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Abstract

Apriori estimation of quality of service (QoS) levelsisa
significant issue in web services since Service Level
Agreements (SLAS) need to specify and adhere to such
estimates. In this paper we present novel costformulae for
estimating the end-to-end response time for distributed
datamining (DDM) web services.

1. Introduction

Umesh Dayal [2] predicted that “...data analysis and
mining functions themselves will be offered as business
intelligence eservices that accept operational data from
clientsand return modelsor rules’. The growing number of
Web Service Providers (WSPs) like digiMine™
(http://lwww.digimine.com) and Information Discovery ™
(http://www.datamine.aa.psiweb.com) who offer
commercial data mining web services are testimony to this
statement [8, 11, 4]. The increasing focus on data mining
web servicescan be attributed to the recognition of data
mining as an important technology in aiding strategic
decision making coupled with the commercial viability of
the WSP paradigm. The option of Internet-delivery of data
mining services is emerging as attractive for small to
medium range organisations, which are the most
constrained by the high cost of data mining software, and
consequently, stand to benefit by paying for software
usage without having to incur the costs associated with
buying, setting-up and training. Whilethe primary focus of
the commercial arena has been the delivery of data mining
as an web service, there is an emerging research focus on
providing data mining models as services on the Internet
[14]. Thusrather than the hosting of a data mining system
and deliveringtheresults as a service, theaim isto be able
to sell data mining models, which can be bought, for
example, by start-up organisations operating in a given
vertical domain.

In general, the operational cornerstone for WSPsis the
contractual agreement between the client and the service
provider, known as the Service Level Agreement (SLA).
The SLA isalegally binding document and specifies the
contractual obligations of the WSP with respect to the
guaranteed level of service and the penalties associated
with failure to comply with the contract. In the specific
context of WSPs, which are governed by SLAs, QoS
metrics have a direct bearing on the success in monetary
terms. Therefore, the ability to accurately predict the level

of service that can be guaranteed is of immense value to
WSPs. It isthis context that motivates [13] to state quality
of service has“...alot to do with a cost-benefit analysis
and prediction for SLAS". The need for such predictive
estimates of the quality of service that can be ensured is
alsoclearly indicated by qualitativestudiespresentedin[ 1]
which surveyed user behaviour and the criteria users

applied to assessing network services and pricing. One of
the outcomes of this study was that “...users value

predictive feedback over feedback concerned with current
statistics”. While predicting the quality of serviceaprioriis
an important requirement for WSPsasdiscussedin [1, 13],
it has not been addressed by the web services community.
This can be attributed to several reasons. The focus has
been on system level metrics that are the key to load

balancing and resource utilisation and not on application
centric metrics such as the waiting time, probability of

successful completion and end-to-end application
response time 16, 19]. It is difficult to formalise the
semantics of application centric metrics since
characteristics vary from application to application.
Predictionischallenging inadynamic environment such as
the Internet, where WSPs operate. This challenge is
considerably increased by the consequences and pitfalls
of inaccurate estimates, because of the direct relationship
between prediction accuracy and revenue/loss.

In summary, WSPs require the development of
techniques to estimate the quality of service that can be
ensured by the service provider. This need is driven by
SL As, which haveadirect bearing on therevenue of WSPs
and is increasingly being stated as an issue that must be
addressed [1, 13. In this paper we present techniques for
estimating the response time of data mining application
services.

2. Response Time of Distributed Data Mining

In this section, we present techniques for estimating the
end-to-end responsetimein datamining web services. Ata
conceptual level, theresponsetimesfor different scenari os
isasillustrated in the example scenario illustrated in figure
1. Theclient hastwo data sources (“Data1” and “Data2")
and two computational resources (“ Server 1" and “ Server
3") that it can makeavailablefor mining. One of thedatasets
(Data 1) is located on Server 2 that is not available for
mining. The service provider has three high-performance
servers. The three servers on the service provider’s side
may be geographically distributed, thereby making the



communication costs variable.

Client Service Provider

Serverl  Server2

Figure 1 Data Mining Web services

There are three possible options that the client can
choose:

1.  The mining should be done locally using only the
client’s computational resources. In this case a
mobile agent based approach will have to be
employed in order to perform the task at the client’s
site.

2. Themining should be done remotely using only the
service provider's computational resources. In this
case, a client-server approach will have to be used
and the data has to be transferred to the service
provider’ sservers.

3. Theclient has no preference for the location. In this
case, a combination approach of mixing the
client-server and the mobile agent models can be
used.

The estimation requires the identification of the cost
componentsand formalisation of acost model for response
time in the context of distributed data mining (DDM) web
services. We now formalise the cost components of the
DDM response time and present estimation techniques for
these cost components.

2.1 Cost Components of the DDM Response
Time

In this section we specify the different cost components
of the response time in distributed data mining web
services. The response time of atask in a distributed data
mining web service broadly consists of three components:
commu nication, computation and knowledge
integration.

Communication: The communication time is largely
dependent on the operational model. It varies depending
on whether the task is performed using a client-server
approach or using mobileagents. Intheclient-server model
the communication time is principally the time taken to
transfer datafrom distributed serversto ahigh performance
machine where the data mining is performed. In the mobile
agent model, the communi cation time revolves around the

time taken to transfer mobile agents carrying data mining
software to remote datasets and the time taken to transfer
results from remote locations for integration.

Computation: This is the time taken to perform data
mining on the data sets and is a core factor irrespective of
the operational model.

Knowledge Integration: This is the time taken to
integrate the results from the distributed datasets.

The response time for distributed data mining is as
follows:

T:tdm+ toom"'tki (1)

In Eqg. 1 above, T is the response time, ty, is the time
taken to perform data mining, t.,, is the time involved in
communication and ty is the time taken to perform
knowledge integration. The modelling and estimation of
theknowledgeintegration (t;) variableisdependent on the
sze and contents of the results obtained from the
distributed datasets. Given that the primary objective of
dataminingisto discover hitherto unknown patternsinthe
data[ 3], we consider theapriori estimation of thetimetaken
to perform knowledge integration to be outside the scope
of this paper (since knowledgeintegration depends on the
characteristics of the results of the data mining process).
Having identified the cost components of the DDM
responsetime, we now formalisethe overall estimation cost
for different models and scenarios.

22 Cost Matrix for Representing the Composite
Response Time

We now present a cost matrix for computing the
composite DDM response time estimates for different
strategies. Theresponsetimefor distributed datamining as
presented in Eq. 1 consists of three components including
communication (due to either transfer of mobile agents
and/or transfer of data), computation (performing data
mining) and knowledge integration. The following
discussion focuses on the communication and
computation components and does not consider the
knowledge integration component. The strategy is to
compute estimates for the individual cost components and
then uses the estimates to determine the overall response
times for different strategies. The cost matrix to calculate
the composite response time for different DDM strategies
isdenoted by CM and isrepresented as atwo -dimensional
mxn matrix, wheremis the number of available servers and
nisthe number of datasets. A fundamental feature of the
cost matrix that makes it applicable for both the mobile
agent and client-server models is that we incorporate
location information on the datasets and servers.

The elements of the cost matrix represent the estimated
response time and are defined as follows:

1 Let mbethe number of servers.

2 LetS={S,S, ... Sn} betheset of servers. A server §
can either belocated at the service provider’ ssiteor at
theclient’ ssite. Therefore, let S be the set of servers
located at the service providers site and let S°be the



set of serverslocated at the client’ ssite. Thefollowing
properties are true for the setsS, S*, S°.

0 S¥E §°=S; theset of serversavailable at the
client’ ssite and the set of serversavailable at
the service provider's site summarily
constitute the total set of available servers.
The obvious corollariesare S¥1 Sand S°i
S

o S°C §=f ;thusaserver either belongsto
the client or the service provider. It cannot
belong to both.

o S¥=f isvalidandindicates that the client
isnot willing to ship the dataacrossand S° =
f isalsovalid andindicatesthat theclient’s

computational resources are unavailable or
inadequate.
In order to specify thelocation of a server we use the
following notation: § | S¥andS | S wherel,j=1,
2, ...,mThisdistinctionisnecessary for specification
of how the response time has to be estimated in the
cost matrix.
3. Letn bethe number of datasetsand let DS= {ds(1),
ds(2), ..., ds(n)} represent the labelling of the
datasets.

4. Le dYi )Sj represent the location of a dataset

labelled ds(i), i=1, 2, ...,n at server S, where ds(i) 1
DSand j= 1, 2, ..., m Thus datasets are uniquely
identified and multiple datasets at locations can be
represented.
Let cmi,-T CM be the estimated response time for taking a
dataset located at the server j and mining it at the server i,
wherel£i £mand 1£j £n. Thevalueof cmj; is computed as
follows:
IMA, o5 +TRGZ +Wg +DMS™ it |5, T 59,51 5° 8T s°
om, ={ MA, . +W, +DM¢ % i=js 15" 518° 5T s°
FTREY +wg +DME™ 1 ST 5,81 5%

In the above equation:
o MA 4 isthetimeto transfer amobile datamining

agent from server S, (which is a server of the service
provider) toserver S
ds(ky _
o TRseg is the time to transfer a dataset

ds(k )Sj located at server S to server S

ds(ky,

o DMg is the time to mine dataset

ds(k )Sj located originally at server S at server S

o] WS is the wait time at server S required for the

completion of previous tasks and is generally more
significant whenS1 S¥ (i.e. server S islocated at the
service provider’' ssite).

Aspresented abovethere arethreeformul ae for estimating

theresponse time for different scenariosin thecost matrix.
Thefirst oneisfor the case where the server S where the
mining isto be performed isat the client’ s site but does not

contain the dataset ds(K )Sj (which asindicated islocated

at the server §). Hence there is aneed to transfer the data
fromitsoriginal locationS; to the server S;to perform the
data mining. Further, the client’s site would not have the
data mining software and a mobile agent needs to be

transferred from the service provider’ s site (represented as
Sy). The second formulais for the case where the server

where the mining is to be performed is at the client’s site
and the dataset islocated on the same server (i.e. i = ). In
thiscase, the mobile agent needsto betransferred but there
is no need to trander the data. Thethird formulaisfor the
case where the server where the mining isto be performed
islocated at the service provider'ssite (i.e. S1 S¥) and
thereforethe datahasto be shipped acrossfromtheclient’s
site toperform mining. The three formulae map to the three
scenarios outlined earlier, namely, that of mining at the
client’ ssite, mining at the service provider’ssiteand using
both sites. The cost matrix has been designed to determine
the response time for mining the datasets at the different
available servers. The location of the servers and the

datasets determine the cost formulathat has to be applied
for computing the response time. We now present cost
formulae for estimating the individual cost components.

3. Egimating Individual Cost Components of
Response Time

As discussed, we now present strategies for estimating
the individual components of the DDM response time.

3.1 Estimating the Communication Cost

The communication cost in the DDM process vaies
depending on whether the client-server strategy is
followed or the mobile agent model is used.

3.1.1 Mohile Agent Model

In general, the mobile agent model for DDM involves
dispatching mobile agents carrying the mining algorithms
to the locations of the data to perform data mining. Thus,
the model is characterised by a set of mobile agents
traversing therelevant dataserversto performmining. This
can be expressed asmmobile agents traversing n servers
(that contain datasets). In the context of data mining web
services, the mobile agent model is applied when the client
specifically requires the task to be performed using the
client’scomputational resources (e.g. wheretheclient does
not want the datato leave the site). Thismodel can also be
used in cases where the client has no preference, but
applying this model results in better response time.
Therefore it can be seen that the mobile agent option
primarily involvesthe serverslocated at theclient’ ssite. In
order to estimate the transfer times for mobile agents,



consider the following:

Let N be the total number of serversat the clients site.

Let n be the number of servers where the mining is
performed.

Let S represent thenserversinquestioni.e.S°={S,, S, ...,
St

Let mbe the number of mobile agents dispatched from the
serviceprovider’scentral server CESto perform mining at
the set of servers S°.

Let tra(X, y) = MAy®yrefers to the time taken by the

agent ma to travel from node x to node y.

In order to compute the estimates in the cost matrix, we
need to estimate the transfer times of the mobile agents
from CES to the servers of the set S° (i.e. we need to

estimate MA . <c).

Given that there aren servers that have datasets for mining
and magents, there are three possible alternatives within
this scenario and they are:

1. m= n, where the number of mobile agentsis equal to
the number of servers. This implies that one data
mining agent is sent to each server involved in the
distributed data mining task.

2. m<n, where the number of mobile agentsislessthan
the number of data servers. The implication of having
fewer agentsthan serversisthat some agentstraverse
more than one server. This option is not used often,
but is modelled to allow for cases where there is an
imposed ordering in the traversal. For example, a
scenario where an agent must first visit server r to
obtain background knowledge necessary to perform
datamining at server s. This knowledge can be in the
form of aconcept hierarchy [5] or a database schema
that defines the attributes of the database located at
server s. In such cases, it is necessary to have one
agent traverse several servers.

3. m>n,whichwedo not explicitly consider since thisis
in effect equivalent to the casel above with respect to
travel time where there is a mobile agent available per
server. That is, having modelled the travel time for a
single mobile agent from one server to another it is
implicit that we can estimate the travel timefor several
agentsthat have to be sent between the same servers.
A possible scenario for sending more than one agent
to a server may be if there are several datasets that
need to be mined at the server and different agents are
required to process the various datasets.

Each of the above cases has a cost function and the cost

models for estimating the response time. However, in this

paper, we focus on the scenario of equal number of mobile
agents and data servers, since thisisthe most common.
This case, where datamining from different distributed
dataserversisperformedin parallel and thereisone mobile
agent per server (i.e. m=n). The algorithm used across the
different data servers can be uniform or varied. The service
provider dispatches a mobile agent encapsul ating the data
mining algorithm (with the relevant parameters) to each

dataserver participating in the distributed datamining task.
In order to derive the cost function for the general case
involving n data servers and n data mining mobile agents
(since m=n), we first formulate the cost function for the
case where there is one data server and one data mining
agent. L et usconsider the casewhere datamining hasto be
performedatthei”server S | S°,1£i £ n. The overall cost
function for the response time to perform distributed data
mining involving thei™ data server is computed from the
formulae presented in section 3.2.3 and consists of thetime
to transfer the mobile agent to the server, transfer the data
to the server (if the data is not originally located at the
server) and perform the mining subject to any Wait time
imposed. Each of these components have to be estimated
in order to derive the overall estimated response time. In
this section we focus on estimating the communication
time for the transfer of a single data mining mobile agent
dmAgent from server CESto server S, that iStgmagent(CES,
S).

The time taken for amobile agent to travel depends on the
following factors: the size of the agent, the bandwidth
between servers and the latency between the servers. The
travel time is proportional to the size of the agent and is
inversely proportional to the bandwidth (i.e. thetimetaken
increases as the agent size increases and decreases asthe
bandwidth increases). The latency is the delay, typically
expressedin Round Trip Time (RTT) and isadded to obtain
the transfer time. The latency has higher impact on the
transfer time, when the amount of datathat istransferredis
small, whereasthe bandwidth hasahigher impact when the
amount of dataislarge. This can be expressed as follows:
amagent(CES, S) p size(dmAgent) @
tamagent(CES, S) 1 1/ (bandwidth between CES, S) (3)
From (2) and (3):

tdmAgent(CES ' S)

= | (CES, S) + size(dmAgent)/ b(CES, S) 4
In the above Equation 4, | is the latency and b isthe
bandwidth. While bandwidth and latency can be measured,
we need to determine the size of thedmAgent. In [StS97]
the size of an agent is given by the following triple:

size of an agent = < Agent State, Agent Code, Agent Data>
where, Agent State is the execution state of the agent,
Agent Codeisthe program that is encapsulated within the
agent that performs the agent’s functionality and Agent
Data isthe data that the agent carries (either as a result of
some computation performed at a remote location or the
additional parameters that the agent code requires). On
adapting the aboverepresentationto expressthesizeof the
data mining agent (dmAgent), we now have,
size(dmAgent) = <dmAgent state, data mining algorithm, input
parameters>

We now extend the cost estimate for the general case
characterised by n mobile agents andn distributed servers.
Thus, nmobile agents encapsul ating the respective mining
algorithms and parameters are dispatched concurrently.
Mining is performed at each of the sitesin parallel and the
resultsarereturned to the central server. Thus, thetransfer
time per server from Eq. 4 above, iStymagen(CES, S), 1£j £



n. The total transfer time is the time taken by the mobile
agent that requires the longest individual transfer time. In
case the agent isrequired to travel back to the server, the
estimated travel timeiscomputesas tymagen(S, CES), 1£ £
n.

We have modelled the scenarios for using mobile
agents to perform distributed data mining and have
presented cost formulae to estimate the mobile agent
transfer times for each case. This addresses the a priori
estimation of the communi cation mobile agent transfer time
component in the cost matrix. The next section focuses on
estimating the data transfer time, which is the second
communication component.

3.1.2 Egimating Data Transfer Time

The transfer of datain the hybrid DDM model can be
attributed to two reasons. Firstly, the hybrid model
integrates both the client-server and mobile agent models.
In the client-server model the data is transferred from the
client’ ssitetothe serversof the service provider. Secondly,
datatransfer occurswhen the dataresides on aserver that
isnot availablefor mining (e.g. becauselacks the necessary
computational resources or it is dedicated for some other
tasks) and has to be transferred to another server at the
client's site. Typically, the transfer times in the first case
would be more significant than the second where the
transfer might occur within an organisation’s intranet. In
this section, we present the cost formulae for estimating

_ ds(k)s _
data transfer times TR ¢ for transferring a dataset

ds( k )Sj located at server Stoserver S. Server Sisat the

client’ssiteand § may be at either the client’s site or the
service provider’ssite.

The cost formulae for transferring datasets are
primarily dependent on the size of the data, the bandwidth
between the servers and the latency or delay. Let

ds(K )s. represent thedataset that islocated S;1 S”and
J
hasto betransferredto S (where ST STor S1 S°. The

datatransfer timety(S;, §) = TRdes(ékéJ can be estimated
asfollows in equation 5:

(S, §)=1(S;,S) + size(dsk))/ b(S;, S) In
the above equation 5, | is the latency and b is the
bandwidth between the servers Sj and S . Since typical

dataset sizes tend to be very large, the effect of the
bandwidth will be greater than the effect of the latency of
the data transfer time.

We have modelled the cost formulae for the data
transfer component of the DDM response time. The cost
formulae presented are applicable to DDM systems
irrespective of their architectural model and are unique in
that, we propose to mathematically model the
communication costs in distributed data mining. Further,
the cost models developed also take into account the

different cases and options within each model, thereby
facilitating comparison of different sub options within a
given model. There has not been a comparison of
communication times between the client-server and mobile
agent models with respect to distributed data mining. The
cost formul ae devel oped in this section support the explicit
comparison of the communication time between the
client-server and mobile agent models for distributed data
mining. Further, while previous costing techniques in

distributed data mining have implicitly considered the

communication cost in terms of the number of datasets
[PaS01] or have assigned the cost in terms of bandwidth
[TuGO0Q], our approach is based on taking into account
several factorsincluding bandwidth, latency, dataset sizes
and mobile agent sizes. Finally, the cost formul ae proposed
and developed in this chapter allow a priori estimation of
the communi cation components in the cost matrix. Having
modelled the response time for the communication
component, we now present our technique for estimating
the response time of the computational component (i.e. the
cost of performing data mining).

3.2 Estimating the Data Mining Cost

In order to estimate accurately the computation cost of
data mining tasks we have proposed and developed a
novel rough sets based al gorithm for application run time
estimation[6,9,10]. It must be noted that considerations of
space do not allow us to present an explanation of this
algorithm here, however we present experimental results of
applying thistechniquefor estimating the run times of data
mining tasks.

4. Experimental Resultsand Analysis

The viability of using these cost estimates depends on
the accuracy of the estimation techniques. Thus, the
estimated communication times and predicted data mining
task run times must be close to actual run time for these
cost formulae to form the basis for effective optimisation.

We have proposed amodel for apriori estimation of the
DDM response time by estimating the individual
components. These estimates are used in the cost matrix to
represent the overall responsetimefor different strategies.
Asdiscussed, communication is an important factor in the
response time for distributed data mining. We developed
cost formulae for estimating the transfer timesfor both the
models for performing distributed data mining, namely,
mobile agents and client-server. In the context of data
mining web services, the mobile agent model maps to the
case wherethetask is performed at the client’ s site and the
client-server model maps to the case where the task is
performed at the service provider’ssit e. In this section, we
present experimental results of our cost formulae for
estimating the transfer time for both data and mobile
agents.



4.1 Egtimating Mobile Agent Transfer Time
In this section, we present the estimated and actual

transfer times for the data mining mobile agents
implemented in our DDM system Distributed Agent-based
Mining Environment (DAME) [7]. The mobile agents were
developed using the Aglets™ SDK [12] and are used to
carry the data mining software to remote data servers. The
agents are provided with an itinerary of destinations and

respectivetasksto be performed in each server that it visits.

The agent carries the data mining software as a serialised
object. We note that while we use Aglets for experimental
and implementation purposes, our cost formulae for
estimating the transfer times of mobile data mining agents
are not specific to any toolkit. The experimental evaluation
consisted of estimating the transfer times for mobile data
mining agents and comparing it with the actual transfer
times to determine the mean error. The experiments were
conducted using four distributed machines with the three
machines connected through high speed communication
links (two machines via a 100 Mbits link and one machine
viaa 10 Mbits link) and one machine connected viaa 28.8
Kbits modem link. Two machines were located on one
campus of Monash University and one machine was
located in another campus and was on a different domain.
Thesize of theinformation carried by the mobile agent was
different in each run by varying the software that it carried
and the tasks that it was required to perform. The
comparative difference in the estimated and the actual
results obtained from the tests are shown in figure 2.

Estimated Vs. Actual Mobile Agent Transfer Time
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Figure 2 Etimation Accuracy for Mobile Agent Transfer Times
In summary the experimental scenario used mobile
agents carrying agorithms and data varying from
approximately 0.5 MB to 30 MB over connections where
the highest bandwidth obtained was 7.3 Mbits/s and the
lowest bandwidth was 24 Kbits. The latency was a factor
only when the slow links were used. The mean error of the
estimates is 10.84 sec, which shows that our strategy for
estimating the transfer times is accurate. We obtained the
highest accuracy for an error of 1 sec and the lowest
accuracy for an error of 33 sec. It must be noted that the
lowest accuracy was obtained when the network link was a
28.8 Kbits modem connection, which should be viewed in
the context of comparing modem speeds with T1 speeds.
Furthermore the mean error as a percentage of the mean

runtimes is 23.59 percent, which is a good indicator of
accuracy.

4.2 Estimating Data Transfer Time

In this section we present experimental results for the
accuracy of the cost formulae for estimating the data
transfer times. The data transfer times are primarily
dependent on the size of the data and the network
characteristics such as bandwidth and latency. In the
implementation of the DAME system the data transfer is
done using FTP, which we note is also used among
commercial data mining service providers such as
digiMine™ (http://www.digimine.com). The experiments
were conducted by measuring the latency and bandwidth
in real time between the two servers involved in the data
transfers and then transferring the datasets required for
mining. We conducted experiments using file sizesvarying
from 5 MB to 65 MB. We used two different connections—
a high speed link (where the average bandwidth ranged
from 6.5 — 8.3 Mbits and the latency was negligible) and a
modem link (where the average bandwidth ranged from
41-45 Kbits due to internal modem compression and the
latency varied from 2 to 3 sec). The comparative results
between the estimated and actual transfer times for the
three different bandwidth and latency characteristics
shown areillustrated in figures 3 and 4.

Estimated Vs. Actual Data Transfer
Times - Experiments with bandwidth 6.7 -
8.2 Mbits
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Figure 3 Experiments with Bandwidth Varying from 6.7 — 8.2
Mbits
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Figure 4 Experiments with Bandwidth Varying from 41 — 45
Kbits



The mean error for the experiments conducted using a
high speed connection was 3.56 sec and the mean error asa
percentage of the mean transfer time was 12.05 percent,
which are both low indicating the high accuracy of the cost
formulae. The mean error for the experiments conducted
using a low speed link was 20.5 sec. However, the mean
error as a percentage of the mean transfer time was 1.3
percent, which shows that the estimates are accurate. The
combined mean error was 6.95 sec.

The difference in the mean error as a percentage of the
mean transfer times between the two types of connections
can beattributed to thefact that overall transfer timeswere
very low with the high speed link. We have thus far
presented experimental resultsvalidating the cost formulae
for apriori estimation of the communication component of
distributed data mining.

4.3 Estimating the Run Times of Data Mining
Tasks

Inthissection, we present experimental results obtained
by using our rough sets based application runtime
estimation algorithm on data mining tasks. We compiled a
history of data mining tasks by running several datamining
algorithms on a network of distributed machines and
recording information about the tasks and the environment.
We executed several runs of data mining jobs by varying
the parameters of the jobs such asthe mining algorithm, the
datasets, the sizes of the datasets, the dimensionality of the
datasets and the machines on which the tasks were run.
The algorithms used were from the WEK A package of data
mining algorithms [18]. We generated several datasets of
sizes varying from 1MB to 20MB. The data mining jobs
were executed on four distributed machines with different
physical configurations and operating systems. Three
machines had Windows 2000 and one machine had Solaris
5.8. Two of the Windows machines were Pentium 111 with
833 Mhz processor and 512 MB memory, while the other
was a Pentium Il with 433 Mhz processor and 128 MB
memory. The third machine was a Sun Sparc with 444 Mhz
processor and 256 MB memory. The history provides the
datafor the estimation algorithmto predict theruntime of a
given datamining task. Therationale for building a history
using adistributed network of nodes wastwo -fold. Firstly,
we wanted to obtain a diverse history and test the
estimation accuracy given a varied history. Secondly, it
represents a realistic scenario where data mining web
serviceprovidersand clientswould typically operate using
a distributed network of servers and would use the
estimation for each node in the allocation of jobs.

For each data mining job, the following information was
recorded in the history: the algorithm, the file name, thefile
size, thedimensionality of the data, the operating system,
the version of the operating system, the IP address of the
local host on which the job was run, the processor speed,
the memory, the status of the server (whether it was

dedicated or not), the start and end times of the job. The
history was used to conduct experiments using the
runtime estimation process described in chapter 4. We
used histories with 100 and 150 records and each
experimental run consisted of 20 tests. The performance
accuracy isillustrated in figure 5, which presentsthe actual
and estimated run-times from one of our experimental runs.

Themean error isapproximately one minute and theerror
asapercentageof theactual run-timesis 26.4%. The reduct
that our algorithm selected asasimilarity template included
thefollowing attributes: algorithm, file size, dimensionality
and available memory. It must be noted that our application
runtime estimation technique like other techniques that
rely onhistorical data[15,17] islimited by thei nitial need to
collect ahistory.

We have presented experimental results that
demonstrate the performance accuracy of our rough sets
algorithm for estimating application runtimes of data
mining tasks. Thus far, the experimental evaluation has
validatedo ur technique for a priori estimation of the DDM
response time. Thisfacilitates service providers to commit
to service levelsthat can be ensured in SLAS.

Estimated Vs. Actual Run Times of Data Mining
Algorithms
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Figure 5Performance of Run-Time Estimation for Data
Mining Tasks

5. Conclusonsand Future Work

This issue of estimating QoS in application servicesis
important and one that needs to be addressed. This paper
takes afirst step in estimating the response time for data
mining web services. The model presented in this paper is
applicable to distributed, data intensive application
services in general. The current focus is experimental
evaluation of thiswork with other application servicesand
focusing on additional QoS metrics.
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