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Abstract: 

Healthcare providers increasingly rely on technology, such as patient portals, for asynchronous communication with 
their patients. Even though clinicians have increasingly adopted patient portals to enhance healthcare quality and 
reduce cost, few patients continue to use this technology. In this paper, we investigate the effect that individuals’ health 
emotion and personality traits as measured using the five-factor model (FFM) have on patients’ intention to continually 
use patient portals through the lens of emotional dissonance theory. We collected survey data from 187 patients at a 
major medical center in the Midwestern United States. After we analyzed the data using structural equation modeling, 
we found that the final model explained 40 percent of the variance in intention to continue to use. Our results suggest 
that whether individuals continue to use technology depends on their reactions to technology in which health emotions 
and personality traits play a crucial part. Additionally, health emotion modifies the effect that personality traits have on 
patients’ intention to continue to use a patient portal. Our study provides healthcare organizations with an integrated 
view of patient portal use behavior and shows that individual personality traits and health emotion may increase 
sustainable patient enrollment and engagement. 

Keywords: Health Emotion, Personality Traits, Intention to Continue to Use, Patient Portals, Health Information 
Technology, Emotional Dissonance Theory. 
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1 Introduction 

The Health Insurance Portability and Accountability Act of 1996 (HIPAA) requires covered entities (CEs) 
such as hospitals and physicians to provide patients with access to their protected health information (PHI), 
which includes both personal and health information, in a secure environment (HHS, 1996). Roughly 90 
percent of CEs have adopted patient portals to address this HIPAA requirement (Heath, 2018b). These 
patient portals constitute an essential component of electronic health record (EHR) systems. Using these 
portals, patients can view results from tests, schedule appointments, and manage their records. Because 
these portal allow patients to access their PHI from EHR systems, researchers frequently refer to them as 
patient gateways (Schnipper et al., 2008), “tethered personal health records” (PHR), or “tethered PHR” 
(Goel et al., 2011a; Kaelber, Jha, Johnston, Middleton, & Bates, 2008). CEs expect online patient portals to 
play a critical role in patient care, especially for patients with chronic illnesses such as diabetes, by improving 
their access to their health information (Sarkar et al., 2010). As the demand for quality healthcare increases, 
we can expect a global shortage of healthcare facilities and staff, which includes nurses and physicians. To 
meet such demand, healthcare providers may need to rely increasingly on technology such as patient 
portals for asynchronous communication with their patients and as a feasible substitute for in-person 
interactions such as those that occur during physician visits. 

Despite patient portals’ growing significance in healthcare, few patients adopt the technology (Ancker et al., 
2011; Patel, Barker, & Siminerio, 2015). To succeed, any information system relies on the users’ sustainably 
and actually using it (DeLone & McLean 1992; Gaskin, Godfrey, & Vance, 2018; Hung, Tsai, & Chuang, 
2014) in a suitable and sufficiently frequent manner (Delone & McLean, 2003; Devaraj & Kohli, 2000). The 
Office of the National Coordinator for Health Information Technology (ONC) recently noted 52 percent of 
CEs offered patient portals in 2017 (Patel & Johnson, 2018), which, according to Heath (2018), increased 
to 90 percent in 2018. While a promising increase, only 30 percent of patients used patient portals in 2018 
up from 28 percent in 2017, which makes patient access a significant challenge for healthcare organizations 
(Heath, 2018a, 2018b). On contrast, 71 percent of U.S. citizens access their online banking account (Board 
of Governors of the Federal Reserve System, 2016) and 81 percent make purchases online (Clement, 
2019). The need to identify the factors that influence users to adopt patient portals and sustainably use 
these systems remains incredibly important as the ultimate benefits of healthcare organizations’ technology 
adoption depend on the degree to which patients continuously actually use these technologies. 

Existing studies on patient portal use have identified factors that may result in low patient engagement, such 
as a lack of computer access; low computer literacy; and differences in age, race, ethnicity, and education 
(Ancker et al., 2011; Fowles et al., 2004; Goel et al. 2011a, 2011b; Hsu et al., 2005; Huvila et al., 2018; Li, 
Gupta, Zhang, & Sarathy, 2014; Nicholas, Huntington, & Williams, 2003; Roblin, Houston, Allison, Joski, & 
Becker, 2009; Sarkar et al., 2010, 2011; Weingart, Rind, Tofias, & Sands, 2006). While these studies extend 
our knowledge about the role that demographic factors, socio-economic factors, and individual 
characteristics in patient portal user behaviors, the existing literature ignores important factors (namely, 
personality traits and health emotion) in profiling patient portal users.  

Studies in health information technology (HIT) use have seldom studied dispositional factors, such as 
individuals' personality traits. However, other disciplines have studied these factors, such as organizational 
behavior, education, human psychology, and information systems (IS) adoption (Saleem, Beaudry, & 
Croteau, 2011). HIT includes all technology used in caring for patients, which includes EHR and patient 
portals. IS researchers who have examined technology adoption in various contexts have long argued and 
proved that users’ traits such as cognitive styles and personality traits affect their technology use behavior 
(Bariff & Lusk, 1977; McElroy, Hendrickson, Townsend, & DeMarie, 2007). 

Emotions evoke strong feelings about an object, situation, or event. Individuals often use emotion in the 
decision-making process as a guide to form their judgment capabilities (Clore, Gasper, & Garvin, 2001). 
Health emotion can play an essential role in whether people continuously use HIT as the technology 
becomes integrated into their lives. Researchers consider health emotion as an important factor that 
indicates how severe an individual perceives their immediate health status and plays a vital role in health 
information-disclosure decisions (Anderson & Agarwal, 2011). 

Informed and motivated by existing literature on HIT and technology use, we explore the effect that 
individuals’ health emotions and personality traits have on their intention to continually use patient portals 
through the lens of emotional dissonance theory. Specifically, we explore three research questions (RQ): 

RQ1:  Do individuals’ health emotions influence their intention to continue to use HIT? 
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RQ2:  Do personality traits play an important role in individuals’ intention to continue to use HIT as 
research has found in non-HIT contexts? 

RQ3: Do health emotion and personality traits interact to influence individuals’ intention to continue 
to use HIT? 

With this study, we contribute to the literature in four ways. First, we extend the personality traits research 
model to a healthcare setting. Healthcare digitization has facilitated increasingly personalized IT-enabled 
healthcare delivery and practice (Glaser, Henley, Downing, Brinner, & Personalized Health Care Workgroup 
of the American Health Information Community, 2008) in much the same way as consumer products and 
services have become more personalized based on consumers’ preferences and needs in commercial 
realms (Glaser et al., 2008). Therefore, we need to understand individuals’ preferences and personality 
traits when studying whether patients will continue to use patient portals. Second, the literature has, to some 
extent, ignored health emotion and, thus, not considered an important factor that influences whether patients 
will continue to use patient portals. Based on the emotional dissonance theory, we explore and clarify how 
health emotion drives patients’ intention to continue to use patient portals. Third, we argue that different 
individuals’ intention to continue to use patient portals follows distinct mechanisms. Hence, we examine the 
moderating influence that health emotion has on the relationship between personality traits and intention to 
continue to use HIT. We need to understand the interaction effect between health emotion and personality 
traits to provide customized guidelines for increasing the extent to which patients use patient portals. Fourth, 
we contribute to the health human-computer interaction (HCI) domain by addressing Wilson and Djamasbi’s 
(2015) call for more research on the interaction between users (e.g., patients and caregivers) and HIT along 
the three major dimensions users, technology, and the environment. We expand our knowledge about 
health HCI by empirically investigating a clinical, special-purpose information technology (IT) that focuses 
on the patient-user group. Overall, our research can help healthcare practitioners and HIT vendors 
understand why some individuals intend to continue to use patient portals and others do not. 

2 Research Background 

2.1 Health Human-computer Interaction and HIT Adoption and Use 

Human-computer interaction (HCI) examines the relationships between humans (users) and computers 
(Benbasat, 2010; Booth, 1989). HCI research has traditionally focused on explaining why users adopt and 
continue to use contemporary technologies and how these systems can improve users’ quality of life (Abowd 
& Mynatt, 2000). With increased demands for improved quality and lower costs associated with healthcare, 
health HCI research has become increasingly crucial for identifying gaps in continuous use of patient-centric 
medical devices and providing an innovative framework for resolving the current low use rates (Adarsha, 
Reader, & Erban, 2019; Wilson & Djamasbi, 2015). HCI research has a rich tradition of using various 
theories to understand people’s technology-adoption behavior in both HIT and non-HIT contexts. 
Researchers have used many models and theories used to explore why users adopt and use patient portals 
and other online health systems, such as Davis’ (1989) technology acceptance model (TAM) (Jung & Loria, 
2010; Lazard et al., 2016; Lemire, Paré, Sicotte, & Harvey, 2008; Portz et al., 2019; Wilson & Lankton, 
2004), Ajzen’s (1991) theory of planned behavior (Emani et al., 2016), Petty and Cacioppo’s (1986) 
elaboration likelihood model (Angst & Agarwal, 2009), Roger’s (1995) diffusion of innovation theory (Carter, 
Corneille, Hall-Byers, Clark, & Younge, 2015), and Venkatesh, Morris, Gordon, and Davis’ (2003) unified 
technology of acceptance and use of technology (UTAUT) model (Bozan, Parker, & Davey, 2016; Tavares 
& Oliveira, 2016). Chiasson, Kelley, and Downey (2015) used task-technology fit (Goodhue & Thompson, 
1995) to study how diabetics use electronic health environments to understand treatments for their chronic 
condition. Still, they did not include personality traits or health emotion in their study. Kim and Park (2012) 
extended TAM by adding perceived threats to explore why users adopt various health information 
technologies. However, these studies either had mixed results or low variances (Bozan et al., 2016; Lazard 
et al., 2016). For example, Bozan et al. (2016) explored institutional factors including coercive, normative, 
and mimetic pressures and found that both coercive and mimetic pressures influenced elderly individuals’ 
decision to adopt patient portals; however, their results only explained 28 percent of the low variance using 
R-squared (R2), which suggests that additional factors exist beyond existing adoption theories and models 
to explain why individuals adopt health portals.  

Although technology adoption studies may provide insights into the healthcare context, they do not clearly 
explain human-computer interaction in healthcare. HIT adoption behavior has a unique nature because 
individuals’ motivation to use HIT may differ from their motivation to use non-HIT systems. While individuals 



Transactions on Human-Computer Interaction 183  

 

Volume 12   Issue 4  

 

often engage in a simple cost-benefit analysis when deciding whether they will adopt particular technology 
(Luo, Warkentin, & Li, 2013), the decision-making process becomes more complicated if the technology is 
associated with or affects individuals’ health. Few prior studies have examined health status (i.e., whether 
a person is healthy or ill) (Kulik & Mahler, 1987). For example, Xiao, Sharman, Rao, and Upadhyaya (2014) 
used health status (which they measured as health vs. ill health) to examine individuals’ health and found 
that individuals who perceived their illness as severe interacted more in online chat rooms and conducted 
more diverse searches. Houston and Allison (2002) also found that patients with poor perceived health 
status tended to use the Internet and online chats more frequently to seek health-related information. 

In their research, Brave and Nass (2009) implied that individuals have to cast aside emotions to interact 
with computers both efficiently and rationally and, thus, that emotion is at best marginally relevant to HCI 
and at worst oxymoronic. However, in exploring HCI, Bickmore and Picard (2005) determined the interaction 
between individuals and objects as they symbolically relate to themselves, others, or relationships. Prior 
research has determined that positive emotions such as happiness serve as the strongest motivators when 
individuals consider adopting Web technologies, which includes online communities and online support 
groups (Gruzd, 2013; Han et al., 2008). While many researchers have studied the impact that health status 
has on human-computer interaction and other decision-making purposes (se, e.g., Houston & Allison, 2002; 
Petrie, Weinman, Sharpe, & Buckley, 1996; Xiao et al., 2014), health emotion might better indicate how 
individuals interact with HIT.   

2.2 Emotion and Health Emotion 

Emotion refers to feelings about one’s needs, goals, or concerns that stimuli evoke (Yuan & Dennis, 2016). 
While Gross and Muñoz (1995) noted that a true definition in the literature for emotion does not exist, 
Schachter and Singer (1962) defined emotion as “a state of physiological arousal and cognition appropriate 
to this state of arousal” (p. 380). The Merriam-Webster Dictionary defines emotion as “a conscious mental 
reaction (such as anger or fear) subjectively experienced as strong feeling usually directed toward a specific 
object and typically accompanied by physiological and behavioral changes in the body” (“Emotion”, n.d.). 

Rather than defining emotion, others such as Frijda (1994) have described emotion as a short-lived but 
intense effect on individuals’ decision-making processes. To understand the distinction between emotion 
and attitude, one needs to understand the Tulving’s (1983) nuance between semantic and episodic memory. 
Episodic memory stores information as experienced events, whereas semantic memory stores evolved 
information (i.e., knowledge and abstractions) that results from experience. We can find abstractions such 
as the evaluative continuum (i.e., attitude) in semantic memory and emotions in episodic memory (Tulving, 
1983). Episodic (personal facts) and semantic memories (general facts) are mutually exclusive of each 
other, and no evidence exists that episodic memory (e.g., emotion) must be integrated with semantic 
memory (e.g., attitude) (Allen, Machleit, & Kleine, 1992; Breckler & Wiggins, 1989; Cohen, 1990). Druckman 
and McDermott (2008) suggested that individuals often act counter-intuitively by evoking emotion rather 
than just applying factual information. These feelings motivate individuals to take action by adding meaning 
and richness to all human experiences. Emotion can alter one’s perceptions, physiology, and abilities 
(Tooby & Cosmides, 2000) and influence one’s choices and behavior (Ariely & Loewenstein, 2006).  

Bowman, Watson, and Trotman-Beasty (2006) developed the emotion and health scale to test the 
relationship between health and emotion by assessing ill patients’ emotions. They distinguished health 
emotion from health status by indicating that emotion measures individuals’ feelings about being unhealthy. 
Because individuals might consider health information more sensitive than non-health-related information, 
Anderson and Agarwal (2011) used 15 items from the Bowman et al. (2006) emotion and health scale to 
measure anger, disgust, fear, sadness, and joy related to an individual’s current health status. Thus, prior 
research shows that health emotion plays a unique role when individuals must contend with choices that 
affect their health and life, similar to the feelings that individuals feel when making risk choices as Druckman 
and McDermott (2008) have described. Loewenstein (2005) also reported that emotions, such as hot-cold 
empathy gaps, have an important role in medical-related decision making. While others have not actually 
defined health emotion, for this research, we define health emotion as a conscious mental reaction (such 
as anger, fear, joy, etc.) to a strong feeling toward an individual’s ongoing health conditions, which we refer 
to as health status.  

Anderson and Agarwal (2011) determined that health emotion plays a role in whether individuals will allow 
their patient information to be released or accessed for reasons beyond patient care, such as marketing or 
research. Rahman (2015) suggested that an individual’s health emotion could be an important factor to 
consider in adopting and using healthcare technologies. Health emotion is tied to individuals’ emotional 
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feelings related to their ongoing health condition (Rahman, 2015). Because emotion plays an important role 
in influencing an individual’s decision-making process, attitude, and actual behavior (Yuan & Dennis, 2016), 
we believe that we cannot completely understand individuals’ intention to continue to use HIT without 
understanding the effect that health emotion has on the HIT decision-making process. 

2.3 Individual Personality Traits 

According to the American Psychology Association (2019), personality refers to three different 
characteristics: thinking, feeling, and behaving. McDougall (1932) first identified five distinguishable 
personality factors: intellect, character, temperament, disposition, and temper. Digman (1990) developed 
the five-factor model using the personality factors that researchers have proposed over the years. 
Researchers have explored the impact that personality traits have on how individuals use technology in 
other areas such as job performance (Barrick & Mount, 1991), online banking (Ko, Mancha, Beebe, & Yoon, 
2012; Yoon & Steege, 2013), online commerce (Zhou & Lu,2011), and computer self-efficacy (Saleem et 
al., 2011). IS researchers believe that user differences such as cognitive styles and personality traits can 
affect how users use technology (Bariff & Lusk, 1977; McElroy et al., 2007) and that such differences could 
affect user satisfaction with a system and, therefore, system effectiveness eventually (Robey, 1983). In 
exploring online banking adoption, Ko et al. (2012) and Yoon and Steege (2013) used the five-factor model 
of personality to examine individuals’ decision to use online banking. Ko et al. (2012) found that openness 
impacted Internet banking use but agreeableness did not. Yoon and Steege (2013) determined that 
openness influenced students’ decision to use online banking. All personality traits significantly impact trust 
and, subsequently, the behavioral intention in the online commerce adoption environment (Zhou & Lu, 
2011). Zhou and Lu (2011) also found that the personality traits except for conscientiousness and openness 
affect perceived usefulness.  

In proposing their theory of reasoned action (TRA) Ajzen and Fishbein (1980) indirectly posited that 
personality would only impact behavior indirectly through constructs such as attitude. Specifically, Ajzen 
and Fishbein (1980) believed that extraversion and neuroticism would influence an individual’s decision to 
behave such as using a technology. Devaraj, Easley, and Crant (2008a) determined that the big five 
personality constructs impacted usefulness and/or subjective norm in a modified technology acceptance 
model when individuals use collaborative technology. However, studies on HIT use rarely include 
dispositional factors, such as individuals' personality traits. In fact, the existing literature has largely ignored 
personality traits in profiling patient portal users. Tavares and Oliveira (2016) expressed concern since their 
model explained almost 26.8 percent of the variance in EHR portal technology use; however, individuals 
still adopted patient portals at an extremely low level and used it infrequently. 

3 Research Model Development 

Since healthcare technologies differ from other technologies, understanding why patients adopt and use 
healthcare technology remains an important and ongoing research topic not only for health and psychology 
researchers but also for IS researchers. Researchers examining technology adoption in other areas have 
included human psychology. We investigate patients’ intention to continue to use patient portal technology 
from human personality psychology and health psychology perspectives. Informed by existing literature and 
emotional dissonance theory, we depict the research model and hypotheses we propose in Figure 1. In this 
study, we use intention to continue to use a patient portal as the dependent variable. In this section, we 
discuss these constructs and their importance when considering individuals’ intention to continue to use 
healthcare technology. 
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Figure 1. Research Model for Identifying the Role of Health Emotion and Personality Traits 

3.1 Individual Health Emotion and Emotional Dissonance Theory 

Emotions play an important role in human behavior, and individuals often use emotions in the decision-
making process as a guide to form their judgment capabilities (Clore et al., 2001), which can influence their 
attitude and behavior. While attitude represents one’s pre-dispositional view or an evaluative continuum of 
a behavior (Allen et al., 1992), emotion, represents feeling(s) about one’s ongoing state or situation (Barrett, 
Mesquita, Ochsner, & Gross, 2007). Yuan and Dennis (2016) argued that individuals' emotions (positive or 
negative feelings) influence their attitude (e.g., perceive something as higher or lower value than otherwise). 
Factors related to events, situations, or environments can trigger emotions in individuals. When dealing with 
health, people often express a reaction to their illness using mood or emotion, which can influence their 
behavior. Health psychologists believe that emotion influences individuals’ behavior and that each distinct 
emotion provokes distinct motivational goals that directly influence their behavior (Bowman et al., 2006). In 
other words, individuals’ emotional state can influence and act as a catalyst to change their behavior. For 
example, an individual may have an unfavorable perception (i.e., attitude) toward taking medication; 
however, severe illness causes stronger emotions, which will influence their attitude toward taking 
medication to recover from the illness. Thus, we believe that health emotion plays an essential role in 
influencing people's inclination toward using healthcare technology. 

Health emotion is a health psychology-based factor that represents how much concern an individual 
generally feels for their ongoing health situation (Leventhal, Meyer, & Nerenz, 1980). Bowman (2001) 
argued that most people would have an emotional response to their illness. The magnitude of the emotional 
response depends on an illness’s severity such that a more severe illness will produce a stronger emotional 
response. Accordingly, the more health-related emotions individuals have, the more concern they will likely 
develop related to their health. Furthermore, they will likely do something to address the situation. Thus, the 
severity of individuals’ illness affects their mood and health emotional state. In other words, an individual 
with a more severe sickness (an indication of poor health condition) will result in stronger health emotions. 
In contrast, most individuals with a less severe illness (a sign of better health condition) feel less health 
emotions concerning their health condition. Therefore, health emotion serves as an important indicator that 
implies how ill individuals perceive their immediate health status and plays an essential role in health-related 
decisions (Anderson & Agarwal, 2011).  

Studies have suggested that emotions play a central role in the human motivational system and constitute 
a significant factor in determining individuals’ sustaining behavior. Patients’ health emotion influences their 
decision to adopt and use HIT, though few empirical studies have considered it thus far. In a rare study on 
health emotion, Anderson and Agarwal (2011) reported that individuals who experience poor health tend to 
have stronger health emotions. As emotions tend to produce some kind of behavioral homeostasis, 
individuals with strong health emotions will be more health conscious and place emphasis on improving 
their health, which may increase how frequently they use technology.  
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Emotional dissonance (Hochschild, 2012) is analogous with cognitive dissonance (Festinger, 1957). Thus, 
while cognitive dissonance refers to the inconsistency between an internal state and behavior, emotional 
dissonance refers to when individuals hold one or more contradictory emotions (i.e., emotional discrepancy). 
In this state, they will feel uncomfortable and experience dissonance. The cognitive dissonance theory that 
Festinger (1957) introduced posits that individuals have an inner drive to keep their cognition and behaviors 
in harmony and avoid conflicting cognitions or disharmony (i.e., dissonance) to maintain cognitive 
consistency. At its essence, the theory posits that dissonance or inconsistency between cognition and 
behavior produces a sense of mental discomfort that causes people to take action that change and eradicate 
the dissonance. For example, when people smoke (behavior) and know that smoking negatively impacts 
their health (cognition), they are cognitive dissonant. Both emotional and cognitive dissonance theories posit 
that experiencing dissonance leads to an uncomfortable state of tension that stimulates individuals to take 
action to reduce that tension (Pugh, Groth, & Hennig-Thurau, 2011). In our context here, we argue that, due 
to emotional dissonance theory, people will want to keep harmony between their current emotional state 
(poor health) and aspiring emotional state (good health), which will result in increasing their intention to use 
patient portal technology. In other words, when people experience stronger health emotions due to poor 
health (emotion), they will attempt to take action by continuously using a patient portal (behavior) to reduce 
the tension and keep their emotions and behavior in harmony. Because Lu and Zhang (2019) determined 
that patient portal use improves individuals’ communication and compliance with their physician and, 
subsequently, their health (Lu & Zhang, 2019), we posit that patients’ intention to continue to use patient 
portals will enhance the harmonious state between their behavior and emotion. Thus, stronger health 
emotions (an indication of poor health) will increase patients’ intention to continue to use a patient portal. 
Thus, we hypothesize: 

H1:  Individuals with stronger health emotions intend to continue to use patient portals more than 
individuals with weaker health emotions. 

3.2 Five-Factor Model of Personality 

Research on personality traits has often used the five-factor model (FFM) (McCrae & John, 1992) to explain 
individual behavior. The literature on IT adoption has extensively studied personality traits (Devaraj, Easley, 
& Crant, 2008b; Korukonda, 2007; Korzaan & Boswell, 2008; McElroy et al. 2007; Thatcher & Perrewe, 
2002) and found that factors such as individuals’ reactions to technology and personality often play an 
integral role. IS researchers believe that individual cognitive differences relate to system success because 
individual differences affect user satisfaction with a system and, ultimately, its effectiveness (Robey & 
Markus, 1984; Zmud, 1979). In this study, we investigate the role of personality traits using FFM, which 
comprises five personality traits (i.e., conscientiousness, extraversion, neuroticism, openness to 
experience, and agreeableness, in the healthcare portal context. 

Conscientiousness refers to conformity or dependability and connects to an individual’s degree of self-
control. Highly conscientious individuals often have more motivation to achieve and improve their situation. 
In contrast, individuals low in conscientiousness lack dependability and have low motivation, poor self-
control, and a cynical outlook. Conscientious individuals have high self-efficacy (Judge, Jackson, Shaw, 
Scott, & Rich, 2007; Saleem et al., 2011) and tend to enjoy technology (Hunsinger, Poirier, & Feldman, 
2008), especially if they perceive it as beneficial (Devaraj et al., 2008a). Individuals with higher 
conscientiousness are more likely to have a positive experience with technology and more likely to enjoy 
using technology in their daily life. We predict that we can extend this finding into the healthcare context 
such that conscientious people will try to improve their health situation by exploiting available technologies. 
Thus, we hypothesize: 

H2a: Individuals high in conscientiousness intend to continue to use patient portals more than 
individuals low in conscientiousness.  

Extraversion refers to the extent to which individuals engage with their environment. Individuals high in 
extraversion are social, active, and outgoing and place a high value on close and warm interpersonal 
relationships (Watson & Clark, 1997). On the other hand, an individual low in extraversion (which 
researchers refer to as introverted individuals) are unsocial and self-centered and lack interpersonal 
relationships. Extraverted individuals tend to have positive attitudes toward technology use (Hunsinger et 
al., 2008) and an inclination to engage more with technology, such as communicating with others via social 
networks (Kock & Moqbel, 2019; Kock, Moqbel, Barton, & Bartelt, 2016; Moore & McElroy, 2012; Moqbel & 
Iftab, 2015; Moqbel & Nah, 2017; Moqbel, Nevo, & Kock, 2013) and mobile phones (Bianchi & Phillips, 
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2005). Thus, we argue that extraverted individuals are more likely to continue to use technology for their 
healthcare needs as such technology helps them to communicate information. Thus, we hypothesize: 

H2b:  Individuals high in extraversion intend to continue to use patient portals more than individuals 
low in extraversion. 

Insecurity, anxiousness, and hostility characterize neuroticism (or emotional instability) (Devaraj et al., 
2008b). Individuals high in neuroticism generally exhibit anxious, nervous, and tense behavior (Korzaan & 
Boswell, 2008; Osatuyi, 2015). In contrast, individuals low in neuroticism exhibit more stable and confident 
behavior (Devaraj et al. 2008a). In the technology-adoption context, researchers have linked neuroticism to 
computer anxiety (Korukonda, 2007; Korzaan & Boswell, 2008), a lack of social skills, and the avoidance of 
situations that require taking control (Judge, Locke, & Durham, 1997). Technology threatens highly neurotic 
individuals, and they avoid it to reduce anxiety. For example, Amiel and Sargent (2004) found that low 
neuroticism was associated with greater use of text-messaging tools. Thus, we hypothesize: 

H2c:  Individuals low in neuroticism intend to continue to use patient portals more than individuals 
high in neuroticism. 

Individuals who exhibit openness also demonstrate stronger curiosity, directness, and willingness to accept 
or explore new experiences without reservations. Individuals high in openness are more accepting and less 
judgmental. They tolerate change and readily embrace new ideas (Korzaan & Boswell, 2008). Conversely, 
individuals low in openness tend to lack curiosity and exhibit resistance toward new experiences. 
Researchers have found openness to influence the extent to which individuals use technology such as the 
Internet (McElroy et al., 2007), social media (Correa, Hinsley, & De Zuniga, 2010), alternate communication 
methods (Ross et al., 2009), and new technology (Devaraj et al., 2008a). Based on the literature, we believe 
individuals high in openness will more likely adopt and use healthcare technology, such as a patient portal 
system. Thus, we hypothesize: 

H2d:  Individuals high in openness to new experiences intend to continue to use patient portals more 
than individuals low in openness. 

Agreeableness describes individuals’ interpersonal capability to accommodate, sympathize with, and trust 
others. While highly agreeable people tend to be flexible and willing to change, individuals low in 
agreeableness can be difficult to work with and tend to resist changing situations. Agreeable individuals are 
social and have many friends. Studies suggest that agreeable individuals will be more persistent in using 
challenging-to-access technology (Wyatt & Phillips, 2005). Thus, highly agreeable individuals’ more 
forgiving and tolerant nature may allow them to use systems even when technological issues frustrate and 
challenge them, such as when one must remember a password or request a password reset (Landers & 
Lounsbury, 2006). Thus, we hypothesize:  

H2e: Individuals high in agreeableness intend to continue to use patient portals more than individuals 
low in agreeableness. 

Researchers have established that individuals’ emotions related to their health play an essential role in how 
they deal with various health-related decisions (Anderson & Agarwal, 2011). Individuals tend to focus on 
improving their health using any means when ill. As poor health conditions lead to stronger health emotions, 
we predict that stronger health emotions will modify the relationships between individuals’ personality traits 
and their intention to continue to use healthcare technologies in efforts to improve their health condition 
except for individuals with a strong inclination toward neuroticism. We expect that stronger health emotions 
will moderate the relationship between neuroticism and intention to continue to use such that stronger health 
emotions will weaken the negative relationship. Thus, we hypothesize: 

H3a: Health emotion moderates the relationship between conscientiousness and intention to continue 
to use such that strong health emotions strengthen the relationship. 

H3b: Health emotion moderates the relationship between extraversion and intention to continue to 
use such that strong health emotions strengthen the relationship. 

H3c: Health emotion moderates the relationship between neuroticism and intention to continue to 
use such that strong health emotions weaken the relationship. 

H3d: Health emotion moderates the relationship between openness to experience and intention to 
continue to use such that strong health emotions strengthen the relationship. 
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H3e: Health emotion moderates the relationship between agreeableness and intention to continue to 
use such that strong health emotions strengthen the relationship. 

4 Research Method 

4.1 Data-collection Procedure 

We recruited study participants from a research participant registry at a major medical center in the United 
States’ Midwest. After receiving institutional review board approval, we invited participants through emails 
to complete an online survey. We provided no monetary compensation. Since we explored continuous use 
post adoption, we screened participants to ensure we only included individuals who consented to participate, 
were over 18 years old, and indicated that they had prior experience using patient portals. The online survey 
took approximately 10 to 15 minutes to complete. Respondents participated in the survey voluntarily, and 
we assured them that we de-identified the data and would only use it for research purposes in an aggregated 
format. In total, 187 patients completed the online survey. 

4.2 Measurements 

We used established measurement items from extant studies to develop the survey instrument. We adapted 
items for personality traits from prior studies (Gu & Wang, 2009; Junglas, Johnson, & Spitzmüller, 2008; 
Korzaan & Boswell, 2008). To measure health emotions, we derived items from Anderson & Agarwal (2011) 
and Bowman et al. (2006). We used measures from Lowry, Gaskin, and Moody (2015) and Kock et al. 
(2016) to measure individuals' intention to continue to use patient portals. We present the survey items in 
Appendix A. We used a five-point Likert scale for all measurement items (1 = strongly disagree, 5 = strongly 
agree). We also used several control variables (age, race, gender, income, marital status, education, and 
prior computer experience) to rule out any alternative ways to explain our results. Past studies have reported 
that gender, age, and education play a role in technology use (Dinev & Hart, 2004; Herath & Rao, 2009; 
Johnston & Warkentin, 2010). Other studies have found income (Dinev & Hart, 2004; Kim, Ferrin, & Rao, 
2008; Pires, Stanton, & Eckford, 2004) and prior experience with technology (Johnston & Warkentin, 2010; 
Kim et al., 2008) as important control variables for research on technology use. 

5 Results 

5.1 Data Analysis 

We analyzed our research model using a second-generation causal path-modeling technique, partial least 
squares structural equation modeling (PLS-SEM) (Chin, Marcolin, & Newsted, 2003; Haenlein & Kaplan, 
2004). This approach allows researchers to examine the structural equation model (SEM) for path analysis 
and measurement models simultaneously (Gefen, Straub, & Boudreau, 2000). Compared to conventional 
analysis methods (e.g., regression analysis) that disregard the interrelationships between latent constructs 
that multi-item measurement instruments measure (Chin, 1998), SEM is a statistical methodology that takes 
a confirmatory (i.e., hypothesis-testing) approach to evaluating causal relationships among latent constructs 
(i.e., a structural theory) (Byrne, 2001). PLS suits exploratory models, small sample sizes, and non-normal 
distributions (Chin, 1998; Gefen & Straub, 2005). 

We used WarpPLS 6.0 to assess the psychometric properties (internal consistency reliability, convergent 
validity, and discriminant validity) of the measurement items and the SEM analysis. In particular, we used 
WarpPLS (Kock, 2019) due to some of its advanced features that we needed in our study, such as outputs 
that enable multivariate normality and tests for multicollinearity, common method bias, and predictive 
validity. We summarize the results for the measurement model in Tables 1 and 2. The results indicate that 
our measurement instrument had acceptable reliability because composite reliability values exceeded the 
recommended threshold of .70 (see Table 1) (Fornell & Larcker, 1981). 

Discriminant validity was acceptable since the square roots of the average variance extracted (AVE) 
exceeded the correlations among latent variables (see Table 2) (Fornell & Larcker, 1981). The factor 
loadings for all items were greater than the minimum recommended threshold of 0.50, which indicates that 
our measurement instrument had acceptable convergent validity. The variance inflation factor (VIF) values 
for all the items were lower than 3.3, which suggests that multicollinearity did not pose an issue for this 
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measurement instrument. We also assessed multivariate normal distribution (normal) and found that some 
variables did not follow a normal distribution, which justified our choice to use PLS-based SEM in this study. 

Table 1. Measurement Model Summary 

Construct Item Loading Composite reliability VIF Normal 

Health emotion (HE) 
HE1 (0.876) 

0.878 1.727 Yes 
HE5R (0.893) 

Neuroticism (NEU) 

NEU1 (0.872) 

0.865 1.578 Yes NEU2 (0.864) 

NEU3 (0.736) 

Agreeableness (AGR) 

AGR1 (0.619) 

0.786 2.236 Yes 
AGR2 (0.731) 

AGR3 (0.668) 

AGR4 (0.745) 

Conscientiousness (CON) 

CON1 (0.723) 

0.842 1.971 Yes 
CON2 (0.737) 

CON3 (0.789) 

CON4 (0.773) 

Extraversion (EXT) 

EXT1 (0.902) 

0.884 1.645 Yes 
EXT2 (0.918) 

EXT3 (0.787) 

EXTR4 (0.608) 

Openness to experience (OTE) 

OTE1 (0.749) 

0.794 2.093 Yes 
OTE2 (0.741) 

OTE3 (0.712) 

OTE4R (0.595) 

Intended continuous use (ICU) 
ICU1 (0.836) 

0.831 1.676 No 
ICU2 (0.849) 

Note: all loadings were significant at p < 0.001. 
CR = composite reliability, FVIF = full collinearity variance information factor, normal = normal (robust Jarque–Bera), HE = health 
emotion, NEU = neuroticism, AGR = agreeableness, CON = conscientiousness, EXT = extraversion, OTE = openness to 
experience, ICU = intention to continue to use. 

 

Table 2. Discriminant Validity Analysis 

 HE EXT NEU AGR CON OTE IU 

HE (0.885)       

EXT -0.133 (0.813)      

NEU 0.374 -0.164 (0.826)     

AGR -0.168 0.377 -0.032 (0.693)    

CON -0.199 0.081 -0.094 0.585 (0.756)   

OTE -0.135 0.310 -0.144 0.427 0.435 (0.702)  

ICU 0.279 0.372 -0.035 0.251 0.123 0.275 (0.843) 

Note: we show square roots of average variances extracted (AVE) on the diagonal in bold. 
HE = health emotion, NEU = neuroticism, AGR = agreeableness, CON = conscientiousness, EXT = 
extraversion, OTE = openness to experience, ICU = intention to continue to use. 
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5.2 Descriptive Statistics 

Of the 187 respondents, 84 percent were white, 45.1 percent were married, 75.3 percent were female, and 
37.6 percent had a bachelor’s degree. According to U.S. demographic statistics for 2019 from the U.S. 
Census Bureau, 76.5 percent of the U.S. population are white, 48 percent are married, 50.8 percent are 
female, and 31.5 percent have a bachelor’s degree. Although our sample contained relatively more female 
respondents compared to the U.S. population, we believe that our participant sample represents the U.S. 
population well when we consider the other demographic characteristics. For example, our participants’ 
race, marital status, and educational background all align with the U.S. population’s demographic statistics. 
As we used a different scale for age compared to U.S. Census Bureau, we could not compare data based 
on age. We show the complete demographics in Table 3. 

Table 3. Demographics 

 Demographic group N Percent (%) 

Gender 
Female 141 75.3% 

Male 46 24.7% 

Age 

18-29 69 36.9% 

30 to 39 35 18.7% 

40 to 49 30 16.0% 

50 to 59 24 12.8% 

Over 60 29 15.51 

Marital 
status 

Married 85 45.1% 

Single 82 44.1% 

Divorced or widowed 20 10.8% 

Ethnicity 

White 157 84.0% 

Asian Pacific Islander 7 3.7% 

Hispanic 10 3.7% 

Black 6 3.2% 

Education 

High school diplomas 2 1.1% 

Some college 51 27.4% 

Bachelor’s degree 63 37.6% 

Masters, postgraduate, doctorates, or professional degrees 71 37.6% 

5.3 Hypothesis Analysis 

Table 4 shows the stepwise SEM analysis results, which includes the standardized path coefficients, the 
significance of the paths coefficients, and the variance (R2) that the exogenous variables explained. We first 
assessed the effect that the control variables and health emotion on intended continuous use (Model 1). 
Health emotion had a significant effect on intention to continue to use and explained 13 percent of the 
variance. The control variables were not significant. In the second step (Model 2), we added personality trait 
constructs to the previous model. We found that health emotion and all personality traits constructs, except 
for neuroticism and agreeableness, were significant and explained 35 percent of the variance in intention to 
continue to use.  

Finally, we used a final model (Model 3) to test the control variables, main effects, and moderating effects, 
which explained 40 percent of the variance in intention to continue to use. Health emotion and all personality 
traits, except for neuroticism, had a significant effect on intention to continue to use. We found significant 
results for two of our moderation hypotheses (i.e., H3a to H3e): health emotion significantly moderated the 

relationship between conscientiousness and intention to continue to use patient portals (H3a) ( = 0.12, p 

< 0.05) and the relationship between neuroticism and intention to continue to use patient portals (H3c) ( = 
0.16, p < 0.01).  
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Table 4. Path Coefficients of Stewise Structural Model Analysis 

 
 

Model 1 Model 2 Model 3 

Intention to 
continue to use 

Intention to 
continue to use 

Intention to 
continue to use 

C
o

n
tr

o
l 

V
A

R
IA

B
L

E
S

 

Age .06 n.s. .05 n.s. .07 n.s. 

Gender (female) -.06 n.s. -.03 n.s. -.04 n.s. 

Education -.09 n.s. -.011 n.s. -.011 n.s. 

Race (white) .11 n.s. .10 n.s. .10 n.s. 

Computer experience -.07 n.s. -.09 n.s. -.09 n.s. 

Income .01 n.s. -.04 n.s. -.04 n.s. 

     

M
a

in
 e

ff
e
c
ts

 

Health emotion (HE) .30*** .33*** .30*** 

NEU  -.09 n.s. -0.09 n.s. 

AGR  .09 n.s. 0.12* 

CON  .13* 0.12* 

EXT  .26*** 0.25*** 

OTE  .19** 0.13* 

     

In
te

ra
c
ti
o
n

 

e
ff

e
c
ts

 

NEU x HE → IU   0.16* 

AGR x HE → IU   -0.07 n.s. 

CON x HE → IU   0.12* 

EXT x HE → IU   0.01 n.s. 

OTE x HE → IU   -0.01 n.s. 

 R2 .13 .35 .40 

Note: *p < 0.05, **p < 0.01, ***p < 0.001, n.s.: not significant 
HE = health emotion, NEU = neuroticism, AGR = agreeableness, CON = conscientiousness, EXT = 
extraversion, OTE = openness to experience, ICU = intention to continue to use. 

When comparing the R2 values for Model 2 to Model 1, the explained variance in intention to continue to 
use increased by 22 percentage points (from 13% to 35%). When comparing the R2 values for Model 2 to 
Model 3, the explained variance in intention to continue to use increased from 35 percent to 40 percent. In 
other words, personality traits improved the variance in intention to continue to use the model by 22 percent. 
The moderation effects of health emotion increased that value further by five percent to 40 percent. 

6 Discussion 

Researchers have extensively explored the impact that personality traits have on how individuals use 
technology in other areas such as collaborative technology (Devaraj et al., 2008a, 2008b); computer anxiety, 
privacy concerns, and computer self-efficacy (Korukonda, 2007; Korzaan & Boswell, 2008; Saleem et al., 
2011; Thatcher & Perrewe, 2002); Internet use (McElroy et al., 2007); and online banking adoption (Ko et 
al., 2012; Yoon & Steege, 2013). Although these studies have helped explain the factors that influence non-
HIT adoption, we do not sufficiently understand the influence that patient characteristics such as personality 
traits have on their intention to continue to use HIT. Similarly, the literature has clearly established emotion’s 
importance in the decision-making process. For example, Druckman and McDermott (2008) reported that 
emotion had a significance influence on whether individuals make risky choices and called for integrating 
emotions into different research areas. Gruzd (2013) reported that emotion is one of the strongest motivators 
for why individuals use Web technologies (i.e., online communities). Yuan and Dennis (2016) have also 
reported the significance of emotion in technology-adoption decisions, such as in online auctions. In some 
empirical studies, scholars studied patient health status (Xiao et al., 2014) and health emotion (Anderson & 
Agarwal, 2011) in the broad HIT-adoption context; however, researchers have not yet studied whether these 
factors influence individuals’ intention to continue to use HIT. Our study complements the existing HIT 
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literature by presenting a holistic model of patient-specific predictors, which includes health emotion, 
personality traits, and their interaction terms, which combined explained 40 percent of individuals’ intention 
to continue to use HIT.  

With this study, we make several important research contributions. First, via the lens of emotional 
dissonance theory, we found that health emotion had a positive effect on individuals’ intention to continue 
to use patient portals (RQ1), which implies that individuals who experience strong health emotions 
(otherwise translated as poor health) will be more likely to use patient portals in an effort to improve their 
health. For individuals with health issues, their health emotion superseded all other factors when they made 
healthcare technology-usage decisions. This study extends our limited knowledge on the role of health 
emotion. Emotions greatly affect human decision making in various contexts (Druckman & McDermott, 2008), 
and researchers have studied patients’ emotions related to their health in the healthcare context (e.g., Bowman 
et al., 2006; Trumbo, McComas, & Kannaovakun, 2007) but rarely in the HIT context. Anderson and Agarwal 
(2011) have argued that HIT represents a unique context because it involves “the emotion linked to one’s 
medical state”. A rare empirical study on health emotion and technology adoption, Anderson and Agarwal 
found that health emotion significantly impacts patients’ willingness to disclose health information. Our 
empirical research contributes to the health emotion literature by adding insights into the role that health 
emotion plays in patients’ intention to continue to use patient portals. 

Second, our results provide substantial evidence that support the assertion that individuals’ personality traits 
explain the variation in their intention to continue to use patient portals (RQ2). In response to calls for 
research to examine the role of personality traits and their influence on IT situation-specific individual 
differences (Saleem et al., 2011; Thatcher & Perrewe, 2002), we investigate individuals’ dispositional factors 
in the continuous technology-usage context and expand the existing research on personality traits and their 
impacts on technology-use behaviors. Our results show that personality traits increased the variance in 
intention to continue to use by 22 percent beyond the variance that health emotions alone explained. Four 
of the five personality traits we studied (i.e., agreeableness, conscientious, openness to experience, and 
extroversion) had a significant role in individuals’ decision to continue to use patient portals. One finding 
indicates that individuals high in extroversion are more likely to take advantage of the patient portal 
technology due to their assertive personality. Highly conscientious individuals are more likely to use the 
patient portal technology due to their careful, organized, responsible, and achievement-oriented personality 
(Gu & Wang, 2009; Junglas et al., 2008; Korzaan & Boswell, 2008). Individuals with these traits are more 
likely to use patient portals to attend to their own health responsibly. Open-mindedness characterizes 
individuals high in openness to experiences (Korzaan & Boswell, 2008). Therefore, individuals high in 
openness were more likely to continue to use patient portals in the future. These results concur with Ko et 
al. (2012) and Yoon and Steege (2013) who also found that openness influenced the likelihood that an 
individual would use online banking. More agreeable patients who typically have a forgiving and tolerant 
nature (Landers & Lounsbury, 2006) tend to use and continue to use patient portals. These results directly 
contradict Ko et al.’s (2012) findings that agreeableness does not influence an individual’s decision to use 
online banking. However, our results did not support the direct impact of neuroticism. Indeed, we found that 
neuroticism had a negative and significant influence only when individuals had weak health emotions (see 
Figure 2). Perhaps, these results are compounded because some individuals experience strong health 
emotions for non-catastrophic or non-life-threatening health conditions due to their mental instability. Our 
findings suggest that the well-documented body of literature on personality traits also has a significant 
ramification on HIT-use behavior. 

Third, we assessed whether the big five personality traits moderated the effect that health emotions had on 
intention to continue to use patient portals (RQ3). We found that neuroticism strongly reduced individuals’ 
intention to continue to use patient portals when they had weak health emotions. In other words, weak health 
emotions positively moderated (or weakened) the negative relationship between neuroticism and intention 
to continue to use patient portals. As for why, individuals with weak health emotions are usually healthier 
and, thus, may believe that they do not need to use portal portals to monitor their health. In contrast, when 
users experienced strong health emotions, the negative effect that neuroticism had on intention to continue 
to use patient portals diminished. In other words, individuals in good health (who experienced weak health 
emotions) and who were stable, confident, in control, and well adjusted (low neuroticism) (Devaraj et al., 
2008a) preferred to use patient portals more than individuals higher in neuroticism. We also found that 
health emotions positively moderated (or strengthened) the positive relationship between conscientiousness 
and intention to continue to use patient portals. In other words, for individuals with strong health emotions 
(poor health), conscientiousness strongly increased their intention to continue to use patient portals (see 
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Figure 3). Thus, we augment the post-technology-adoption literature by examining the interplay between 
patients’ personality characteristics and their health emotions. 

 

Figure 2. Moderation of Health Emotion on the Relationship between Neuroticism and Intention to Continue 
to Use Patient Portals 

 

 

Figure 3. Moderation of Health Emotion on the Relationship between Conscientiousness and Intention to 
Continue to Use Patient Portals 
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Wilson and Djamasbi (2015) explained that we need to consider the interaction between users (e.g., patients 
and caregivers) and HIT, especially in a health HCI domain. They argue that health HCI research covers 
three major axes: users, technology, and the environment. One can categorize users as healthcare 
professionals or patients/caregivers. Technology attributes that can be categorized into either general-
purpose IT and specialized health IT include technology type, physical attributes (e.g., size, shape, etc.), 
access/interaction type, and functionality. The environment refers to conditions under which individuals use 
technology, and one can categorize it as clinical or non-clinical. One can use the framework to contextualize 
health HCI studies. Accordingly, we can categorize our study as analyzing the patient/caregiver user group 
and special-purpose health IT (i.e., patient portal) in a clinical context.  

Fourth, with this study, we contribute to the health HCI literature by expanding our knowledge of user 
characteristics and providing insights into the role that health emotion, personality traits, and the interaction 
between them play in individuals’ intention to continue to use patient portals. We contribute to the literature 
by addressing Wilson and Djamasbi’s (2015) call for more research on health HCI. 

This study has practical implications as well. Our findings can help practitioners who implement patient 
portal systems to increase patient enrollment and target this technology to patients according to their traits 
to encourage continued engagement. Our findings suggest that patient portal vendors need to develop 
applications that personalize healthcare delivery and practice based on patients’ needs and preferences. 
Vendors can provide users with a system tailored to their personality and their health needs given the fast-
paced advances in AI and big data analytics technologies. Better understanding the effect that personality 
has on HIT continuous use will allow healthcare organizations and HIT vendors to target their systems and 
services to specific patients. Therefore, vendors and organizations that understand how their patients' 
personalities and health emotions impact how they use these systems may have a competitive advantage 
over others who do not. 

7 Limitations and Future Research 

Like all empirical investigations, this study has some limitations. First, since we adopted a cross-sectional 
study design, we cannot establish a definitive causal relationship between the exogenous and dependent 
variables. Thus, future research may analyze longitudinal data to support causal relationships. Second, we 
used perception-based and self-reported data. Future efforts should explore more objective-based data 
such as patient's login frequencies, use time, and so on. Researchers may also want to control for the 
severity of patients’ illnesses in future studies. In the US, the Health Insurance Portability and Accountability 
Act of 1996 (HIPAA) requires that patients have access to their health records. Merely providing access to 
health records through a portal does not truly address this directive if patients do not continue to use it. 
Thus, researchers need to investigate what factors influence and encourage patients to continue to use 
healthcare technologies, which include patient portals. Better understanding patient portal user 
characteristics may lead to future research on patient portals that uses a more design- or user experience-
based approach, which could enable better design, technology experience, and increased adoption. It also 
would be interesting to see future studies that explore using artificial intelligence (AI) (Eglash et al., 2019; 
Robert et al., 2020a; Robert, Pierce, Marquis, Kim, & Alahmad, 2020b) to capture patients’ personality traits 
using a design science approach, which would enable vendors to customize their systems according to 
patients’ personalities. Researchers have suggested that privacy and trust connect closely to HIT-use 
behaviors. Campbell (2019) determined that individuals were more likely to share personal information in a 
business-to-consumer environment if trust existed in the relationship. Future research should perhaps 
explore how trust impacts whether individuals continue to use patient portals as Campbell (2019) has noted.  

8 Conclusion 

We need to understand individual differences in technology adoption and continuous use as these 
differences affect individuals’ behavior towards technology (Anderson & Agarwal, 2011; Bariff & Lusk, 1977; 
McElroy et al., 2007; Robey, 1983). We also need to understand individual differences for patient portal 
continuous use as well. We found that user personality traits captured using FFM and user health emotion 
and their interaction play an important role in individuals’ intention to continue to use patient portals through 
the lens of emotional dissonance theory. Our findings provide healthcare organizations with an integrated 
view of patient portal use behavior and indicate that they may use knowledge about users’ characteristics 
or health emotion to increase patient enrolment and engagement by better targeting their services and 
products to specific patient populations.  
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Appendix A: Construct Measurement Instrument 

We used the questions below to collect data related to the indicators of the latent variables. We used a 
Likert-type scale for the questions (1 = strongly disagree, 5 = strongly agree). 

Health emotion (HE) 

HE1: I am unhappy about the present state of my health. 

HE2(R): In general, I consider my current health to be excellent. 

Extraversion (EXT) 

EXT1: I consider myself as someone who is talkative. 

EXT2: I consider myself as someone who is outgoing. 

EXT3: I feel comfortable around people. 

EXT4(R): I don’t like to draw attention to myself. 

Neuroticism (NEU) 

NEU1: I get nervous easily. 

NEU2: I worry about things a lot. 

NEU3: I change my mood a lot. 

Conscientiousness (CON) 

CON1: I consider myself as reliable/dependable. 

CON2: I like to pay attention to details. 

CON3: I like to make plans and follow through. 

CON4: I like to do things efficiently. 

Openness to experience (OTE) 

OTE1: I always have new ideas. 

OTE2: I consider myself open to new experiences. 

OTE3: I am quick to understand things. 

OTE4(R): I am generally hesitant to try out new technology. 

Agreeableness (AGR) 

AGR1: I consider myself as helpful and unselfish with others. 

AGR2: I sympathize with others’ feelings. 

AGR3: I generally consider myself a trusting person. 

AGR4: I like to make people feel at ease. 

Intended continuous use (ICU) 

IU1: I would use a patient portal for my future healthcare needs. 

IU2: I intend to use the patient portal in the following weeks. 
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