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ABSTRACT

Object-oriented technology, which includes
object-oriented analysis, design,  and
implementation, has come out as an eminent
practice for large system development. - Using
object-oriented technologies would save us a lot of
implementation efforts and improve the
maintainability of the whole ‘system. However,
conventional object-oriented technologies, such as
C++ and Smalltalk are inefficient in utilizing a good
typing mechanism. Therefore, some deficiencies
occur  during the object-oriented modeling. For
example, generic functions are treated very
differently from ‘parametric polymorphisms in
most cases. There are many more such dis-
integration phenomena if we carefully examine
themn in details, This makes their modeling more

complex and then difficult to be synthesized. In

this paper, we present a model, abbreviated TOM
for The Object Modeling, which completely follows
the framework of a nice type theory practice. By
doing so, TOM is able to integrate (1) the database
manipulation language with the host langnage, (2)
Dparametric polymorphisms with subtyping ones,
(3) universal polymorphisms with overloading
ones, and (4) generic functions with inheritance.

1. INTRODUCTION

Object-oriented technology has come out as an
important practice for large system development.
Part of the reason is because object-oriented
method uses "modulation" and “encapsulation”
mechanisms to hide implementation details from
users; the other part of the reason is it lets
programmers to reuse their designs as well as
implementations by applying the ‘“inheritance"
technique. Using object-oriented technologies would
reduce much development efforts and improve the
maintainability of the whole system once it has
been completed

In the following sections, we will first
introduce what the object-oriented methodology is.
Most of those popular terms, such as modulation,
encapsulation, and inheritance are briefly discussed
in Section 2. In Section 3, the typing -mechanism for
object orientation is elaborated there. Section 3,
together with Section 4, construct the most essential
part of The Objeci Modeling (TOM.) Also, presented
in Section 4 are the syntax as well as the semantics
of TOM.

The .major advantage of having TOM is in-its
ability to integrate (1) the database manipulation
language with the host language, (2) parametric
polymorphisms with subtyping ones, (3) universal
pelymorphisms with overloading ones, and (4)
generic  functions with inheritance. These
characteristics are then discossed in Section 3.
Finally, we will have a conclusion of this paper in
Section 6. Some possible future researches will also
be included in this section.

2. OBJECT ORIENTED METHODOLOGY

An object is an instantiation of a class and a
class is an abstract data type [Lisk86], which
consists of (a) a data structure definition for the
class, and (2) a collection of operations, called
"methods,” that apply to the objects in the class. In

other words, a class equals to the data structure

“definition plus methods within that data structure. -

Some good definitions of object-orientad
terminology can be found "in. ([Cox86], [Gold89].)
Readers are encouraged to take a look at them.
Here we only briefly mention the most key
concepts ' of the object oriented technology. They
are (1) modulation, (2) encapsulation, and (3)
inheritance. Let us start from modulation.

i



2.1. Modulation

Modulation [Dahl72] is an important feature
in object-oriented approach. The term “"modulation”
has been used for a long time since Dijkstra first
tried to promote the most famous structured
pregramming concept.

In general, modulation demands us to divide
an algorithm into modules. Making it so has one
advantage of localizing the problems whenever
they appear. This helps us to improve the
maintainability cnce a system is built up.

2.2, Encapsulation

If we call modulation is a mechanism of
structuring the algorithm, then encapsulation is the
other one which iz used to structure the data. The
concept of encapsulation first came from the
abstract data type, abbreviated ADT [Lisk80]. As
modulation, encapsulation mechanism is completely
adopted by the object-oriented technology. '

‘Encapsulating functions into the data
structure which can only be accessed through these
encapsulated functions assists us to have a very
safe control of those data. Besides this,
encapsulation mechanism also provides us the

ability to hide the implementation details from
users.
2.3. Inheritance

The basic idea behind inheritance [Meye88] is
as follows. If the type of data structure "B" is a
subtype of the type of data structure "A" and
suppose we have already had a method "M"
defined for "A," then there is no need to re-define

another method "M" for "B.” Data structure "B" can
just use this method "M," directly.

Inheritance implies software reusability
[Booc87]. As only as there is a subtype relationship
between two data structures, there are methods
which can be inherited. Our object modeling will
fully utilize this capability.

3. TYPING MECHANISM FOR OBJECT
ORIENTATION

The term "type" is used to represent a
collection of wvalues. Recall from Section 2.3. that
inheritance mechanism is achieved completely
through the subtyping relationship among data
structures. Therefore, it is necessary for us to
elaborate the needed type theory which forms the
basic background of modeling the object-oriented
technology.
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3.1. Cardinal Typing System

Primitive types are basic types which
construct the fundamental collection of wvalues. For
example, type "integer" is a collection of all integer
numbers while type "Boolean" stands for the
aggregation of two wvalues, i.e. true and false.
Primitive types are sometimes called primitive
domains, (e. g., see [ChaoB88].)

It is ideal to represent types in a cardinal
way. For example, (integer, real, Boolean) stands for

a type which has three cardinalities. The first one is
an integer type, the second one is a real type, while
the third one is a Boolean type.

In the cardinal typing system, the cardinal
position plays an important role. For example,
(integer, real) is different from (real, integer}. The
first cardinal position of (integer, real) is an integer
type while the first cardinal position of (real,
integer) is a real type.

The cardinality number can only be increased
through the Cartesian product (i. e., constructor X )
operation which will be discussed in the Type
Construction Section.

3.2. Type Construction

In addition to the primitive types of integer,
Boolean values, etc.. there may be also structured
types. There are several ways of constructing new
types from simpler types. In general, four
constructors which operates on type primitives.
They are (1) +, (2) X, (3) =, and (4) L.

Constructor "+" is mainly used to add two
primitive types into one. For example, A + B
produces a type which is a supertype of both A and
B. Constructor "X " iz sometimes called Cartesian
Product which has the contrary effect of constructor
"+." In general, A X B generates a type which is a
subtype of both A and B. Besides this, constructor
X also has the effect of increasing the cardinality
number in the cardinal typing system. For example,
if types "A" and "B" have m and n cardinalities,
respectively, then the resulting cardinality number
of A X B will be m+n. The third one, ">, " makes a
function type. Usually, A — B means that it is a
type of a function which has the mapping from type
A to type B. The last one, "J ," is called a subtyping
constructor. Let us also see an example here, A 4 B
means we derive a new lype B which is a subtype
of type A.



Through type operation, a type expression
may have arbitrarily complex . structure. Expressions
for type contain several constructors, with L
taking- precedence over "X, " and "X" taking
precedence over “+," and "+" taking precedence
over . ." The type operator "—>" associates to the
right. Thus A DB+ CXD>ELF means A = ((B+
(CX D> (ELFY

An implementation of the cardinal type
system together with type construction will be
shown in another paper. [Chao93].

3.3. Generic Type

There is a special type which is, in most cases,
called a generic type. We use "*" to stand for a
generic type. A generic type is sometimes called a
parameterized type [Stro88]. Within the same
cardinal position, a generic type is always a
supertype of any other types, e. g., integer, real,
Boolean, string, etc. If we insist using a formula to
represent the generic type, then the following one is
a nice try.

* = integer + real -+ Boolean + string +..

The generic type plays an important role im
our object-oriented modeling. It .can be used to
define the universal type (as we shall see it
imimediately following this section.} ’

Besides this, the generic type is also useful in
defining types of generic functions. This is achieved
through- the operation of constructor "> ." For
example, * = * stands for the functional type which
is a mapping from a generic type to another generic
type. 'If we instantiate fype "*" with "integer," then
this functional type will become "integer —>. integer”
wh1ch stands for a mapping from an 1ntege1 to an

1nteg_er. If we _pu-:fel those two. generic types to be
instantiated differently, then instead of using "* —2
#" we shall use * = *¥ In this case, "*" and "**" all
represent the generic type. However, they can be
instantiated differently. One possible situation is to
get a type wh1ch is integer —> real. That is the fll'st
generic type is 1nstant1ated to be integer and the
second one 18 1nstant1ated to be a real type.

. For the "~" constructor operating on a generic
type, we have the following theorem. -

Axiomi 3.3.1. * = 4 A -G
for A to be any kind of types.
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For the "X " constructor operating on a generic
type, we have the following theorem.

Axiom 3.3.2. A = AX*
for A to be any kind of types.

Let us spend a little effort to explain the
meaning of the above axiom. Suppose type "A" has n
cardinality already. Then for . those undefined
cardinality, i. e., n+l, n+2, etc. we can replace each of
them with a generic type.

For the "4 " constructor operating on a generic
type, we have the following theorem.

A =*lA
for A to be any kind of types.

Axiom 3.3.3.

3.4, Universal Type
The universal type is a supertype of any kind
of types. It can be defined as:

Definition 3.4.1, Universal type = *

From the above definition, we see that the
universal type is a stand-alone generic type.

Axiom 34.1. * = #FX ok = X EXK =

Axiom 3.4.1. tells us that if the type has more
than one cardinalities, then for each cardinal
position to be a generic type in order to make this
type an universal type. ' '

4. THE OBJECT MODELING

The Object Modeling, abbreviated  TOM,
heavily depends on the framework of the cardinal
typmg and type construction mechanisms discussed
in the previous section. In this Section, we will show
tow TOM works and used to model the rcal world
objects and classes. |

4,1. Class Definition

In TOM, a class is defined a.s

— 354 —



class_name: R2
super_class: RI
attributes: typel  al;
type2 a2;
typed a3;
methods; typed  ml (al, a3) bodyl
type5 m2 (a2) body2
type6  m3 (al, a2, a3) body3

From the above definition we see that "R2" is
the name of this clags. Super_class denotes that "R]"

is the super class of "R2". There are many attributes
for class "R2". In this case, types of attribute "al,"
"a2," and "a3" are “typel," "type2,” and "type3,"
respectively. "Typel,” "type2,” and "type3” actually
are type expressions which will be discussed in
more detail when we go through Section 4.3. Also
shown above are methods of class "R2." Method
"ml" which has "al" and "a3" as its input
parameters. Note that "al” and "a3" are attributes of
"R2". The body of method "ml" is defined in
"bodyl”. For method "m2," it has function body
"body2" and one input parameter "a2." As the
return type of this method, "type5" is it. A similar
explanation as method “"ml" and "m2" applies to
method "m3",

4.2. Two Basic Classes

In our object modeling, there are two basic
classes: records and tables. Records are more or less
like "user objects” while tables are sometimes cailed
“database objects” [Ulim88]. In general, TOM allows
arbitrary code in methods but distinguishes
between record objects and table objects. Let us find
out more about these two classes,

4.2,1. Record Classes

Record class is the most general class, just like
the Object Class in Smalltalk language [Gold89]. To
define a new record class, we need to give its
superclass, attributes, and methods as well. A record
class definition is something like:

class_narne: R3
super_class: Record
attributes: type7 ad
type8 a5
methods: type? mé
type7 m3
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In the above definition, we see that class "R3"
is a record class and it has two attributes, i. e., "a4"
and "a3" which belong to the type “type7" and
"type8." correspendingly.

A subclass can be derived from a defined
superclass. For example, if "R9" is a subtype of "R5"
and "R5" is defined as a record class then "R9" is a
subtype of a record class, automatically.

4.2.2. Table Classes

Table classes are similar to the collection
classes in the Smalltalk language [Gold89]. A table ig
a collection of objects of some record classes. The
main purpose for TOM to have this class is to
support the database objects. A general table class
would look like:

class_name: Tl
super_class: Table
attributes: typed  ab
typeld a7
methods: typell m6
typel2 m7

The only difference between a record class
and a table class is that the latter one may have
zero to many records while the former one always
has only one record. There are kinds of methods
which may only operates on the relationships
among records. Therefore, these methods can only
exist in the table classes. On the other hand, we do

not have any methods of this kind operation for a
record class.

4.3. Type Expressions in TOM

As we see in the previous sections tha'F type
expressions play an important role in the_ definition
of a class. They occur, in general, either in tl_le‘ type
definition of attributes or in return type definitions
of a method.

To reduce complexities, only two kinds c?f
constructors, "-+" and "J " are allowed in the TOMS
type expressin. A Llypical type expressign_]_ooks like
A+ 8BJC, where A, B, and C are primitive types.
This may be the most complicated type expressions
for an attribute definition in TOM. In most cases, an
attribute definition is nothing more than a mmp!c
primitive type which is a subty['m? of the generic
type within the same cardinal position.
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It is also possible that the type of an attribute
is a generic type. In this case, it would be very
useful when a generic function,” which will be
discussed in later section, is defined.

In the case of reusing the
polymorphism, we may need the
expression to represent a primitive type.

parametric
following

(Rl.al)xbinteger

In the above expression, "R1" stands for a class
and "al" is an attribute of "R1." "(Rl.al)\]rinteger"
means to subtype ‘the type of "al" to an integer type
within the same cardinal position where attribute
"al" stands. The usage of this kind of expression will
be discussed more in Section 5.2.

4.4. Typing Mechanism of Attributes

The effect of adding an atiribute is more or
less like doing Cartesian product, i. e., constructor X,
on a type. For example, if we define a new class
"RR2" which has class "RR1" as its supertype and
"aal," and "aa2" as its attributes. Then the type of
the data structure of class "RR2" will be type(aal) X
type(aa2) X type(aa3) X type(aad)., supposing

"RR1" has "zal" and "aa2" as its attributes. Note that
"aal" and "aa2" are not explicitly dfined in "RR2."
Instead, they are inherited from "RR1" which is the
superclass of "RR1."

As we: have already pointed ..out in the
previous section that Cartesian product has the
effect of doing subtyping. Therefore, it becomes
very apparent that using attributes to derive the
generalization, i. e., subtyping, relationship is a very
natural approach.

4.5, Class Hierarchy in TOM

The hierarchy of all classes .in The Object
Modeling is shown in Figure 4.5.1. In this Figure, we
see that the universal type is always the toppest
level type which is the supertype of all other types.
Two major subiypes of the universal type are the
record type and the table type. Under the record
type, there dreé marny moré subtypes to be defined.
The same situation applies to the table type.
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universal type

record type table type

l_l—_ll—‘“_!

R5 R6 rTZ | 13

Ealralicale

Figure 4.5.1. Hierarchy of TOM Classes

5. INTEGRATION CHARACTERISTICS OF TOM

. The most significant contribution of The Object
Modeling is in its providing a framework which is
able to . integrate (1) the database manipulation
language with the host language, (2) parametric
polymorphisms. with subtyping ones, (3} universal
polymorphisms -~ with overloading ones, and (4)
generic functions with inheritance. Let us study
them in more. detail now.

5.1. Integration of the Data Manipulation
Language and Host Language

General programming languages, e. g., C,
Pascal, C4+ [Stro86], and Ada [AdaB4] are host
langnages (XIL.) They are used for decisions, for
displaying questions, and for reading answers.
Operations on' the database require a specification,
called a data manipulation language (DML) or guéry
langnage, in which commands are expressed to
access data from databases in a very efficient way.

The DML/HL dichotomy is generally
considered an advaitage tather-than a deficiency in
database systems [Ullm88]. However, ‘there are
some new applications of database systems that do
not  follow the older .paradigms, and in this
applications, the integration of the data
manipulation language and host languages becomes
important.

It is TOM which makes this kind of integration
possible. In TOM, two kinds of class are provided.
Record class is for defining the user object while
table class is for the database object definition.
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Parametrice
ones

5.2. Integration of
Polymorphisms with Subtyping

oriented modeling,
treated differently

In conventional object
parametric polymorphisms are
from subtyping polymorphisms [Card86]. The
subtyping polymorphism can be very easily
achieved through TOM. The inheritance techniques
achieved through adding attributes belong to this
kind of polymorphism.

Let us see an example to show how the
parametric polymorphism can be achieved using
TOM.

class_name: R1

super_class: Record

attributes: * al

methods: typel  ml (al)} bodyl
class_name: R2

super_class: R1

attributes: (Rlal)Linteger a2
methods: ...

In the above definitions of R1 and R2, we
know that R2 is the subtype class of R1. Attribute
"al" is defined as a generic type and method "ml" is
using "al" as its input parameter. For the "R2"
definition, it has an attribute "a2" which is an
integer subtype of "al." (Note that "al" is a generic
type and "al" and "a2" are using the same cardinal
position.} The class R2 does not need to define
method "ml" any more. R2 can use it directly.

As the difference between the parametric and
subtyping polymorphisms, we find that for the
subtyping one the inherited method is defined on
those attributes which are not subtyped by the

lower level class. On the other hand, for the
parametric  polymorphism then the inherited
method is defined on those attributes which are

subiyped by lower level classes., However, we find
this difference to be insignificant. Therefore, we
casily integrate these two kinds of polymorphism
into one.
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5.3. Integration of Universal Polymorphisms

with Overloading Ones

In their paper [Card85], Cardelli and his co-
author Wegner claim that overloading is not a true,
or say it ad hoc, polymorphism. They especially
separate it from the universal polymorphisms, e. g.,
parametric and subtyping.

We find it unnecessary to do so. In the
cardinal typing system. an overloaded name can be
modeled by the "+ " constructor. For example, let
see the following class definition.

class_name; R1

super_class: Record

attributes: integer+boolean real al
methods: ...

class_name: R2

super_class: RI

attributes: (R1 al){ integer a2
methods: ...

In the above example, the type of attribute
"al" is overloaded with three different types, i. e.,
integer, Boolean, and real. This is totally legitimate
in the TOM modeling. In “"R2" class, attribute "a2" is
subtyped from the type of "al." Therefore, "R2" is a
subclass  of "R1." In this matter, modeling
overloading s absolutely no different from
modeling any other polymorphism.

5.4. Integration of Generic Funections with

Inheritance

In conventional object-oriented modeling such
as C++ the generic function is treated separately
from the inheritance [StroB6]. This will make the
object-oriented modeling, which is the central Tole
of an object-oriented development, very ackward,

Recall from the discussion in Section 5.2, we
find the example shown there is not only a
parametric  polymorphism but also a generic
function. Although we call the above example a
parametric polymorphism. However, it apparently
constructs the basic concept of generic functions.
From this point, we find a way of integrating the
parametric polymorphism with the generic function.



6. CONCLUSIONS

In this paper, we present . a model which
completely follows the framework of good type
theory practice. By doing so, this model is able to
clarify a lot of mis-understandings ~which occur in
.-other conventional: object oriented madeling, We
have ‘shown TOM's capability to integrate (1) the
database manipulation language with the - host
language, (2) parametric polymorphisms  with
subtyping ones, (3) universal polymorphisms with
overloading ones, and (4) generic functions with
inheritance.

As  the implementation of TOM, we have
already submitted a proposal to the National
Science Council of Republic of China. Hopefully, it
will be granted. If everything goes well, the
implementation, temporarily called Metadata Design
and Implementation of The Object Modeling
[Chao93], will be on the way immediately.

Also, the syntax preserted in this paper is not
formally specified. It will also be the key target
once the implementation of TOM starts.
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