
Association for Information Systems
AIS Electronic Library (AISeL)

ICIS 1994 Proceedings International Conference on Information Systems
(ICIS)

12-31-1994

Project Size and Software Maintenance
Productivity: Empirical Evidence on Economies of
Scale in Software Maintenance
Rajiv Banker
University of Minnesota

Sandra Slaughter
University of Maribor

Paula Swatman
Monash University

Rene Wagenaar
Erasmus University

Clive Wrigley
Erasmus University and McGill University

Follow this and additional works at: http://aisel.aisnet.org/icis1994

This material is brought to you by the International Conference on Information Systems (ICIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ICIS 1994 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Banker, Rajiv; Slaughter, Sandra; Swatman, Paula; Wagenaar, Rene; and Wrigley, Clive, "Project Size and Software Maintenance
Productivity: Empirical Evidence on Economies of Scale in Software Maintenance" (1994). ICIS 1994 Proceedings. 53.
http://aisel.aisnet.org/icis1994/53

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Ficis1994%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1994?utm_source=aisel.aisnet.org%2Ficis1994%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis1994%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis1994%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1994?utm_source=aisel.aisnet.org%2Ficis1994%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1994/53?utm_source=aisel.aisnet.org%2Ficis1994%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E


PROJECT SIZE AND SOFTWARE MAINTENANCE
PRODUCTIVITY: EMPIRICAL EVIDENCE

ON ECONOMIES OF SCALE IN
SOFTWARE MAINTENANCE

Rajiv D. Banker
Sandra A. Slaughter

Carlson School of Management
University of Minnesota

ABSTRACT

Although appropriate sizing of software projects is a concern in software development, Information
Systems managers getierally do not consider maintenance project size as a potential mfluence on software
maintenance productivity. This view ignores potential efficiency gains which may arise from proactive
renovation strategies such as batching similar maintenance requests into larger projects. In this study, we
explore the relationship between project size and productivity for software maintenance projects at a major
national mass merchandising retailer. Using a non-parametric methodology called Data Envelopment
Analysis (DEA) for estimating the functional relationship between maintenance inputs and outputs, we
determine the most productive scale size for a set of maintenance projects at this organization. In addition,
we also employ DEA-based heuristics to test for the existence of returns to scale for the projects. Our
results indicate the presence of significant scale economies in these software maintenance projects. The
most productive scale size is larger than 90% of the projects included in our sample. These results imply
that there may be potential to increase productivity in software maintenance at this organization by
grouping smaller modification projects into larger planned releases.

1. INTRODUCTION of the work arises as small, imprecise, ambiguous requests
of unpredictable urgency from the users for modifications

Software maintenance claims a significant and growing to existing software systems. Many organizations handle
portion of Information Systems (IS) resources, requiring these requests by simply processing them as they are
from 50% to 80% of the IS budget (Gallant 1986; Freed- submitted.1 This approach ignores benefits which may arise
man 1986). Yet, perhaps because software maintenance from proactive renovation strategies such as a release
tends to be viewed as a necessary evil, many technological control concept (Branch, et al. 1985; NeNeil 1979) in
and process improvements are directed toward software which user requests for modifications to installed applica-
developmenL There is a growing realization, however, that tions are grouped into a package and implemented in a
productivity improvements in software maintenance can release.
enable ire-deployment of IS resources to other activities
(Arthur 1988). Thus, there is increased motivation to more Although there has been considerable interest in investi-
effectively manage software maintenance. gating project scale economies for software development

(e.g., Byrnes, Frazier and Gulledge 1993; Banker and
Typically, IS managers do not consider maintenance project Kemerer 1989), very little examination of this issue has
size as a potential influence on software maintenance been done for software maintenance projects. In this study,
productivity (Swanson and Beath 1989; Martin and Mc- we explore the relationship between maintenance project
Clure 1983). By far, the bulk of the literature on project size and productivity for twenty-seven software mainte-
size planning for information systems is devoted to plan- nance projects completed over a two year timeframe at a
ning for development projects (e.g., Humphrey 1989; major mass merchandising retailer. In the context of our
DeMarco 1982). In the maintenance area, however, much study, we define a maintenance project to include the

279



activities necessary to make and implement the software (MPSS) for the production process is the scale which
changes for a particular user request. Using the non-para- maximizes average productivity; this occurs at the point
metric Data Envelopment Analysis (DEA) methodology for where there are local constant returns to scale. At the
estimating the functional relationship between maintenance MPSS, all productivity gains due to increasing returns have
project inputs and outputs, we estimate the most productive been exploited, but decreasing returns have not yet set in.
scale size for this set of maintenance projects. In addition, A relatively low MPSS indicates that decreasing returns set
we also employ DEA-based heuristics to test for returns to in early, while a high MPSS suggests that increasing
scale (Banker and Chang 1994). Our results indicate that returns prevail for larger scale sizes. Figure 1 provides a
significant scale economies are present in the software graphical illustration of these concepts.
maintenance projects at our research site.

In the following sections of the paper, we apply concepts of 2.2 Application of Productivity Concepts to
productivity from microeconomics to software maintenance, Software Maintenance
outline our research methodology, and present an analysis
of our empirical data. We conclude with a discussion of These concepts from production economics provide insight
the implications of our results for software maintenance into the relationship between software maintenance project
management and future research. size and productivity. Software maintenance is typically

viewed as the modification of a software product after
delivery to correct faults, improve performance or adapt to

2. AN ECONOMIC VIEW OF SOFTWARE a changed environment (Swanson 1976; Schneidewind
MAINTENANCE PRODUCTPOTY 1987). From an economic perspective, software mainte-

nance can be conceptualized as a production process (Bank-
2.1 Productivity Concepts from er, Datar, and Kemerer 1991). In this sense, software

Pmduction Economics maintenance projects convert inputs (the effort of mainte-
nance professionals) into outputs (modified software). The

Several concepts from production economics are relevant to maintenance production function represents the optimal
the analysis of productivity. The production process relationship between maintenance effort and modified
defines the technical means by which inputs (materials and software for maintenance projects. This implies that
services) are combined to produce outputs (goods or ser- software maintenance projects which deviate from the
vices). This technical relationship is represented by the production frontier are less efficient than those which lie
production «function which expresses the maximum level of along the frontier.
outputs produced for each given level of inputs (Varian
1992). Production economics emphasizes the frontier or The most productive maintenance project size occurs where
best practice notion for a production function, with devia- proportionate increases in team effort result in the same
tions from the frontier reflecting inefficiencies in individual proportionate increase in modified software. If, for exam-
observations (Aigner and Chu 1968; Banker 1993). ple, at a certain project scale, a doubling of inaintenatice

effort results in three times the amount of modified soft-
An important characteristic of the production process is ware, there are increasing returns to scale, and average
returns to scale. Returns to scale is defined as the relative productivity increases by increasing project scale: if the
increase in output as all inputs are increased proportionately reverse is true, then the maintenance project exhibits
so that the relative factor mix does not change (Varian decreasing returns to scale, and average productivity in-
1992). A production process exhibits constant returns to creases by decreasing project scale. If a doubling of
scale if, when all inputs are increased by a given proportion maintenance effort results in double the amount of modified
k, output increases by the same proportion. If output software, there are constant returns to scale and maximum
increases by a proportion greater than k, there are increas- maintenance productivity.
ing returns to scale; and if output increases by a proportion
sinaller than k, there are decreasing returns to scale.

2.3 Scale Economies in Software Maintenance
There is a direct relationship between returns to scale and
productivity of the production process. Maximum average We propose that economies of scale are present in software
productivity is achieved when there are constant returns to maintenance as well as in software development. There
scale. Local economies Of scale are present where average have been several studies of scale economies in software
productivity is increasing and diseconomies of scale occur development (Walston and Felix 1977; Jeffery and Law-
where average productivity is decreasing.2 For a single- renee 1979; Vessey 1986; Banker and Kemerer 1989;
input, single-output case, the most productive scale size Byrnes, Frazier and Gulledge 1993; Banker, Chang and

280



Figure 1

RETURNS TO SCALE & MPSS IN PRODUCI'ION ECONOMICS

/1

Y (OUTPUT)
PRODUCIION FRONTIER

constant returns to «r.de ..'"
/ decreasing r*turns to scate

E

.· inc rerun s

V ,
0 MPSS X (INPUT)

Kemerer 1994). An empirical analysis of returns to scale contributing to scale economies in software maintenance.
in software development for eight publicly available data For example, efficiency gains in maintenance may occur
sets demonstrated the presence of both scale economies and where requests for a particular system are batched, so that
diseconomies (Banker and Kemerer 1989). In general, this the maintenance team can spread learning curve effects
study found that smaller development projects are charac- from becoming familiar with that system over several
terized by increasing returns, while larger projects are requests. In addition, it may be more productive to make
characterized by diminishing returns to scale. The authors several changes to a system and then perform a single
suggest that, in software development, productivity in- system test prior to re-installation instead of a series of
creases on larger projects arise from spreading fixed project tests. There may also be efficiencies realized from accom-
management overhead over a larger base, and from greater plishing and implementing documentation updates from a
use of specialized personnel and tools (Boehm 1981). batch of changes, rather than continually modifying docu-
}Iowever, eventually, larger project size tends to increase mentation as small changes are made.
the complexity of interface requirements, the number of
inter- and intra-project communication paths, and the Although scale economies in software maintenance may be
requirements for documentation (Conte, Dunsmore and present, there may be organizational resistance against a
Shen 1986; Brooks 1975). Thus, average productivity of proactive release control process. The nature of mainte-
the project team is likely to decline beyond the most nance project requests tends to differ from software deve-
productive scale size of the project. lopment in that maintenance requests are generally smaller,

incremental to existing systems, unpredictably urgent, and
Although there are similarities between software develop- have a more immediate impact on the user's work. Thus,
ment and maintenance, software maintenance is different although "true" emergency repairs account for only a small
because the programming team must spend a significant portion of maintenance work (Lientz and Swanson 1980),
amount of time attempting to understand the purpose and there may be institutional pressures to complete all mainte-
construction of the programs to be modified (Littman, et al, nance requests upon demand. In describing the implemen-
1987; Fjeldstad and Hamlen 1983). Thus, while economies tation of an SRD (System Release Discipline) approach to
and diseconomies of scale may arise for similar reasons as maintenance, McNeil (1979) notes some of the difficulties
in software development, there may be additional sources encountered:

281



[S]ome old habits may die hard. Software staff' maintenance work include user support (non-programming
may feel they are giving up control of "their" activities such as responding to user queries), repairs
system, and indeed they must sacrifice the freedom (corrections of application defects), and enhancements
to bomb it at will. Users, for their part, may (addition or modification of application functionality). The
object to being unable to demand a new feature for maintenance team does not utilize a formal change manage-
the system on an overnight basis. Their payoff ment program, i.e., maintenance requests for all types of
must wait, but at least when the feature is imple- work are processed upon receipt and as time permits. That
mented it is more likely to work properly. Opera- the current approach to managing maintenance projects may
lions staff may have been getting blamed for every be unsatisfactory is reflected in the remarks of one of the
system problem anyhow, so they can be expected maintenance managers at the site:
to favor any change in procedures which makes
their lives less hectic. [p. 112] It would be nice if I could plan requests, if I had

extended time to plan and schedule. For exam-
These sentiments are emphasized by software maintenance pie...there are so many small projects in the XXX
professionals participating in a study by Dekleva (1992): Area which I'd like to batch if I could. I'd like to

use a release method (like software vendors)...but
[D]ue to the length of maintenance tasks, new the users wouldn't go for it. It's too dynamic
requests frequently come along before the ongoing here. We're not disciplined enough to plan ahead.
task is completed. There is always something [Interview Transcript, January 25, 1993]
more critical or another user with a problem. A
great deal of time is wasted on stopping and start-
ing maintenance tasks. [p. 17] 3.2 Data Collection

Thus, to justify change m maintenance practice, it is critical Our general strategy was to collect data retrospectively for
to provide evidence of the potential benefits to be gained completed maintenance projects. We obtained data for
from managerial innovations which take advantage of scale twenty-seven software maintenance projects which modified
economies in accomplishing software maintenance tasks. twelve different application systems. Each project modified
Our study makes an initial contribution in this area by only one application; thus, in some cases, there were
determining the existence and extent of scale economies in multiple projects for the same application. To control for
software maintenance projects at our research site. the influence of extraneous factors, three criteria were used

to select projects for inclusion in the study: recency of
completion, similarity of project type, and similarity of

1 METHODOLOGY programming language. Project recency is important
because personnel turnover and lack of documentation

3.1 Research Site retention make accurate data collection impossible for older
projects. In addition, technology and personnel involved

Data for this study were collected at a national mass are more similar for projects completed in a shorter and

merchandising retailer. The IS departnent for the organiza- more recent timeframe; this enables cross-project compari-

tion is located at company headquarters and supports all sons. Similarity of project type is important because this

centralized computer processing activities for the company.
improves homogeneity of the projects analyzed. We

In 1983, the IS department was divided into separate included only projects which modified functionality for the

development and maintenance teams, with the development application systems; thus, projects such as package installa-

team working exclusively on development of new systems
tions or conversions to new operating systems were not

and major enhancements, and the maintenance team respon-
compared with projects which modify functionality. Our

sible for support of existing systems and minor enhance- final criterion was similarity of progratmning language. Al[

ments. The organization has a large investment in com- projects included modifications to COBOL programs.
puter software in COBOL, written in the late 1970s and the

Therefore, the results of our analysis are not confounded by

1980s, and running on large IBM mainframe computers. the effects of multiple programming languages. After

At the end of 1992, the size of the application portfolio was
discussions with IS staff at the research site, only projects
completed within a two-year timeframe between January,estimated at 85,000 function points (approximately 14 1991, and December, 1992, were considered for inclusion

million lines of code). in the study. Of the forty projects initially considered for
inclusion, thirteen were eliminated because they were either

On average, a typical maintenance programmer supports non-COBOL or non-modification projects. Data were
2.200 function points. Small (one to three person) teams collected in early 1993. Table 1 presents a profile of the
are responsible for supporting major applications. Types of twellty-seven projects included in this study.

282



Table 1. Profile of Projects Included with Efficiency Ratings

Project Efficiency Efficiency
Project Function Rating Rating

Project# Hours Points (CCR) (BCC)

1 48.0 13.0 0.2019 1.0000

2 85.0 8.0 0.0702 0.5647

3 99.0 12.0 0.0904 0.4848

4 921.0 304.0 0.2461 0.2499

5 198.0 49.0 0.1845 0.3563

6 274.0 86.0 0.2340 0.3420

7 515.0 120.0 0.1737 0.2233

8 265.0 150.0 0.4220 0.5048

9 632.0 282.0 0.3326 0.3425

10 76.8 10.0 0.0971 0.6250

11 397.5 108.0 0.2026 0.2704

12 104.0 8.0 0.0573 0.4615

13 222.0 136.0 0.4567 0.5632

14 249.0 334.0 1.0000 1.0000

15 364.5 97.0 0.1984 0.2760

16 2450.6 410.0 0.1247 0.1632

17 69.0 17.0 0.1837 0.7319

18 49.5 11.0 0.1657 0.9697

19 145.5 13.0 0.0666 0.3299

20 370.0 42.0 0.0846 0.1788

21 1675.0 1052.0 0.4682 1.0000

22 141.0 10.0 0.0529 0.3404

23 61.0 17.0 0.2078 0.8279

24 71.0 19.0 0.1995 0.7289

25 460.0 187.0 0.3031 0.3412

26 397.0 57.0 0.1071 0.1903

27 927.0 247.0 0.1986 0.2098

* Mean * 417.3 140.7 0.2270 0.4917

* Std Dev * 543.0 216.0 0.1894 0.2720

283



Figure 2

CCR VERSUS BCC MODEL
A :

at point A:
Y WROJECI /

FUNCIION / BCC inefictency - MA/MB
POINTS) ,.CCRineficiency-MA/MC-MA/MB * MB/MC

-
technical scale

inefficiency inefficiency
%

ill .
M C/YA •

f/ 30 X (PROJECr HOURS)

•. maintenance projects - production frontier

3.3 DEA Methodology returns to scale to be most productive since maximum
average productivity is maximized at this project size.

To investigate the relationship between maintenance project When maintenance project size is "fixed," i.e., not under
size and productivity, we employ Data Envelopment Analy- the control of the IS manager, the BCC model provides a
sis (DEA), a non-parametric methodology for production measure of technical efficiency for a given project size.
frontier estimation developed by Charnes, Cooper, and Thus, in the BCC model, any project along the production
Rhodes (1981) and extended to a formal production eco- frontier for the data set is considered to be efficient since
nomics framework by Banker, Chat·nes, and Cooper (1984). technically efficient points lie at the frontier. Figure 2
DEA is a technique that employs linear programming to illustrates the differences between the BCC and CCR
map a production frontier for input and output data. In the models. In this example, points A, B, and E represent
context of software maintenance, DEA evaluates the rela- three software maintenance projects. The CCR model
tive productivity of each maintenance project by comparing identifies project E as the most productive, given that
it against a composite project that is constructed as a project scale size can be varied at the discretion of the IS
convex combination of other projects in the data set. manager. The BCC model identifies projects B and E as

technically efficient, because they represent the highest
The methodology of Charnes, Cooper and Rhodes (the productivity when scale size is given and cannot be altered
"CCR" model) enables the estimation of aggregate technical by the IS manager. The technical efficiency of project A is
and scale inefficiencies in the software maintenance pro- determined relative to project B which lies along the BCC
jects, while the methodology of Banker, Charnes and production frontier, and the scale efficiency of project A is
Cooper (the "BCC" model) facilitates the estimation of the determined relative to point C (not representing a mainte-
technical inefficiency of a project at the given scale of nance project) which lies along the CCR frontier lille
production. Since the CCR model estimates both scale and connecting the origin to project E (the most productive
technical inefficiencies, it is an appropriate measure of scale size). In our study, we estimate both CCR and BCC
productivity when maintenaiice project size is discretionary, models because tests of returns to scale in DEA use both
i.e., under the control of the IS manager. The CCR model models to construct the test statistics (Banker and Chang
identifies the project which lies at the point of constant 1994).

284



We employ DEA rather than a parametric model to esti- scribed well with a constant returns to scale model, With
inate the production relationship between maintenance input only ali increasing (or decreasing) returns to scale model, or
and output Since DEA does not impose a specific form on with a model that allows for the presence of both increasing
the production function and maintains relatively few as- and decreasing returns to scale in different data ranges. To
sumptions,  its estimates are likely to be more robust than construct the test statistics, we estimate both the CCR and
those obtained from parametric models that postulate a BCC models within DEA.
certain structure such as a linear or quadratic form for the
software maintenance production function (Banker and
Maindiratta 1988). 4. EMPIRICAL RESULTS

Using DEA, we estimate the production function relating 4.1 BCC and CCR Efficiency Ratings for
maintenance project input (project learn labor) to output the Maintenance Projects
(ino(lined software functionality). We focus on labor hours
as the critical input of interest, because IS personnel staff To assess the pure technical efficiency eBCC = 1/e(y.xo) of
tilne is the most expensive and scarce resource in software each maintenance project (Yo,Xo), we estimate the follow-
development alid maintenatice, accounting for over half of ing BCC model:
the IS budget (Grammas and Klein 1985). Project team (4.a) eB(Yo,Xo) = Max 0
labor is measured by the total number of labor hours logged
to the project by the maintenance team and is obtained
from the organization's project time tracking system. Size subject to
of modified software functionality is assessed by the
nuinber of function points added, changed or deleted by the (4.b) E kY - YJes 0
project. Function points have been demonstrated to be a
reliable estimate of software size (Kemerer 1993). A
function point corresponds to an end-user business function (4.c) r27 XX. 2 X

4-•9=1 1 J 0such as sales order entry. The functions are organized into
five groups which reflect how the function is accomplished
iii the software: external inputs, external outputs, external (4.d) 77 1 =1uj=\ jinquiries, logical internal files and external interface files
(Albrecht and Gaffney 1983). Thus, function points pro-
vide an estimate of the number of files, reports and screens (4.3) 0 and X 2 0
updated by the maintenance project. For this study, the
function point figures are obtained from the organization's
Quality Assurance Department which is responsible for
counting of projects and applications. where j = project observation number

Y = project Function Points
We also use DEA to estimate the MPSS for the mainte- X = project Labor Hours
nance projects. Since we are interested in a single input-  B = inefficiency variable, BCC model
single output production correspondence, the computation is 1 = weight
relatively straightforward. The MPSS is given by the
project size for which the ratio of project size to labor This model is solved as. a linear program in the efficiency
hours (or the average productivity) is the largest for all of variable eBCC = 1/e and the weights Xj. As shown by
the observations (Banker 1984; Banker and Kemerer 1989). Banker (1993), the DEA estimator of e is statistically
Projects which are larger (smaller) than the MPSS corre- consistent, and the asymptotic empirical distribution of the
spond to decreasing (increasing) returns to scale. DEA estimates retrieves the true distribution of 0 under the

maintained assumptions embodied in the DEA postulates of
Finally, we use new DEA-based heuristics (Banker and convexity, monotonicity, envelopment and likelihood of
Chang 1994) to formally test for returns to scale. There are efficient performance. These assumptions are consistent
two heuristics, depending on whether the deviations of with both increasing and decreasing returns to scale and do
observed data from the estimated production function are not impose constant returns to scale. The efficiency ratings
postulated to be distributed as exponential or half-normal.  BCC 5 1.0000) for the twenty-seven software maintenance
As a sensitivity check, we construct test statistics under projects estimated under the BCC model are presented in
both assumed forms of distribution for the deviations. the fifth column of Table 1. Projects with a rating of
These tests indicate whether the observations can be de- 1.0000 are the most efficient given their scale size; the

285



further the rating is from 1.0000, the less efficient the constant returns to scale is rejected at the 5% level of
project. For our sample of maintenance projects, three significance. This suggests that variable returns to scale are
projects are identified as efficient using the BCC model. present in the data set. We reject the null hypotheses of

decreasing returns to scale and non-increasing returns to
Estimates of aggregate technical and scale efficiency under scale at the 5% level of significance under both heuristics.
the CCR model, ecCR = 1/e, are obtained by solving the Given this result, we conclude that this data set is charac-
above linear program, except that the objective function in terized primarily by increasing returns to scale. Thus, our
(4.a) is maximized subject only to constraints (4.b), (4.c), tests of returns to scale indicate that the maintenance
and (4.e). The CCR estimator is also statistically consistent projects are largely characterized by increasing returns to
under the maintained DEA assumptions, with the addition scale and are too small for maximum productivity. To
of a postulate for constant returns to scale. We refer to the assess the validity and robustness of our results, we con-
CCR inefficiency estimate as e: The efficiency ratings ducted a number of sensitivity analyses. Following the
(ecCR 5 1.0000) for the twenty-seven software maintenance intuition of Richmond (1974), we iteratively removed
projects estimated under the CCR model are presented in efficient projects from our data set and re-computed our
the fourth column of Table 1. The project with a rating of test statistics to assess the extent of the influence of effi-
1.0000 is the most productive; the further the rating is from cient projects on our results.4 In all cases, our analysis
1.0000, the less is the average productivity of the project. confirmed the robustness of our result that maintenance

projects at our research site are characterized by increasing
returns to scale, and most of them are too small for maxi-

4.2 Most Productive Scale Size mum productivity.

In Figure 1, the MPSS occurs at the point E, which reflects
the maximum observed average productivity across all 5. DISCUSSION
observations (expressed as the ratio of project function
points to labor hours). For this sample, E = 1.34 function In this paper, we explore the relationship between mainte-
points per hour. The project size at which E is achieved is nance project size and productivity for software mainte-
for project #14 at 334 function points and 249 labor hours. nance projects in a field setting. Using the DEA melhodol-
Only two of the twenty-seven maintenance projects are ogy for estimating the functional relationship between
larger than this scale size and exhibit decreasing returns to maintenance project size and labor hours, we estimate the
scale, implying that 90% of the projects are characterized most productive scale size for this set of maintenance
by increasing returns to scale, i.e., they are too small to projects. In addition, we employ DEA-based heuristics to
attain the maximum average productivity. examine returns to scale for the projects. Our results

indicate the presence of significant scale economies in these
software maintenance projects. The most productive scale

4.3 Tests for Returns to Scale size for these projects is larger than most of the projects
included in our sample.

We construct heuristics to test whether there are non-
constant returns to scale for this set of maintenance pro- Our results provide evidence that scale econoinies are
jects. Since the DEA estimator is statistically consistent, present in software maintenance at our research site. The
under the null hypothesis of constant returns to scale, the presence or absence of scale economies at a given Inainte-
asymptotic empirical distributions of the DEA estimates of nance project size is important for software maintetiance
ea and ec are identical, each recovering the true distribu- management because of the influence on maintenance
tion of 0 (Banker 1993). This motivates the development productivity. Since the projects in our study are relatively
of two heuristics for semiparametric statistical tests of large in size for maintenance efforts (with an average of
constant, non-increasing, and non-decreasing returns to over 400 hours),they provide a conservative test of econo-
scale (Banker and Chang 1994). The two heuristics corre- mies of scale, implying that there may be significant
spond to different maintained assumptions about the distri- potential to increase productivity by grouping typical "quick
bution (exponential versus half-normal) of the inefficiency fix" maintenance projects into larger planned releases. This
variable e. The robustness of these DEA based heuristics information can serve as justification for implementing a
has been demonstrated for different underlying production proactive change management program in which managers
functions and inefficiency distributions as well as finite scale future projects accordingly so as to maximize the
sample sizes (Banker and Chang 1994), productivity of software maintenance effort. Infortnation

on scale economies can also be used within an existing
Table 2 summarizes the test statistics, the hypotheses and change management program to assist in grouping projects
results. Under both heuristics, the null hypothesis of such that maintenance productivity is maximized.

286



Table 2. Returns to Scale Tests

DEA heuristics based on exponential distribution

Null Hyp. Alt. HYP. Test Statistic F Statistic Critical F.,s(27,27) Result

CRS VRS St («:-1)/El (eB-1) 3.45696 1.53 Reject CRS

NDRS DRS S1 («- 1)/ 71 ((3:-1) 1.01879 1.53 Fail to Reject
NDRS

NIRS IRS  1   :- 1)/El (e:-1) 3.24964 1.53 Reject NIRS

DEA heuristics based on half-normal distribution

Null Hyp. Alt. Hyp. Test Statistic F Statistic Critical Fa(27,27) Result

CRS VRS fyl (0:4)467, (ef-1)1 11.24387 1.65 Reject CRS

NDRS DRS E :, («-1) /  (e:-1)  1.17010 1.65 Fail to Reject
NDRS

NIRS IRS El (ec-1)2/El ce]-1)2 9.60929 1.65 Reject NIRS

Key: CRS = constant returns to scale ec = CCR inefficiency variable
VRS = variable returns to scale es = BCC inefficiency variable
NDRS = non-decreasing returns to scale eD =NDRS inefficiency variable
DRS = decreasiiig returns to scale 9 = NIRS inefficiency variable
NIRS = non-increasing returns to scale
IRS = increasing returns to scale

In addition, our findings have interesting implications for 6. REFERENCES
software maintenance research. They suggest that research-
ers interested in software productivity should consider Aigner, D. J., and Chu, S. E "On Estimating the Industry

project size as an important influence on productivity in Production Function." American Economic Review, Vol-
software maintenance as well as in software developmenL ume 58, 1968, pp. 826-839.
There are several possible extensions to this study. Re-
search in software development indicates that the MPSS Albrecht, A. J., and Gaffney, J. "Software Function,

varies widely across organizational environments (Banker Source Lines of Code, and Development Effort Prediction:
a Software Science Validation." IEEE Transactions onand Kemerer 1989). Thus, future work could assess wheth- Sojbvare Engineering, Volume SE-9, Number 6, 1983, pp.er this finding is replicated for software maintenance and 639-648.could try to identify factors that contribute to some organi-

zations' ability to successfully manage larger maintenance Arthur, L. J. Software Evolution. New York: John Wiley
projects. A study could also assess the effects on mainte- & Sons, Inc., 1988.
nance productivity of other scale-related factors, such as the
size of the project team a11d calendar length of the project Banker, R. D. "Estimating Most Productive Scale Size
A final possibility is to use the DEA methodology to assess Using Data Envelopment Analysis." European Journal of
the performance of an organization which utilizes a proac- Operations Research, Volume 17, Number 1, July 1984,
tive change management program in software maintenance. pp. 35-44.

287



Banker, R. D. "Maximum Likelihood, Consistency and Cont, S.; Dunsmore, H.; and Shen, V. Sofware Engineer-
Data Envelopment Analysis: A Statistical Foundation." ing Metrics and Models. Reading, Massachusetts: Benja-
Management Science, Volume 39, Number 10, October min Cummings, 1986.
1993.

Dekleva, S. "Delphi Study of Software Maintenance
Banker, R. D., and Chang, H. "Tests of Returns to Scale Problems." Conference on Sofware Maintenance, 1992,
in Data Envelopment Analysis." Forthcoming in interna- pp. 10-17.
tional Journal of Productivity, 1994.

DeMarco, T. Controlling Software Projects. New York:
Banker, R. D.; Chang, H.; and Kemerer, C. E "Evidence Yourdon Press, 1982.
on Economies of Scale in Software Development." Forth-
coming in Information and So.#ware Technology, 1994. Fjeldstad, R. K., and Hamlen, W. T. "Application Program

Maintenance Study: Report to Our Respondents." In G.
Banker, R. D.; Charnes, A.; and Cooper, W. W. "Some Patikh and H. Zvegintzov (Editors), Tutorial on Software
Models for Estimating Technical and Scale Inefficiencies in Maintenance. Silver Spring, Maryland: IEEE Computer
DEA." Management Science, Volume 30, Number 9, Society Press, 1983.
September 1984, pp. 1078-1092.

Freedman, D. H. "Programming without Tears." High
Banker, R. D.; Datar, S.; and Kemerer, C. E "A Model to Technology, Volume 6, Number 4, 1986, pp. 38-45.
Evaluate Variables Impacting the Productivity of Software
Maintenance Projects." Management Science, Volume 37, Gallant, J. "Survey Finds Maintenance Problem Still
Number 1, January 1991, pp. 1-18. Escalating." Computerworld, Number 20, January 27,

1986.
Banker, R. D., and Kemerer, C. E "Scale Economies in
New Software Development." IEEE Transactions on Grammas, G. W., and Klein, J. R. "Software Productivity
Software Engineering, Volume 15, Number 10, October as a Strategic Variable." /ntefaces, Volume 15, Number 3,
1989, pp. 1199-1205. May-June 1985, pp. 116-126.

Banker, R. D., and Maindiratta, A. "Nonparametric Analy- Humphrey, W. S. Managing the Software Process. Read-
sis and Allocative Efficiencies in Production." Econome- ing, Massachusetts: Addison-Wesley, 1989.
trica, Volume 56, Number 6, November 1988, pp. 1315-
1332. Jeffery, D. R., and Lawrence, M. J. "An Inter-Organisa-

tional Comparison of Programming Productivity." In
Boehm, B. W. So,#ware Engineering Economics. Engle- Proceedings of the Fourth International Conference on
wood Cliffs, New Jersey: Prentice-Hall, 1981. Sojlware Engineering, 1979, pp. 369-377.

Branch, M. A.; Jackson, M. C.; Laviolette, M. C.; and Kemerer, C. R "Reliability of Function Points Measure-
Frankel, E. C. "Software Maintenance Management." ment." Communications of the ACM, Volume 36, February
Conference on Sohware Maintenance, 1985, pp. 62-68. 1993, pp. 85-97.

Brooks, F. P. 77:e Mythical Man Month. Reading, Massa- Lientz, B. R, and Swanson, E. B, Sofware Maintenance
chusetts: Addison-Wesley, 1975. Management. Reading, Massachusetts: Addison-Wesley,

1980.
Byrnes, R E.; Frazier, T. P.; and Gulledge, T. R. "Re-
turns-to-Scale in Software Production: A Comparison of Littman, D. C.; Pinto, J.; Letovsky, S.; and Soloway, E.
Approaches." In T. R. Gulledge and W. R Hutz (Editors), "Mental Models and Software Maintenance." Journal Of
Analytical Methods in Software Engineering Economics. Systems and Sojlware, Volume 7, 1987, pp. 341-355.
New York: Springer-Verlag, 1993, pp. 75-97.

Martin, J., and McClure, C. Sofware Maintenance: The
Charnes, A.; Cooper, W. W.; and Rhodes, E. "Evaluating Problem and irs Solution. Englewood Cliffs, New Jersey:
Program and Managerial Efficiency: An Application of Prentice-Hall, 1983.
Data Envelopment Analysis to Program Follow Through."
Management Science, Volume 27, Number 6, June 1981, McNeil, D. H. "Adopting a System Release Discipline."
pp. 668-697. Datamation, January 1979, pp. 110-117.

288



Nosek, J. T., and Palvia, R "Software Maintenance Man- 7. ENDNOTES
agement Changes in the Last Decade." Journal of Sof-
ware Maintenance, Volume 2, Number 3, September 1990. 1, A survey of software maintenance practices by Nosek
pp. 157-174. and Palvia (1990, p. 170), for example, found thal

while 89% of the responding organizations reported
Richmond, J. "Estimating the Efficiency of Production." Logging user requests for changes, only 33% reported
international Economic Review, Volume 15, June 1974, pp. batching change requests.
515-521.

2. In production economics, economies of scale are
Schneidewind, N. E "The State of Software Maintenance." defined at specific volume levels in a production

process and should be described as local, In dealingIEEE Transactions on Software Engineering, Volume SE-
13, Number 3, March 1987, pp. 303-310. with single input-single output production correspon-

dences, the terms increasing returns to scale and scale
Swanson, E. B. "The Dimensions of Maintenance." economies, and decreasing returns to scale and scale

diseconomies can be used interchangeably (Banker andProceedings of the Second International Conference on
Kemerer, 1989).Sonware Engineering, San Francisco, California, October

13-15, 1976, pp. 492-496.
3. DEA assumes only that a monotonically increasing and

convex relationship exists between inputs and outputs.Swanson, E. B., and Beath, C. M. Mainmining InfoRmation
These assumptions ensure that marginal productivity isSystems in Organizations. New York: John Wiley and

Sons, 1989. decreasing so that diminishing returns for small pro-
jects would not be followed by increasing returns for
large projects.

Varian, H. R. Microeconomic Analysis. New York:
Norton, 1992. 4. We ran a number of sensitivity checks by removing

influential project observations from our data set.
Vessey, I. "On Program Development Effort and Produc- Individually, we deleted projects #14, 21, 1, 8, 13, and
tivity." /,1/brination and Management, Volume 10, 1986, 16. We also deleted combinations of projects, such as
pp. 255-266. #14 and 21, and #13, 14, and 21. After each deletion,

we re-computed the DEA heuristics for the remaming
Walston, C. E., and Felix, C. R "A Method of Program- projects. Our results indicated that, for all situations,
ming Measurement and Estimation." /BM Systems Journal, the sample of remaining projects exhibits increasing
Volume 16, Number 1. 1977, pp. 54-73. returns to scale.

289


	Association for Information Systems
	AIS Electronic Library (AISeL)
	12-31-1994

	Project Size and Software Maintenance Productivity: Empirical Evidence on Economies of Scale in Software Maintenance
	Rajiv Banker
	Sandra Slaughter
	Paula Swatman
	Rene Wagenaar
	Clive Wrigley
	Recommended Citation


	tmp.1422460515.pdf.WE06g

