level digital 
divide and the second-level digital divide to a third-level digital divide in which one can highlight ICT’s 
tangible impact and engagement. The third-level digital divide occurs when accessing and using ICT result 
in no beneficial outcomes. In other words, being able to access and use technologies does not necessarily 
result in positive engagement (Venkatesh & Sykes, 2013).  

The extant literature explores the digital divide at various levels: global, organizational, and individual 
(Dewan & Riggins, 2005). Studies on the global digital divide have explored ICT penetration through various 
socio-economic variables, such as GDP per capita, technological infrastructure, economy structure, and 
policy (Dewan & Riggins, 2005). Global studies have also examined how the digital divide impacts various 
geographic areas, such as countries and regions. For example, Norris (2001) investigated inequality in ICT 
access and usage between developing and industrialized countries. At the organizational level, studies have 
frequently focused on analyzing the divide between companies that gain a competitive advantage through 
using technology in innovative ways and companies that do not. At the individual level, studies have often 
focused on personal demographics such as income, occupation, and education. 

3.2 An Artificial Intelligence (AI) Divide 

The AI concept builds on the notion that “every aspect of learning or any other feature of intelligence can in 
principle be so precisely described that a machine can be made to simulate it” (McCarthy, Minsky, 
Rochester, & Shannon, 2006, p. 1). AI features a machine that mimics human minds’ “cognitive” functions, 
such as learning, reasoning and decision making, and problem solving (Dietterich & Horvitz, 2015; Luger, 
2005).  

Researchers and practitioners have designed AI-enabled artifacts to facilitate various business applications 
and operations, such as search advertising (Gong et al., 2018), copycat detection (Wang, Li, & Singh, 2018), 
risk profiling in chronic care (Lin et al., 2017), dynamic decision making (Meyer et al., 2014), financial fraud 
detection (Abbasi et al., 2012), customer social networks analysis (García-crespo, Colomo-palacios, 
Gómez-berbís, & Ruiz-mezcua, 2010), knowledge management (Li, Chen, Zhang, Li, & Nunamaker, 2009), 
user emotion recognition (Derrick, Jenkins, & Nunamaker, 2011), and user performance prediction 
(Buettner, Sauer, Maier, & Eckhardt, 2018). AI has become commonplace in our daily lives (Müller & 
Bostrom, 2016). AI innovations encompass various subfields that range from general tasks, such as natural 
language understanding, to specific tasks, playing chess (e.g., AlphaZero), writing poetry (He, Zhou, & 
Jiang, 2012), driving a car in a crowded city (e.g., Tesla’s autopilot system), and making clinical decisions 
(e.g., IBM Watson Health).  

The MGI has stated that AI can significantly boost overall economic productivity (Bughin, Seong, Manyika, 
Chui, & Joshi, 2018). Meanwhile, some thought-leaders have expressed concern that individuals and 
organizations do not share these benefits equitably; accordingly, resulting “AI divides” may reinforce and 
fuel existent digital divides. From individuals’ perspective, AI’s dispersion may turn labor demand away from 
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repetitive tasks that AI can fully or partially automate. The MGI report (Bughin, Seong, Manyika, Chui, & 
Joshi, 2018) indicates that jobs that involve low-level digital skills could fall by 10 percent in the coming 
decade; in contrast, jobs that involve high-level digital skills will likely rise (Bughin et al., 2018). This shift in 
demand could result in wage increases for jobs that require digital skills and literacy and create inequity 
between individuals who have AI literacy and individuals who do not. In industry, innovative companies 
equipped with AI-enabled technologies may be able to harness big data more effectively and analyze 
customer-generated content in real time without incurring additional labor expenses. Inevitably, these 
companies are most likely to outperform competitors who do not wish to or cannot adopt AI technologies. 
Late AI-adopters may experience a decline in their competitiveness (e.g., market responsiveness agility, 
scalability) and, accordingly, cash flow and revenues due to diminishing market share. At the country level, 
the digital divide refers to inequity “between those with ready access to the tools of information and 
communication technologies and the knowledge that they provide access to and those without such access 
or skills” (Cullen, 2001, p. 311). AI divides at the country level have become increasingly apparent as 
countries that lead the world in AI take advantage of AI to seek economic benefits and magnify social welfare 
(Barton, Woetzel, Seong, & Tian, 2017). 

Given the evolving ways in which researchers have conceptualized the digital divide and perpetual 
advancements in AI, we highlight the need for research on the emerging AI divide in diverse disciplines, 
such as information science, artificial intelligence, political science, economic science, social science, and 
communication science. We identified a need to explore AI-related inequalities about access to AI (the first-
level divide), the ability to use AI (the second-level divide), and the outcomes of AI engagement (the third-
level divide) (Scheerder et al., 2017). The third-level divide may result from imbalanced outcomes of AI 
engagement beyond AI access and use. For example, bias in training data (e.g., facial recognition) may 
result in systems that work well for certain groups but not others even when users have access to and 
choose to use this new AI technology (e.g., false positives for criminals among minority populations). The 
way in which we conceptualize the AI divide highlights the multi-level interrelatedness of social (e.g., various 
stakeholders) and technical aspects (e.g., such AI features as data and algorithms). Future research needs 
to explore the impact of an AI divide across access level, capacity level, and outcome level. 

4 Theoretical Framing 2: Modeling the AI Divide 

Various disciplines have explored AI technologies, such as computer science (Ramos, Augusto, & Shapiro, 
2008), statistics (Gale & Pregibon, 1984), cognitive science (Dupoux, 2018), linguistics (Liu, Li, & Thomas, 
2017), and information systems (Ågerfalk, 2020). People generally recognize Alan Turing as originating 
artificial intelligence concept (French, 2000). Turing (1950) described “thinking machines” that can reason 
at the level of a human being. The “Turing Test” stipulates “computers need to complete reasoning puzzles 
as well as humans in order to be considered ‘thinking’ in an autonomous manner” (West, 2018). John 
McCarthy first used the term “artificial intelligence” in the mid-1950s to denote machines that could think 
autonomously. He described the criterion as “getting a computer to do things which, when done by people, 
are said to involve intelligence” (West, 2018).  

AI enables a program or a machine to complete tasks that a human would normally perform, such as 
planning, reasoning, problem solving, and even acting. Russell and Norvig (2016) identified four types of 
AI: thinking humanly, thinking rationally, acting humanly, and acting rationally. Cognitive scientists have 
used psychology theories to imbue AI with “humanness” (Gratch & Marsella, 2005), while computer 
scientists and mathematicians have emphasized AI’s logical and unemotional “rationality.” Rationality, the 
capability to produce ideal solutions, and humanness, the extent to which technology mimics humans, 
represent two sides of the same coin (Russell & Norvig, 2016). 

AI techniques are vast. Some frequently used techniques include natural language processing, knowledge 
representation, automated reasoning, machine learning, computer vision, and robotics (Russell & Norvig, 
2016). Natural language processing enables AI to interact with people using human language. For example, 
Apple’s smartphone assistant, Siri, leverages several natural language processing techniques (i.e., speech 
recognition, lexical analysis, and semantic analysis) to understand speech and even intentions. Knowledge 
representation annotates and stores digital information. Automated reasoning refers to drawing inferences 
from stored information to solve problems and make predictions. Machine learning “focuses on applications 
that learn from experience and improve their decision-making or predictive accuracy over time” (IBM, 2020). 
Computer vision refers to technology that can recognize objects to interpret and understand the visual world. 
Robotics designs, constructs, operates, and uses robots and machines to replicate human actions (e.g., 
driving, lifting, speech) (Russell & Norvig, 2016). Many AI-enabled innovations use the aforementioned 
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techniques in combination. We can find AI innovations in mobile applications such as Facebook or Google 
Photos, which use machine learning to recognize faces in pictures (LeCun, Bengio, & Hinton, 2015). 

4.1 Visible AI and Invisible AI 

We can categorize AI innovations as visible and invisible. When users can readily recognize AI’s presence, 
we refer to that innovation as visible AI. Visible AI innovations, which have discernible outcomes (e.g., self-
driving navigation systems and voice-recognition agents such as Amazon’s Alexa and Apple’s Siri), also 
have a “user-invisible” side. According to Robert et al. (2020a), “the algorithms used to reach decisions are 
often treated as a black box and lack transparency” (p. 101). Invisible AI refers to the system’s imperceptible 
components (e.g., the underlying algorithms and training data) that support and determine how it performs. 
For example, machine learning enables a system to use algorithms (e.g., deep learning, recurrent neural 
network, random forest) to analyze data and make intelligent decisions based on what it learns. These 
machine learning algorithms enable AI systems to continuously and automatically learn from large data sets 
to improve their decision quality and the accuracy of their predictive results without human intervention.  

The user-invisible algorithms that power AI’s visible capabilities play an essential role in AI’s success or 
failure. Invisible AI faces numerous challenges. For example, Siri or Alexa may sometimes frustrate users 
with their “matter-of-fact” responses—these supposedly intelligent assistants lack emotional intelligence 
(Krakovsky, 2018). Also, AI can generate decisions from training data, which may comprise biased 
observations. Data scientists can create mismatched training data and operational data by inappropriately 
applying a trained machine learning model to an unanticipated context. Data measurement bias, data 
variable collection bias, data sample bias, or model bias can cause this mismatch (Robert, Pierce, Marquis, 
Kim, & Alahmad, 2020b). 

4.2 Components of the AI Divide  

As we mention earlier in the paper, much research on the digital divide exists (Bélanger & Carter, 2009; 
Dewan & Riggins, 2005; Friemel, 2016; Hilbert, 2011; Sung, 2016; Van Deursen & Van Dijk, 2014). Hilbert 
(2011) used four factors to describe the digital divide: 1) the subject who accesses the technology (who?), 
2) the subject’s characteristics (of what characteristics?), 3) the mode by which the subject connects (how?), 
and 4) the systems the subject connects to (to what?). The four-factor model reflects the interrelatedness 
of social and technical components that pertain to the digital divide. 

One can also apply Hilbert’s (2011) model to the AI divide. However, a new component emerges in the AI 
context: subjects’ perceptions and beliefs. Public beliefs about AI’s future and impact vary. Proponents often 
highlight AI innovations’ benefits, such as tutoring students or performing surgeries, while others warn about 
their potential negative consequences. For example, AI-aided surveillance technologies introduce various 
challenges for individual privacy (Fast & Horvitz, 2017). AI may displace human workers or roboticize 
warfare (Markoff, 2014). AI may become super intelligent and recursively design and refine itself and evolve 
beyond human control (Dietterich & Horvitz, 2015). 

Other envisioned risk perceptions that researchers and practitioners have raised include the hazards that 
could emerge from an autonomous system that AI enables without human oversight. For instance, AI-
enabled facial recognition may watch the public, which would result in a loss of individual privacy (Marr, 
2018). AI-enabled systems have the ability to detect and target floating voters, obtain and analyze public 
emotions, mine public opinions, and, accordingly, manipulate election outcomes (Bryson & Winfield, 2017). 

Invisible AI also has potential risks (Hawking, Russell, Tegmark, & Wilczek, 2014). Machine learning 
algorithms enable AI systems to mimic human rationality or intelligence via learning from data (Pedregosa 
et al., 2011). However, while copious datasets often help to improve AI performance, actors who 
inappropriately use individual’s data and inadequate data protection will increase users’ risk perceptions 
and reduce their willingness to access AI-enabled systems and, thereby, affect the AI divide. 

We recommend extending the four-factor model that Hilbert (2011) proposed to include five factors. 
Specifically, we suggest adding “subjects’ perceptions and beliefs” to highlight the importance of individuals’ 
risk perceptions and trusting beliefs to the AI divide (see Figure 2). AI is a nascent field in science and 
engineering (Russell & Norvig, 2016); as AI evolves, it inspires scholars to investigate potential risks 
(Bostrom, 2013; Müller & Bostrom, 2016). Scholars in diverse disciplines such as biometry (Prabhakar, 
Pankanti, & Jain, 2003), healthcare (Kumar & Patel, 2014; Zhang et al., 2015), automated vehicles 
(Jayaraman et al., 2019), and cloud computing (Zhou, Zhang, Xie, Qian, & Zhou, 2010) have raised 
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concerns about AI-related risks. As Fox and Connolly (2018) have indicated, the digital divide may deepen 
when individuals do not wish to adopt new technology due to mistrust, high-risk perceptions, and the intense 
desire for information privacy. 

 

Figure 2. A Comprehensive Framework for AI Divide Research 

In addition to adding a fifth factor to Hilbert’s (2011) model, we also propose including “training data” in the 
third factor, which highlights the significance of “underlying ICTs and training data” to the AI divide. Artificial 
Intelligence technologies such as machine learning and natural language processing require a massive 
volume of high-quality data to train models in order to achieve desirable results. AI-equipped systems often 
need access to training data to build AI models. Training data may be publicly accessible data (e.g., the 
data in UCI Machine Learning Repository) or private data labeled through customized services (e.g., 
Labelbox). Future research needs to examine individuals’ perceptions, concerns, beliefs, and ethics in 
relation to visible and invisible AI. 

5 Theoretical Framing 3: Analyzing the AI Divide—A Socio-technical 
Framework 

AI applications permeate global, organizational, and individual interactions. However, actors will not likely 
share AI innovation’s benefits in an impartial manner. Developing economies with insufficient digital 
infrastructure and limited capacity for innovation may not realize the same benefits and convenience from 
AI innovation as developed countries. Similarly, companies that fully adopt AI technologies may gain an 
advantage over companies that do not. For instance, an organization may deploy AI to replace human labor 
and, hence, lower operational costs. At the individual level, we will see variance in AI access, comfort, and 
outcomes. 

The socio-technical view posits that one can better understand IS phenomena when one considers both 
“social” and “technical” perspectives and treats them as interacting components of a complex system (Lee, 
2004). The AI divide describes inequality that concerns accessing and using AI-enabled technology and 
that technology’s impacts. In modeling and investigating an AI divide, one needs to not only delineate the 
components in the five-factor progression model but also analyze the driving socio-technical factors. 

The social dimension includes demographic and socio-economic factors (e.g., gender, age, yearly economic 
outcomes, family size, and education level) (Ferro, Helbig, & Gil-Garcia, 2011; Fuchs & Horak, 2008; 
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Niehaves & Plattfaut, 2014; Payton, 2003; Ragnedda & Muschert, 2013; Shirazi, Ngwenyama, & 
Morawczynski, 2010; Venkatesh & Sykes, 2013; Wareham, Levy, & Shi, 2004) and other social factors such 
as culture, regulations, and policies (Borgida et al., 2002; Chinn & Fairlie, 2007; Philip, Cottrill, Farrington, 
Williams, & Ashmore, 2017). The technical dimension includes determinants such as infrastructure (Lee, 
Park, & Hwang, 2015; Philip, Cottrill, & Farrington, 2015; Riddlesden & Singleton, 2014) and AI-specific 
factors (e.g., AI algorithms and training data). Socio-technical determinants influence how users interact 
with and perceive AI innovations (Levy, Janke, & Langa, 2015; Radovanović, Hogan, & Lalić, 2015) and 
beliefs (Fox & Connolly, 2018). 

5.1 Demographic and Socio-economic Factors 

Extant research has highlighted the relevance of demographic and socio-economic factors to the digital 
divide (Scheerder et al., 2017). Factors such as income, gender, education, ethnicity, and age (Friemel, 
2016; Helsper, 2010; Ragnedda & Muschert, 2013; Sung, 2016) differentiate who can access and use ICTs. 
These factors may also differentiate who can access and use AI. Future research needs to examine the 
impact that demographic and socio-economic factors have on the AI divide.   

5.2 Other Social Factors 

Studies on the digital divide have also explored social factors such as culture (Borgida et al., 2002), 
regulations (Chinn & Fairlie, 2007), and policies (Philip et al., 2017). Borgida et al. (2002) explored the role 
of cooperation norms and political culture in influencing the digital divide in computer and Internet access. 
In the AI context, scholars should explore the effect that diverse social factors, such as policies, have on AI 
innovations. 

5.3 Infrastructure 

System developers and designers build “intelligence” into information systems. For example, Google Photos 
can use facial recognition to allow users to search their photos by people, things, and places. AI-enabled 
facial recognition helps Google Photo identify a person from a digital image or a video source by analyzing 
features and building a machine learning model. A prerequisite to accessing an online facial recognition 
system exists: the Internet. Hence, the Internet directly affects whether one can access and use AI; in other 
words, successful access to an online AI service depends on Internet connectivity and bandwidth. In addition 
to the Internet, other infrastructure barriers may include physical devices (e.g., smartphones), GPS (e.g., 
autonomous driving), the Internet of things (IoT), and cloud computing. 

5.4 AI-specific Factors 

Algorithms (e.g., machine learning algorithms) and data enable AI (Ananny, 2016). In accordance, AI-
specific factors will impact the AI divide—algorithm and data. For example, if one trained a machine learning 
algorithm for clinical decision support with data in one country, the system may not perform with the same 
level of accuracy when applied to citizens in a different country. A recent facial recognition study at MIT 
found that, when a photo contained a male with light skin, the system had an accuracy rate of approximately 
99 percent; however, when it attempted to recognize a female with darker skin, the error rate rose to 21 to 
35 percent (Lohr, 2018). These disparate results suggest that bias encoded in AI algorithms and/or training 
data may generate an AI divide. 

5.5 Skills and Digital Literacy 

Computer-based skills and digital literacy, which contribute to the existent digital divide, will also impact the 
AI divide. Van Deursen and Van Dijk (2011) argued that as the digital divide evolves, differences in skills 
using a technology may create inequity in technology use. We posit that, as AI innovations evolve, we will 
see a widening gap among individuals, organizations, and countries that can effectively access, use, and 
understand these innovations. 

5.6 Beliefs 

Individual concerns about AI-related risks may reduce users’ willingness to engage with AI tools or systems. 
For example, facial recognition can identify human faces in photos (e.g., Google Photo, Facebook). While 
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some users may enjoy the convenience of unlocking their smartphone with a smile, other users may have 
concerns about the technology’s potential to enable unwanted surveillance. 

The social-technical framework we propose identifies how actors can generate, mitigate, or bridge the AI 
divide as AI permeates society. Our findings in the third theoretical framing (see Section 5) complement our 
findings from the first two (see Sections 3 and 4). By coherently integrating these framings, we construct a 
comprehensive framework to conceptualize, model, and analyze the AI divide (see Figure 2). In light of the 
proposed theoretical framing, future research should investigate AI divide drivers and explore strategies to 
abate the AI divide. 

6 Conclusion 

Acknowledging the digital divide’s sociodemographic and socioeconomic determinants (Scheerder et al., 
2017), we use a socio-technical view to provide a comprehensive framework of the digital divide in an era 
of technological transformation. Traditionally, the digital divide has focused on human access, skills, and 
capacity. However, invisible AI complicates the interaction between humans and AI-enabled systems. AI 
innovations interact with users via both front-end interfaces and the training data that actors select and 
manage. 

Despite our best efforts to investigate the implications that AI will have on the digital divide, we acknowledge 
some limitations. First, while we made efforts to review the literature and theoretically synthesize the 
influential factors of the AI divide in the socio-technical framework, some factors that the presented social-
technical paradigm does not list may exist. Second, although we provide the theoretical framework to 
investigate the digital divide in the AI context, research needs to empirically test and validate the influential 
factors’ practical and statistical significance. 

With this paper, we make several significant contributions to the extant literature. Informed by a hermeneutic 
process, we propose an AI divide research framework that accounts for both visible and invisible AI. The 
framework highlights divide determinants associated with the socio-technical view, such as determinants 
that reflect how users perceive AI (i.e., risks, trust, and concerns), which, in turn, may impact other human-
AI interactions (e.g., correcting inappropriate learning models). 
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Appendix A: Digital Divide Research 

Table A1. Digital Divide Research 

Source Topics or findings Publication 

Theories 
identified and 

literature 
referenced 

Technology 

Fox & Connolly 
(2018) 

Provides recommendations for narrowing the 
m‐health digital divide to ensure that older 
citizens can and will adopt. 

Information 
Systems 
Journal 

Protection 
motivation theory 

and social 
cognitive theory 

Mobile health 
(m‐health) 

technologies 

Andrade & 
Doolin (2016) 

Moves beyond the conventional discussion 
on the digital divide by exploring what people 
can do and achieve with ICTs. 

MIS Quarterly N/A 
ICT used for 

refugees' social 
inclusion 

Srivastava & 
Shainesh (2015) 

Investigates the prevailing differences in the 
level of services that different population 
segments (service divide) in developing 
countries consume. 

MIS Quarterly N/A 

Indian 
healthcare 

service 
providers 

Niehaves & 
Plattfaut (2014) 

Explores factors that influence the elderly’s 
intentions to use the Internet. 

European 
Journal of 

Information 
Systems 

TAM, UTAUT, 
MATH 

Internet 

Venkatesh, 
Sykes, & 

Venkatraman 
(2014) 

Develops a model of e-government portal 
use and investigates individual 
characteristics in impacting e-government 
portal use. 

Information 
Systems 
Journal 

Innovation 
diffusion theory 

E-government 
portal 

Venkatesh & 
Sykes (2013) 

Uses social networks as the lens through 
which to investigate technology use and 
economic outcomes of digital divide 
initiatives in developing countries. 

Information 
Systems 
Research 

The theory of 
planned behavior 

Personal 
computers that 
were enabled 
with Internet 

access 

Racherla & 
Mandviwalla 

(2013) 

Uses an interpretive case study approach to 
investigate the Philadelphia wireless 
initiative. 

Information 
Systems 
Research 

Innovation 
diffusion theory 

Information 
infrastructure 

Wei et al. (2011) 
 

Examines three levels of the digital divide 
(the digital access divide, the digital 
capability divide, and the digital outcome 
divide) and develops a model to investigate 
their associations. 

Information 
Systems 
Research 

Social cognitive 
theory 

computer 

Sipior, Ward, & 
Connolly (2011) 

Employs the technology acceptance model to 
explore the digital divide and transformational 
government (t-government) in the United 
States. 

European 
Journal of 

Information 
Systems 

TAM 
Transformational 
government (t-
government) 

Dewan, Ganley, 
& Kraemer 

(2010) 

Investigates how the cross-country diffusions 
of personal computers and the Internet affect 
the evolution of the global digital divide. 

Information 
Systems 
Research 

Innovation 
diffusion theory 

Computer and 
the Internet 

Agarwal, 
Animesh, & 

Prasad (2009) 

Explores whether and how social influence 
affects individual choice. 

Information 
Systems 
Research 

N/A Internet 

James (2007) 
Explores the ways in which the impact of 
innovations depends on how they are 
generated and diffused. 

Journal of 
Information 
Technology 

N/A Internet, mobile 

Rensel, Abbas, 
& Rao (2006) 

Investigates transactional website use in 
public environments and explores how to 
bridge the digital divide. 

Journal of the 
Association 

for 
Information 

Systems 

Modified theory of 
reasoned action 

Public 
transactional 

website 
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Table A1. Digital Divide Research 

Kvasny & Keil 
(2006) 

Analyzes how the target populations and 
service providers in Atlanta and LaGrange 
Georgia reacted to two initiatives, how these 
reactions reproduced the digital divide, and 
the lessons for future digital divide initiatives. 

Information 
Systems 
Journal 

Theoretical 
constructs from 

Bourdieu 
E-commerce 

Dewan, Ganley, 
& Kraemer 

(2005) 

Studies the country-level digital divide across 
successive generations of IT to explore the 
changing nature of the divide. 

Journal of the 
Association 

for 
Information 

Systems 

Theory of 
reasoned action 

Multi-technology 

Kauffman & 
Techatassanaso-

ontorn (2005) 

Examines digital wireless phone adoption 
among nations and regions and portrays the 
current global digital divide. 

Journal of the 
Association 

for 
Information 

Systems 

A regional 
contagion theory 

of technology 
diffusion 

Digital wireless 
phone 

Dewan & Riggins 
(2005) 

Examines the digital divide at three levels of 
analysis: the individual level, the 
organizational level, and the global level. 

Journal of the 
Association 

for 
Information 

Systems 

Innovation 
diffusion theory 

E-commerce 

Riggins (2004) 

Investigates how the digital divide, where 
high-type consumers dominate the online 
channel and low-type consumers dominate 
the offline channel, artificially segments the 
marketplace. 

Journal of 
Management 
Information 

Systems 

N/A E-commerce 

Dutton, Sharon 
Eisner, 

McKnight, & 
Peltu (2004) 

Analyzes how outcomes linked to ICT 
innovation are impacted by choices about 
whether and how to use, or not use, the 
technology to reconfigure access to people, 
services, information, and technologies. 
Presents a framework to assist in redressing 
digital divides. 

Journal of 
Information 
Technology 

N/A 
Broadband 

Internet 

James (2004) 
Investigates how poor, illiterate persons in 
developing countries benefit from the Internet 
without using computers and the Internet. 

Journal of 
Information 
Technology 

N/A Internet 

Corrocher & 
Ordanini (2002) 

Develops a model for measuring the digital 
divide in a set of countries or geographical 
areas. 

Journal of 
Information 
Technology 

N/A Internet 
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Appendix B: AI Research 

Table B1. AI Research  

Source Topics or findings Publication AI application area 

Gong et al. 
(2018) 

Examines the effect of keyword ambiguity on the 
performance of search advertising. 

MIS Quarterly Search advertising 

Wang et al. 
(2018) 

Uses machine learning techniques to build a 
copycat-detection method. 

Information Systems 
Research 

Copycat-detection 

Hao, Padman, 
Sun, & Telang 

(2018) 

Develops a hierarchical Bayesian learning model 
to examine the impact of social learning through 
targeted early adopter effects and general peer 
effects. 

Information Systems 
Research 

Social learning 

Guo, Wei, Chen, 
Zhang, & Qiao 

(2017) 

Proposes a framework for extracting 
representative information from intra-organizational 
blogging platforms. 

MIS Quarterly Blogging platforms 

Lin et al. (2017) 
Designs a Bayesian multitask learning approach 
for healthcare predictive analytics. 

MIS Quarterly 
Risk profiling in chronic 

care 

Aleksander 
(2017) 

Assesses the actual level of competence that 
robotics achieves and reviews the role of robots in 
the foreseeable future. 

Journal of Information 
Technology 

Robots 

Larsen & Bong 
(2016) 

Designs a tool using natural language processing 
algorithms to address construct identity in literature 
reviews 

MIS Quarterly 
Construct identity in 

literature review 

Müller, Junglas, 
Brocke, & 

Debortoli (2016) 

Discusses the use of big data analytics tools (e.g., 
predictive modeling, natural language processing) 
as an enquiry strategy for IS research. 

European Journal of 
Information Systems 

Big data analytics 

Shollo & Galliers 
(2016) 

Develops a conceptual framework of 
organizational knowing and synthesizes the 
literature to understand the role of business 
intelligence. 

Information Systems 
Journal 

Organizational 
knowing 

Meyer et al. 
(2014) 

Designs a machine learning approach for 
improving dynamic decision making. 

Information Systems 
Research 

Dynamic decision 
making 

Elkins, Dunbar, 
Adame, & 

Nunamaker 
(2013) 

Investigates whether counter-attitudinal expert 
system recommendations threaten experts. 

Journal of 
Management 

Information Systems 
Credibility assessment 

Abbasi et al. 
(2012) 

Designs a meta-learning framework for detecting 
financial fraud. 

MIS Quarterly 
Detecting financial 

fraud 

García-crespo et 
al. (2010) 

Designs a semantic-based framework for customer 
social networks analysis. 

Journal of Information 
Technology 

Social networks 
analysis 

Greenwald, 
Kannan, & 

Krishnan (2010) 

Designs a Markov decision process approach for 
evaluating information revelation policies in 
procurement auctions. 

Information Systems 
Research 

Procurement auctions 

Kayande, Bruyn, 
Lilien, 

Rangaswam, & 
van Bruggen 

(2009) 

Evaluates two design characteristics of decision 
support systems: 1) feedback on the upside 
potential and 2) feedback on corrective actions. 

Information Systems 
Research 

AI-aided decision 
making 

Li et al. (2009) 
Investigates citation network-based patent 
classification in managing knowledge. 

Journal of 
Management 

Information Systems 

Knowledge 
management 

Druckenmiller & 
Acar (2009) 

Designs an agent-based collaborative approach for 
graphing causal maps. 

Journal of the 
Association for 

Information Systems 
Graphing causal maps 
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Table B1. AI Research  

Bansal, Sinha, & 
Zhao (2009) 

Investigates tuning data mining methods for cost-
sensitive regression in loan charge-off forecasting. 

Journal of 
Management 

Information Systems 

Loan charge-off 
forecasting 

Arazy & Woo 
(2007) 

Investigates the effect of three key parameters on 
collocation indexing performance in information 
retrieval—directionality, distance, and weighting. 

MIS Quarterly Information retrieval 

Nissen & 
Sengupta (2006) 

Investigates the comparative performance of 
human and software agents in the procurement 
domain. 

MIS Quarterly 
Procurement in supply 

chains 

Aleksander 
(2004) 

Presents a personal view talking about the forces 
driving AI’s development. 

Journal of Information 
Technology 

N/A 

Sinha & May 
(2004) 

Conducts an empirical analysis of the performance 
of five popular data mining methods. 

Journal of 
Management 

Information Systems 
Data mining 

Wei, Hu, & Dong 
(2002) 

Designs an evolution-based approach for 
managing document categories in e-commerce 
environments. 

European Journal of 
Information Systems 

Document categories 
management 

Murugan (2002) 
Designs a behavior-based artificial intelligence 
approach for profiling web usage in the workplace. 

Journal of 
Management 

Information Systems 
Web usage profiling 

Walczak (2001) 
Investigates data requirements for financial 
forecasting with neural networks. 

Journal of 
Management 

Information Systems 
Financial forecasting 
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