Association for Information Systems

AIS Electronic Library (AISeL)

Pacific Asia Conference on Information Systems

PACIS 1997 Proceedings (PACIS)

December 1997

Assessment Model for Software Maintenance
Tools: A Conceptual Framework

M. Khan

Universiti Brunei Darussalam

M. Ramakrishnan

Universiti Brunei Darussalam

Bruce Lo
Southern Cross University

Follow this and additional works at: http://aisel.aisnet.org/pacis1997

Recommended Citation
Khan, M.; Ramakrishnan, M.; and Lo, Bruce, "Assessment Model for Software Maintenance Tools: A Conceptual Framework" (1997).

PACIS 1997 Proceedings. S1.
http://aisel.aisnet.org/pacis1997/51

This material is brought to you by the Pacific Asia Conference on Information Systems (PACIS) at AIS Electronic Library (AISeL). It has been
accepted for inclusion in PACIS 1997 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please

contact elibrary@aisnet.org.

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fpacis1997%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis1997?utm_source=aisel.aisnet.org%2Fpacis1997%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis1997%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis1997%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis1997?utm_source=aisel.aisnet.org%2Fpacis1997%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis1997/51?utm_source=aisel.aisnet.org%2Fpacis1997%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Assessment Model for Software Maintenance Tools:
A Conceptual Framework

Md., Khaled Khan
M. K. Ramakrishnan
Department of Mathematics
Universiti Brunei Darussalam
BSB 2028; Brunei Darussalam
email: khaled@ubd.edu.bn
Fax:: 673-2-249502

Bruce Lo
Centre for Computing and Mathematlics
Southern Cross University
Lismore, NSW, Ausiralia 2480
email: blo@scu.edu.al
Fax: +61 66 221724

Executive Summary

With the rapid development in the field of software engineering and the increasing recognition
of the complexity of the software maintenance process, the quality of maintenance tools and
the procedure to measure those quality factors will need to be established. There are two
aspects involved in selecting quality maintenance tools: to establish relevant tool-selection
criteria and to provide methods for measuring these criteria. This work deals mainly with the
second aspect. The main objective of this paper is to introduce an assessment model for the
selection of soffware maintenance tools in terms of quality and productivity. In this regard, a
modified multi-element component comparison and analysis (MECCA) model is proposed.

The paper suggests that three major steps should be followed before the actual tool
assessment process. These steps are: defining the maintenance goals, gathering information
about the tools, and selecting candidate tools. The maintenance goals shouid include not only
the technical needs but the economic and strategic aspects as well. The criteria for tool
selection will then be based on these maintenance goals.

The proposed assessment model has three major components: a hierarchy of aftribute-
classes, a percentage weighting scheme, and a numeric scoring for the final attribute
subclasses. The attributes of the maintenance tools can be categorised into different attribute-
classes and each of these attribute-classes can have subclasses according fo the structuring
scheme. The structure can be modified or reorganized according to the practitioner's specific
preferences and project goals. The ultimate attribute subclasses are &ssigned numeric scores
which measure their perfermances and functionality. The final score will be calculated for a
specific maintenance tool by means of a weighted average. The scores then can be used to
rank a given set of fools. Finally, a tool with the highest rating will be selected for the

maintenance project.

To perform this assessment process, no tools expert is needed. This model allows information
systems practitioners fo define their own needs and preferences according to the specific
application of their projects. The flexibility of this model will easily allow the practitioners to
express their decisions easily. However, this approach is not just limited to maintenance tool
assessment, rather the method may be used for evaluating cther software tools as well.

1. Introduction
Software maintenance has increasingly been recognised as occupying a central role in the

software process. In many IS departments, maintenance problems increase rapidly with the
passage of time. Software maintenance has been considered as the major cause of software

527

development backlogs in the past (IEEE conferences 1980-1994). The natural question is why
software maintenance problems are so difficult to deal with? The. answer lies on various
factors such as lack of management understanding and supports, incompatible design
documents of the system, lack of well-defined maintenance methodology, and lack of
assessment procedures in selecting appropriate maintenance tools.

It is generally accepted that appropriate maintenance tools can have significant impacts in
assuring the quality of a modified information system and the productivity of the system
maintenance process. Recent literature ({IEEE conferences 1990-1994) indicate that software
practitioners are paying increasing attention to software maintenance tools. It is recognised
that developers can achieve greater system maintenance productivity and refiability by
employing appropriate maintenance toofs. It is also noted that in some cases software
maintenance projects were not fully successful due to the use of inappropriate maintenance
tools. Too often wrong fools are used to solve maintenance problems. Even right tools can be
used to solve the wrong maintenance problem (Champoli 1990). Organisations may have a
fair knowledge of the strengths and weaknesses of various classes of general purpose
software tools, but for maintenance purpose they must fully understand the specific purpose
tools. In the past, it was often assumed that maintenance had only to do with correcting errors.
This restricted view of maintenance proved inadequate because software changes may arise
due to changes in the technology, growing complexity of the systems, new requirements from
the users and changes in the business environment (Fuggetta 1993)}. It is, therefore, important
to set up a systematic approach that will allow the maintainer to assess a tool for specific
application and maintenance situations. There are several CASE tools available with some
maintenance functions. Some are good for some applications while some others perform well
in other situations. it is obviously risky to select a maintenance tool in an arbitrary manner. In
this paper, we attempt to mtroduce a systematic assessment approach that is both ﬂexrble and
easy to apply.

2. Maintenance Tools : : : :

In software maintenance a wide range of tools is used such as code analyzer, reverse
engineering tools, program debugger, program slicer, testing tools, CASE tools, interactive
maintenance tools ete. Thase tools may be classified differently. The reader is referred to the
articles by Fuggetta, Sharon and Chumra(1993,1994) for a more detailed discussion of the
classification of software engineering tools. At present relatively few commercial maintenance
tools are available on the market. However, there are con51derable researc:h efforts being
directed in this area.

To evaluate maintenance tools, it is necessary to examine the main functions of these tools.
Generally speaking, the functronahty of software maintenance tools may mclude the foliowing
among others:
¢ Program understanding: This i :s an importarit function of a mamtenance tool. Th;s function
- can provide two types of program’ knowledge: syntactical knowledge; and - semaritic
knowledge. Syntactical Knowledge contains, for example call sequences, structured charts,
" control structure, variable declarations stc. Semantic knowledge consists of a description
" of the purpose of modules, purpose of calls, intentions of code fragments ard s6 on.
Progtam understanding tools can be further subdivided into two types: analysis-orieritad
- tools, and code-oriented tools. Mayrhauser (1990) has provided fruther treatment on thls
subject.
+ Ripple effect analysis: When a system ar a part thereof is modified, secondary effects on
~ the system are not avoidable. Ripple effect analysis. aims to trace the extent of these
" secondary effects. Thrs function should not only trace the side effects in the program due
" to code modification, it should also be able to analyse the “ripple” effects at a. h|gher
abstraction level, for example among the design specifications. :
+ Software retesting: Software retesting functions are not very different from the ong:nal'
software testing during the initial software development phase. Such fools should
incorporate knowledge gained in previous testing as well as information provided by the
- ripple effect analysis process. Thus it should lnclude regressmn testlng, targeted. path
" testing, stress testmg and so on.

528 .

+ Knowledge redocumenting: A clear and precise documentation of the modified system s
crucial to software maintainability. A major problem that faces many legacy systems is the
lack of adequate documentation of the system modification. This function helps to update
existing documents to ensure that all changes to the software are properly reflected in its
documentation.

+ Information repository: Two types of information are important: history database which
provides a recorded history of the system modifications, and semantic database which
preserves the integrity and currency of the system characteristics.

+ Display function: This provides the capabilities to dispiay In textual and graphical format of
the program information as a resuit of the maintenance modification. The user will also be
able to navigate or browse the existing program structure using maintenance tools. The
tool must have the capability to represent and examine data and program structure from
different viewpoints.

+ Tool interconnections: According to IEEE Standard 1175 (1991) tool interconnections are
considered important during tool evaluations. Too! interconnections affect how a tool
works in an organisation, i.e. how it communicates with other existing tools used by the
organisation. If the too! interconnection aspects are neglected in the ool evaluation phase,
the likelihood of successful toal adoption will be minimised.

Based on a classification scheme similar to the above, it is clear that the functions of any
maintenance tool can be represented as a multiHevel structure illustrated in Figure 1 in the

next page.

529

attribute classes | Cattribute subclasses) attribute subclasses

| Interface fnan-machine interface [menu-driven
_ window-based
interface to other tools
fnput/output functions editing capabilities
display capabilities . textual layout
graphical layout
- [Program understanding capturing syntactical call graph
knowledge
' control structure
|| variable declaration
|| capturing semantical call purpose
knowledge
| module goal
1 Retesting | module retesting
l_ regression testing

— | Ripple effects tracing |

Figure 1: Structure of Atfribute Classes and Subclasses of Maintenance Tools

However, not all of these functions are available in a single maintenance tool. Therefore, it is
impartant to select the tool which serves best to the maintenance pregrammers for a specific
types of application. We shall now proceed to propose an evaluation and selection procedure.

3. Three important considerations
The foliowing three steps are important in the evaluation of maintenance tools.

Step 1: Definition of maintenance goals. The first and most important step is to identify the
exact requirement of the project. Different projects may have different objectives depending
on the domain of application, complexity of the system, and the development environment. To
evaluate a maintenance tool, it is necessary to measure the fool's capabilities against the
actual project requirements which are rephrased as the maintenance goals. This may then

530

lead to a clearer definition of the goals of software maintenance in the context of the current
project.

It has been reported that in many cases, organisations purchase software tools without a
clearly defined set of goals (Chikofsky 1988). Users as well as designers sometimes either do
not know or fail to specify what services or functions they actually expect from the system.

A well-planned goal analysis will prevent various types of purchasing mistakes. There are two
important aspects to be considered: what the organisation means by “maintenance” and what
"activities” are to be included in this process. In establishing the maintenance goals, guality
and productivity thresholds should also be defined. The guality-assurance department in the
organisation may be consulted for this purpose, because they may have already compiled the
needed productivity and quality statistics (Poston and Sexton 1982).

Once the maintenance goals are established, then the criteria for tool selection should be
defined. The criteria based on the maintenance goals shouid include the essential
characteristics of the tools required for the maintenance purpose. The criteria must clarify the
purposes, constraints and rationale of the maintenance project. These must comprehensively
focus on the gquality, functionality and the performance of the candidate tool (Bockle et al.

1996).

In addition to these technical factors, economic and strategic aspects should also be
considered -because they cften determine the success of 2 product (Bockie et al. 1996). It
includes cost of the tool, budget available, training costs and so on. The costs vary from
vendor to vendor and tool to tool. For example, low-end personai-computer software can now
be purchased for far less than $1 per function point, whereas mainframe based software tools
are available for less than $100 per function point (Jones 1894).

Step 2: Gathering of information about the tools. In this step, the precise information about
the available maintenance tools should be obtained in terms of their functionality. Such
information can be coliected from the sales brochures, advertisements, manuals, actual
demonstrations and related literature. Detailed information about all the available functions of
each tool should be recorded and categorised. 1t is also important to find out the tradeoffs of
different classes of maintenance tools from different software companies. The demo disks
from the vendors may be collected, and these should be used fo get a better understanding of

the tool.

Another significant aspect often missing during the information gathering process is the future
applicability of the tool. The organisations must find out how flexible the tool is for changes to

the future applications (House 1985).

The functions or too!'s attributes can be divided into two groups, namely, mandatory attributes
and optional attributes.

Step 3: Selection of candidate tools. In this step, a subset of the available tools are selected
for evaluation purpose. The procedure involves comparing the goals established previously in
step 1 with the information obtained in step 2. At this stage only those tools which satisfy the
project needs will be selected. However, very detailed and thorough evaluation is not

envisaged in this step.

All these three steps are illustrated in figure 2.

531

step 1 step 3

selection of
" candidate tools

defining
maintenance goal/
. criteria ;

information i i Assessmenf |

gathering {1 method

- organisation i
_f .

-t ~
. R .

Ao N i1 Tools market 7
\ JCERE | Py _

el H R
b 17

Figure 2: Three Steps in the Evaluation of Tools.

4. Preprocess o

A preprocess is carried out to decide whether a tool is qualified for the final evaluation
process. The available atiributes of the maintenance tools, such as interface, functionalilty,
input/output etc., can be categorised into different attribute- classes and esach of these
attribute-classes can have subclasses as well Figure 1 shows an example of such a
categorisation structure with most common maintenance tools aftributes. Note that, the
attribute-class “interface” is further divided into two attribute-subclasses, namely man-
machine-interface and tool interface whilé the attribute-subclass “man-machine interface” is
itself further divided into two subclasses; “menu-driven” and “window-based’. The structure
can be modified or reorganised according to the evaluator's preferences and project goals,
However, it is important that the same structuring scheme can be used for assessing different
maintenance tools in a specific evaluation process.

A typical structuring scheme is outlined in Figure 3. Each available attribute in a specific tool
is assigned a weight depending on its importance; a higher weight reflects a higher
importance. The mandatory atfributes will fall in one category and the optional ones in
anather. Each selected tool will be assessed individually. Whenever mandatory attributes are
not present in a specific tool, the tool should not pass the evaluation threshold. Only those
tools which have passed the preprocess would be included for the final evaluation according
to the model cutiined below.

532

__the attribute-subclasses of the last stage are denoted by Yijk Imn.

attribute class [1] hitribute subclass[1,1]

attribute subclass[1,1,1]

pttribute subclass[1,2] | 00 e

attribute class [2]

pitribute subelass[2,1] |00 e

tiribute subclass[2,2] | .

Figure 3: Attribute Structuring Scheme

5. The MECCA -model

The Mulii-Element Component Comparison and Analysis (MECCA) method has been used as
a system evaluation technique (Glib 1977). The underlying idea was first proposed by
Zangemneister (1970) and it is now extensively used in decision science. The method was
also adopted in the assessment of reverse engineering tools {Skramstad and Khan 1992) but
the mathematical notations for the method were not developed at that time.

The method uses percentage weighting and a hierarchy of attribute-classes as shown in
Figure 5. A percentage weight is assigned to each component attribute-class throughout the
structure. The ultimate attribute-classes are also assigned numeric scores which measure
their performance. The MECCA model has three essential ingredients: a hierarchy of
attribute-classes, a percentage weighting scheme, and a numeric scoring for the final
attribute-subclasses. It is clear that for each stage, the sum of the weights should add up 1o
100. The assessment process is guided by a short informal list of attributes to consider.

We can now compute the final score for a specific maintenance tool by means of a weighted
average as described below. Assigning weights on attributes and the calculation procedures
are considered an easy but imporiant activity because it brings tool users {0 a consensus view
on which requirements are most important for them. The final scores can be used to rank a

given set of tools.

Computational method

We will represent various stages of the hierarchy by the letters i, j, K... m, n. For example,
suppose that there are T attribute classes in the first stage. We will denote them by [i}, i = 1,
2. ..., T. lithe i-th attribute class is divided into N; sub-attribute classes in the second stage,
we will dencte them by [i]}, j=1, 2, ..., N;. Likewise k will denote the third stage which refers
to the N; sub-attribute classes of the jth second stage of the i-th first stage and they will be
denoted by [i,j,k]. Continuing like this, the last stage of the hierarchy is represented by n and
the Nijjk...tm ultimate attribute-subclasses of the penultimate subclass [ijk,..Im] are

denoted by [ij.k,....Lm.n].
The weights for each stage will be denoted by W with the corresponding suffixes. Thus, W, - i

=12,..T wil denote the T first stage weights, Wjj : j = 1.2,..,Nj will denote the Nj second
stage weights etc., and Wijk_jmn. will be the last stage weights. The final individual scores for

533

Our ultimate weighted score is computed in an iterative way starting from the last stage. A dot
"' in the suffix indicates summation with respect to that suffix and a bar on the fop refers to
weighted mean score for that stage. The computation scheme is shown below in Figure 4;

Y;rk.._fm. = Z W’ij) Y;'jk. Jmn
Yi,‘kf = Z i im qk..'m.
m
Yijk - = Z W Yijk...!..
!

Y..= 2 WY,
i

Y = Z, WG?:
i

Figure 4: Computation Scheme

The last one gives our final weighfed mean score. If we combine them, we can write a smgle
farmula for the final weighted mean score which of course will look rather clumsy. Thus

‘—[- Z WZ Z W, fmz Wik smn Vi imn
—ZZ ZZ W:_l'k .Imn Yuk .Imn

where . W' uk..._lmn—wlwuwuk Wuk

Example

Consider the MECCA model given in Figure 5 below where the percentage weights are also
shown. It is clear that there are 11 ultimate subclasses in the hierarchy for which numerical
scores have {0 be assigned based on the information gathered in

534

attribute{1} attribute[1,1] pttribute[1,1,1] 50%

40% 60%
attribute[1,1,2 30%
atiribute[1,2]
0,
40% ptiribute]1,1,3] 20%
|| atiribute [2] attributef2,1] pttribute{2,1,11 0
0% T0%
20%
- tiri
o atmibute[22) butel2,1.3 | 309
|| attribute[3] | attribute(3,1]
0,
17% 50%
50% attribute[3,2]
|| . - |
attribute[4] attribute[4,1] !attrlbute[tl, 1,11 75%
100%
13%
| prwibutef4,1,2] | s,

|| atiribute[5] atiribute[5,1]
10% h

attributef5,2

20%

Figure 5: An example of MECCA Model

step 2 discussed earlier in section 2 about the candidate fool. The numeric score may range
from O (poor) to 10 (excellent) with 5 representing the average. Once the lowest level
attributes have been assigned scores, the primary evaluation process is complete. Then the
weights can be caiculated according to the percentage assigned to the each atiribute
component. For example in Figure 5, if attribute[3,1] is given a score of 6 and attributef3,2] is
assigned 5, then atiribute[3] at the highest level of the hierarchy will have a score (6 * 0.6) +
(5 * 0.4) = 5.6. Thus, the contribution of the attribute[3] in the final evaluation will be 56 *

0.17=0.952.

in this fashion, each chosen tool will be assessed and given a rating. The ool with the highest
rating will be finally selected for the maintenance preject.

The process of assigning numeric values to the attributes will depend on the information
gathered about the specific tool. So considerable amount of attention should be given in
collecting information on the candidate tools at the earlier stages. So step 2 discussed in the
earlier section is the most significant phases in this evaluation process.

6. Conclusion
e ANehave -introduced-an-approach -aiming-at a more-systematic-evaluation of maintenance

tools. To perform this assessment process, no tools expert is needed. This model allows
practitioners to define their own needs and preferences according to the specific application of

535

their project. The flexibility of this approach will allow the practitioners to express their
evaluation decisions more easily. The proposed model is not absolute or limited. The-attribute-
classes and their subclasses can be reorganised according to the development situation and
the complexity of the candidate software. Even new component attributes can be identified
and included in the attribute structure hierarchy. However, this approach is not just fimited to
maintenance tool assessment, rather the method may be used for evaluating other IS tools as
well.

References

Bockle, G.; Hellwagner, H.; Lepold, R.; Sandweg, G.; Schallenberger, B.;Thudt, R.; Wallstab, S.;
“Structured Evaluation of Camputer Systems” [EEE Computer, June 1996, pp. 45-51.

Champoli,R.; "Does Maintenance Really Exist?" Newslefter , European SIG in Software Maintenance
1990. :

Chikofsky, Elliat J.; “How To Loose Productivity With Productivity Tools” in Chikafsky, E. J..(ed.), CASE;
IEEE Computer Socaety press, 1988,

Fuggetta, A.; “A Classification of CASE Technotogy”, IEEE Computer, Dec. 1983, pp. 25-38.

Glib,T.: Soffware Metrics, Cambridge MA, Winthrop, 1977.

House, R; "Choosing the Right Software For Data Acquisition”, IEEE Spectrum May 1995, pp. 24-39.
IEEE Standard 1175/1991. A Tral-Use Standard Refererice Model for Compufing System Tool
Interconnections, |EEE Standards Office, NJ., 1991. .

Jones, C; "Build, Buy, or Quisource?” IEEE Comiputer, Dec. 1994, pp. 77-78.

Zangemeister, C.: Nuizwertanealyse in der Systemiechnik. Eine Methodik zru muliidimensionalen
Bewertung und Auswahl von Projektaltermativen; Munchen, 1970.

Mayrhauser, A.von;"We need Code Processing. or Should CASE Care About Maintenance?"
Proceedings of CASE '90 Workshop 19890, pp. 20-21. ' :

Poston, R.M; Sexton, M. P.; “Evaluating and Selecting Testing Tools” “Proceedings Symposium on
Assessment of Quality Sofhn/are Development Tools, IEEE Computer Society press, 1992, pp. 55- 64.
I[EEE, Proceedings of Conferences on Saftware Maintenance, |EEE Computer Society Fress, 1990-94.
Sharon,D_;"Software-Engineering Tool Classification”, /IEEE Software, Sept, 1993, pp. 106-108.
Sharon D._; Chumra, A.; “Toaol-Classification Scheme Revisited”, IEEE Soffware, July 1994, pp.122-125,
Skramstad,T.; Khan, M. K., "Assessment of Reverse Engineering Tools: A MEGCA Approach”,
Proceedings of IEEE. Symposrum on Assessment of Quality Development Toofs, New Orleans 1992,

pp. 120-126.

336

	Association for Information Systems
	AIS Electronic Library (AISeL)
	December 1997

	Assessment Model for Software Maintenance Tools: A Conceptual Framework
	M. Khan
	M. Ramakrishnan
	Bruce Lo
	Recommended Citation

	tmp.1219229509.pdf.ZfPEQ

