Association for Information Systems

AIS Electronic Library (AISeL)

Pacific Asia Conference on Information Systems

PACIS 1993 Proceedings (PACIS)

December 1993

Parallel Modeling in a Multi-Windowing

Enivronment

Gee-Kin Yeo
National University of Singapure

Follow this and additional works at: http://aisel.aisnet.org/pacis1993

Recommended Citation

Yeo, Gee-Kin, "Parallel Modeling in a Multi-Windowing Enivronment" (1993). PACIS 1993 Proceedings. 6.
http://aisel.aisnet.org/pacis1993/65

This material is brought to you by the Pacific Asia Conference on Information Systems (PACIS) at AIS Electronic Library (AISeL). It has been
accepted for inclusion in PACIS 1993 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please
contact elibrary@aisnet.org.

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fpacis1993%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis1993?utm_source=aisel.aisnet.org%2Fpacis1993%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis1993%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis1993%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis1993?utm_source=aisel.aisnet.org%2Fpacis1993%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis1993/65?utm_source=aisel.aisnet.org%2Fpacis1993%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

1993 Pan Pacific Conference on Information Systems

Parallel Modeling in a Multi-Windowing Environment

GEE KIN YEO, Department of Information Systems and Computer Science,
National University of Singapore,
Kent Ridge, Singapore 0511, Republic of Singapore

ABSTRACT

Parallel modeling has been proposed to
support model-solver integration in decision
support systems, particularly in performing
sensitivity analysis. This paper first
presents a multi-windowing environment that
supports parallel modeling for production-
transportation problems. Object-oriented
concepts are then applied to illustrate

possible extensions to include further
modeling capabilities.

1. Introduction

In decision support systems, model

formulation is concerned with the choice of
a modeling paradigm and the construction of
a formal model specification within that

paradigm. Modeling languages have been
developed to facilitate this formulation
process., In addition, & modeling language

system usually takes further steps into
submitting the resulting model specification
to a solving algorithm to obtain a solution.
In this paper, a formulation in such a
modeling language is termed as = solver
representation. The solver language
therefore refersz to the modeling language
used. In a typical decision making
environment, modeling languages may be
directly used by modelers or interfaces may
be built to translate model specifications
in still higher-level representation to a
solver representation. Representations from
these user interfaces are called the modeler
representations. Ideally, solution from the
solver should he included in the modeler
representation when it is known.

The principal design objective of PTS - a
graphical interface for Production and
Transportation System [Kendrick, 90] - has
been to provide visual access to parallel
model representations of a general linear
programming production and transportation

system application. The model
repregsentations included initislly are a
graphical network showing the
interconnections of plants and markets,

tables of data values on production and
transportation, and a solver language in
textual display. The solver langusage
referred to in PTS is GAMS [Brooke, 88].

The graphical and data views as in PTS can
be considered as specifications of the
modeler’s representation and the GAMS view
is the specification in the chosen solver
representation. These two representations
differ in content details and forms. Fhe
modeler’s representation is used to specify

the modeler’s understanding of the problem
and data during the medeling process. Since
it should be in terms of constructs that are
natural to the modeler, graphical network of
system components and tables of data values
are chosen as the forms of representation.
The modeling language of GAMS and again
tables of data values are the forms of
representation for the solver.

There are several shortcomings in the
initial version of PTS, one of which has
been in its ability to support only
representations of a single problem.
Sensitivity analysis can therefore only he
performed by comparying solver outputs
outside the modeling environment. There is
alse no direct support of the creation and
manipulation of the link between a plant and
a market in the modeler representation. All
the plants and markets of a model are
automatically connected, thus making it
unrealistic when some links are infeasible
in a problem. In the next section, we
present a revised implementation of PTS that
overcomes these shortcomings in a multi-
windowing environment.

To support modeler-solver integration, it is
important to have model consistency in the
parallel model views; i.e., any modification
made in one view should be reflected in the
other view. However, in the initial
implementation of PTS, only the modeler
representation can be created graphically
from scratch but the solver representation
can only be created, although automatically,
from existing modeler representation. In
other words, the transformation from the
solver representation to the graphical or
date view in the modeler representation is
not supported. Even using the present-day
artificial intelligence technigue, it is
very difficult to allow a user to fully
exploit the powerful modeling capabilities
of a selver language such as GAMS and then
automatically transforms the program
correctly into a modeler representation such
as a PTS graph. Within production
transportation problems, it is easier to
approach the problem by identifying as many
different types of models as possible, viz.,
gsingle-commodity or multiple-commodity,
inclusion or non-inclusion of production
cost in the transportation cost, etc., and
build a model base with the generic forms or
templates of the solver representations of
these models. Transformation algorithms can
then be applied to obtain the modeler
representations. Solver language modeling
would then bhecome only instantiation of
these templates by supplying object names,
values and at most computation formula.

— 374 —

In section 3, we illustrate
attempt in the possible
parallel modeling using an object—eriented
approach, which has been acclaimed for its
provision for extensibility and reusability.

our .initial
extensions in

2. A Multi-windowing Medeling Environment

Qur veﬁfion of "PTS runs under Microsaoft
Windows and supports MDI, or Multiple
Deocument Interface, whiech is an interface
standard for Windows applications that
allows the user to simultanecusly work with
many open documents, By allowing users to
tile, cascade, maximize and minimize
decuments with an MDI, users can easily
compare different document centents easily.
As shown in Figure 1, four different
documents pertaining to the same problem in
PTS are displayed: two of graphical <ype
showing the model - representations, the
original formulation {(¥X.DAT) and the optimal
solution (%.RST); ancther two of text type
showing the solver representations, the GAMS

program (*.GMS) and the result listing applications such as spreadsheets or
(¥.L8T). The documents are displayed in databases inte databoxes of the model
'child' windows, all open in a ‘client’ representations.
“ile Edit
" TRNSP.LST _
300.060 +#INF .
. .. +INF 36.00(
COST.. - Z =E= SUM((LJ], ClLJE 325.000 +INF .
) b . +INF 9.000
SUPPLY(l] .. SUMQ, X(l.J)) =L= Al g 275,000 +INF
DEMAND(] .. SUM[I._X[I';J]] =G= B ; LOWER LE\"EL UPI
MODEL TRANSPORT JALLY ; -INF 1.53B?E+5 + e Q
Figure 1
Initially, the menu in tﬁe opening window as simple clicking and - dragging. Data

shown in Figure 2 offers option to create a
new document or open an existing document.
To ereate a graphical model representation,
a user chooses appropriate buttons to draw

plant, market or link symbols appreaing in a

ribbon control window as shown in Figure 3.
The user is free to reposition any symbol by

1993 Pan Pacific Conference on Information Systems

window that serves only as a work space,
'Child' windows have no menu of their own.
The menu on the ’client’ window applies tao
the ’child’ document window that is aective
at any given time. In Figure 1, TRNSP.DAT
is the active window and one of the menu

item SOLVE actually allows the user Lo
activate the conversion to salver
représentation or Lo compile the converted
GAMS program. All the document child
windows are clipped to tLhe workspace area
and never appear outside the ’'client'
window. An MDI offers the advantage of

maintaining .a document list throughout the
operation of the application. Selection can
be made at any one time from this list to
make any document window active. Scrolling
can be used ito locate particular points of
interest in any document. Cut-and-paste
commands for - editing in text mode for the
" solver represéntations and in draw mode for
model representations will be made available
in the - next wversion. Thus, it will be
possible to import a GAMS program from a
text editer or to transfer data from other

agssociated with each symbol can be entered
into databoxes opened up by double clicking
on the symbols. A link databox appears in
Figure 4. After the data associated with
plants, markets or links become available,
the user can turn on/off option to display
or hide them, as shown in Figure 5.

—375—

1993 Pan Pacific Conference on Information Systems

Praduction Transportation System

Ie Help

PRODUCTION TRANSPORTATION SYSTEM

Ver2.0 January 1993
National University of Singapore. DISCS

PTS
Development
Group
iFrame stalus line
Figqure 2

" Praduction Transportation System - [TRNSP.DAT]

File Edit View Solve Window Help
. T m" ® Distance O Optimal Cost [Sho :

2 O Total Cost © Optimal Qty
=

Figure 3

Production Transpartation System - [TRNSP.DAT]

Production & Transportation Cost - -
- =2 stance * O optimal Cos! Sho

O Optimal Uty

. l Per Unit of Product

I

Production Cozt ™

PRODLUCTION AND
TRANSPORTATION

CosT

Figure 4

— 376 —

1993 Pan Pacific Conference on Information Systms

[TRNSP.RST {1,536 TE+5)] el
Window Help ﬁ
@) Oplimal Cost [Sho,
@ Optimal Qty

O Distance
 Total Cost

Figure 5

Product Plant Market
*Product name *Plant name * Market name
. Unit weight . Location . Locations
3. ggiii:s in Production-Transportation Plant . Mazket
A simple structure diagram containing the
mejor conceptual objects in production- Link
transportation models is shown in Figure B, * Plant name
The notations follow that of [Shlaer, 88]. * Market name
. Distance
A system that supports parallel modeling
should contain internal structures of these
objects. They will have different Plant ~ S > Product
interface attributes in different parallel >f
models., In the graphical model
répresentation, for example, a PLANT Production
object will have a FLANT symbol. In the * Plant niame
solver representaticn such as GAMS, it will ¥ Product name
have reference to a specific entry in the - Production cost
SET definitien of plants as shown - Capacity
underlined in Listing 1, Throughk message ‘
passing, functions incorporated in these
different PLANT chjects can be activated in A Product I

parallel to achieve model consistency when
data windows such as the databox shown in

.
Markei 3 T

Figure 4 have been used for value entry,

Demand
Medel-solver integration alsc means that * Matket name
result from the solver should be ¥ Product neme
interpreted meaningfully in the model - Requireient
representation, By using g2o0lver
representation templates, compilation "]
errors from the sclver can be reduced to a Link Product I
minimum. In our revised version of PTS,

optimal solution can be interpreted

correctly on the graph but there is neo Transportation
support in the interpretation of infeasible * Pient name
solution. Since these results from the * Market neme
solver are wusually dependent on the * Product neme
underlying solver algorithm for solving the . Ttensporeticn cost
structured transportation problem, it is L. Transportation quanti;

also esaential to incorporate
representation of the network structure.

Figure 6

- 377 —

1993 Pan Pacific Conference on Information Systems

STITLE .A TRANSPORTATION PROBLEM (TRNSPORT,SEQ=1)

$OFFUPPER
SETS
I plants / P1, P2 /
J markets / M1, M2, M3 /
K __ products / X1, X2, X3 / ;
PARAMETER
W(K) unit weight of preoduct k
/ X1 0.20
X2 0.25

X3 0.30 / ;
TABLE A(I,K) producticn capacities
X1 X2 X3

PL 40 50 60
P2 90 80 55
TABLE B(J,K) market demand
X1 X2 X3
M1 ’ 28 60 55
M2 56 54 33
M3 40 25 30 .
TABIE D(I,J} distance between plant and market
Mi M2 M3
Pl 2.5 1.7 1.8
P2 2.5 1.8 1.4

SCALAR F freight in deollars per unit weight per unit
distance /90/ :

PARAMETER C(I,J) transport cost per unit weight;
' C(I,J} =F * D(I,J)

VARIABLES
Y(I,J,X) shipment quantities in units
Z total transportation costs
POSITIVE VARIABLE Y ;
EQUATIONS
COST define objective function
SUPPLY(I,K} observe supply limit at plant i
DEMAND(J, K) satisfy demand at market J ;
COST .. 7 =E= SuM((I,J,K),
C(L,T)*Y(I,J,K)*W(K)) :
SUPPLY(I,K) .. SUM(J, ¥(I,J,K)) =L A(L,K) 3
DEMAND(J,K) .. SUM{I, ¥(I,J,K)) =G= B(J,K) ;

MODEL TRANSPORT /ALL/ :
SOLVE TRANSPORT USING LP MINIMIZING 7 ;
DISPLAY ¥.L, ¥.M ;

Listing 1
Tie following example in C++ illusirates how A transportation mnetwork ocan then be
cmecepts such as class inheritance and represented as an array of pointers to some
finetion overloading in object-oriented FLOW objects, as follows:

pmgramming contribute to the extensibility

aid reusability of class objects in a class TRANSPORT_NETWORK {
production and transportation system FLOW #ptflow [MAXSIZE];
aplication. Assuming that basic classes public:

ach as PLANT, MARKET and PRODUCT are
&fined and already instantiated in the
ndeler’s representation, Listing 2 contains

void putOptimalCost{);};

firstly a definition of an abstract class
d¢lled SOURCE. Virtual functions to obtain
ye name and the capecity of the source for
g Flow in the transportation network have
fen declared. Two concrete classes are
dgrived from SOURCE, PLANT_AS_SOURCE and
HANT_PRODUCT_AS_SOURCE. Each of these
drived classes contain member functions of
{ie same names, seétSourcelID and setCapacity.
yth a similar abstraction of SINK, a class
rpresenting a flow in the transportation
gtwork can now be defined as shown in
isting 3.

During the modeling, either objects of

PLANT_AS_SOQURCE or PLANT_PRODUCT_AS_SOURCE
will be created and ptflow can then be
instantiated to point ultimately to these
created objects so that appropriate
functions applicable to the objects can be
called. Should the application require
objects such a= machines or processes that
are esgential in modeling production,
similar flow classes may be derived from
FLOW with the necessary functions redefined.

1993 Pan Pacific Conference on Information Systems

class SOURCE {
protected:
int cap;

virtual char *setSourceID() = 0;

public:

char *ID() { return setSourceID(); };

int Capacity() { return cap: }: };:

class PLANT AS_SOURCE : public SQURCE {

virtual char *setSourceID() ;

PLANT P1;

virtual veoid setCapacity (PLANT_CAPACITY_ LIST *); }i:

char *PLANT AS_SQURCE ::

void PLANT AS_SOURCE :: setCapacity(
PLANT_CAPACITY_ LIST *pcaplist) {

setSourceID() { return Pl.name(); }:

Cap = peaplist->retCapacity(&Pl }); }

class PLANTPRODUCT AS_SOURCE : public SOURCE {

virtual char *setSourceID();

PLANT Pl; PRODUCT Pr;

virtual veoid setCapacity(PLANTPRODUCT_CAPACITY_LIST *): };

char *PIANTPRODUCT AS_SOURCE: :setSourcelID () {

char *source;

source= new char[strlen(Pl.name())} + strlen(Pr.name()) + 1];

strepy(source, Pl.name()):
strecat(source, Pr.name());
return source;)

void PLANTPRODUCT_AS_SOURCE::setCapacity (PLANTPRODUCT CAPACITY LIST

*ppcaplist) {

Cap = ppcaplist->retCapacity(&Pl, &Pr); }

'Lmﬁngz

class FLOW {
friend void setAllocation():
friend void setCost();
SOURCE #*source:
SINK *sink;
int Alloc;
double Cst;

public:

FLOW(SOURCE #*so, SINK #si) { source = so; sink = si; Alloc = 0

char *SourceID() { return source->ID
char *3inkID{) { return sink->ID();

int Allocation() { return Alloc:

double Cost(} { return Cst; }; }:

; Cst =0

(r }:
}i

Listing 3

1. Future works

An advantage of implementing parallel
modeling on the Windows platform is the
existing extensibility of employing Dynamic
Data Exchange (DDE) [Petmold, 80, Chapter
177 to link the system up with other Windows
applications, A standard DDE link is
already provided beltween two Windows
applications as using the Edit menu to copy
and paste via the intermediate clipboard. A
second method uses messaging to originate,
control and end the DDE link., Twoc Windows
applications carry on a DDE "conversation"

by posting messages to each other. The
programs manipulating these messages are
known as the "server” and the "client." A

DDE server is the program that has access to

data and a DDE client is the program that
may obtain the data. In the Windows
environment, PTS can serve in DDE
transactions both as a client to access data
sources from other applications such as
spreadsheets or databases, and as a server
to provide result from the solution of the
transportation model! as data to other
applications.

Future extensibility of running PTS in the
Windows environment can be seen aleng the
developemeqf prlans of Microsoft in the
Windows NT(New Technology). Among them,
Object Linking and Embedding (OLE) will
allow any Windows application to be executed
under any other Windows application. With
that possibility, model representations need

— 379 —

not. be limited to these provided in PTS.
For example, a different solver language
other than GAMS can be used to provide
solution to the transportation model, with
data input from, and result returned to,
PTS. Also, any spreadsheet or calculating
tools can be opened up to help with the
derivation of, say, the unit transportation
cost for PTS.

Ideally, the process of PTS application
development. design will be a process of
redesign, where the system components are
jteratively refined. Besides the new
derivation of FLOW c¢lasses for modeler
representation as in Section 2, there may be

new classes for solver representation.
Thus, one may have in addition to
SOLVER_TRANSPORT_MODEL, also a

SOLVER_DISTANCE_MODEL to model the distance
between plant and market locations, a
SOLVER_PRODUCTION_MODEL to model the
production details in each plant. Thus,
more basic object will need to be identified
that can be reused and built-upon in later
extension. In effect, class libraries will
be offered to developers. Thus, future work
is required into studies of how these class
libraries can be better built, as similarly
done in [Glassey, 89].

When class libraries for general PTS have
been built, the next problem is to come up
with a generator using these libraries to
build different user interfaces for more
specific production and transportation
systems. OF course, an ambitious objective
would be to allow interactive specification
of entire applications from these reusable
objects by the end-users themselves. In
other words, extensibility and reusability
of object-oriented designed objects will be
moved from developers to end-users. This is
similar to the concepts of "visual modeling”
[Angehrn, 90] or "direct manipulation”
[Jones, 92] discussed in many ~recent
articles in decision support systems. The
ultimate interface will not be unlike a
special Windows environment, where system-

defined global objects coexist with
application-defined local objects [Tello,
91], As an illustration, consider the data

windows in our prototype. PRODUCTION may be
given as a global data object with product
details as attributes that may or not assume
values. Processes engaged for the
manufacturing of these products nay be
important in a particular PTS application
and local objects representing these
brocesses can then be defined and integrated
with the PRODUCTION global object. To this
end, much can be learnt from advances made
in object-oriented database systems [Kim,
90] where dynamic database evolution is an
important issue.

Ackhnowledgements

I am grateful to Professor David Kendrick to
have given me. free access to materials he

1993 Pan Pacific Conference on Information Systems

has collected or done before in the area of
parallel model representations. The
improved PTS in MDI was implemented by third
year DISCS students S.H.Chang, M.H.Tay and
W.B.Teng. This work was supported by NUS
research grant RP609/86.

References

[Angehrn, 890]
Angehrn, A.A. and Luthi, H.,
Intelligent Decision Support Systems: A
Visual Interactive Approach,
Interfaces, 20:6 November-December,
1990, pp. 17-28.

[Brooke, 88]
Brooke, A., EKendrick, D., & Meeraus,
A., GAMS, A User’s Guide, Scientifie
Press, Redwood City, California, 1988.

[Glassey, 89]
Glassey, C.R. and Adiga, 5., Conceptual
design of a software object library for
simulation of semiconductor
manufacturing systems, Journal of
Objected-Orjiented Programming,
November/December, 1989, pp. 39-43.

{Jones, 92]
Jones, C.V., "User Interface
Development and Decision Support

Systems", in Proceedings of the NATO
Conference on Recent Developments in

Decision Support Systems, Springer-
Verlag, 1992,

[Kendrick, 90]
Kendrick, D.A., Parallel mode]l

Bxpert Systems with
1990, pp. 383~

representations,
Applications, Vol. 1,
389.

[Kim, 90]
Kim, w., Intreduction to object-
oriented databases, MIT Press, 1%90.

[Petzold, 90]
Petzold, C., Programming in Windows,
2nd edition, Microsoft Press, 1990.

[Shlaer, 88]
Schlaer, §. and Mellor, S.J., Object-
oriented Systems Analysis, Modeling the
World in Data, Yourdon Press, 1988.

[Tello, 81]
Object-oriented programming for
Windows, John Wiley & Sons, 1991.

— 380 —

	Association for Information Systems
	AIS Electronic Library (AISeL)
	December 1993

	Parallel Modeling in a Multi-Windowing Enivronment
	Gee-Kin Yeo
	Recommended Citation

	tmp.1219244626.pdf.2eev6

