
Application of Survival Model to Understand Open Source Software Release / Sen et al.

Pacific Asia Journal of the Association for Information Systems Vol. 7 No. 2, pp-1-24 / June 2015 1

Application of Survival Model to Understand Open
Source Software Release

Ravi Sen
Department of Information and Operations Management

Texas A&M University
rsen@mays.tamu.edu

Matthew L. Nelson

Department of Accounting and Business Information Systems
Illinois State University

mlnelso@ilstu.edu

Chandrasekar Subramaniam
Department of Business Information Systems and Operations Management

University of North Carolina at Charlotte
csubrama@uncc.edu

Abstract

One of the recurrent themes in open source software research is to understand the impacts of
various project characteristics on its success. Open source software (OSS) projects rely on
voluntary participation of developers and tend to be continually in development. Hence, an
important measure of success is the time it takes for an OSS project to release a stable version
to its users. However, there is little research on this success measure and how the OSS
characteristics enable or delay the progress towards stable release. In this study, we use
survival analysis technique on open source project data to explore the impacts of OSS
characteristics on the time it takes to release stable software versions. We find that when
compared to the interest of developers in the project, interest of end-users has a greater
positive effect on an OSS project progress towards stable release. Our findings also suggest
that the use of C and C-like programming languages or a Weak-Copyleft license for the open
source project negatively impact the project’s time to reach stable status. In OSS projects less
than 8 months since becoming public, the use of a Strong-Copyleft license positively affects the
project’s progress. One of the implications of our findings is that OSS project administrators
should control software change requests or form smaller developer groups to better control the
delays due to higher developer interest in their projects.

Keywords: Open source project, OSS, FLOSS, OSS popularity, OSS success, survival,

hazard, ordinal regression

1

Sen et al.: Application of Survival Model to Understand Open Source Software

Published by AIS Electronic Library (AISeL), 2015

Application of Survival Model to Understand Open Source Software Release / Sen et al.

Pacific Asia Journal of the Association for Information Systems Vol. 7 No. 2, pp-1-24 / June 2015 2

Introduction

The widespread adoption of open source
software (e.g. Apache, Sendmail, various
flavors of Linux) has generated immense
interest among academics who want to
understand and explain various aspects of
this phenomenon (Nelson, Sen, &
Subramaniam, 2006). The open and
voluntary approach to development in open
source software (OSS) is arguably more
efficient than the development methods of
proprietary software (Martin, 1998) and
implements a voluntary form of concurrent
design and testing of software modules
(Kogut & Metiu, 2001). One of the recurrent
themes in open source software research is
to understand the impacts of various project
characteristics on project success and
researchers have offered different
measures of open source project success.
Knowledge about the OSS success
measures and success predictors can help
to evaluate legal and policy decisions on
this competing model of software
development. In addition, this knowledge
plays an important role in helping
administrators better manage release timing
and attract talented developers, sponsors,
and end-users to their OSS projects (Hann,
Robert, & Slaughter, 2004).

The OSS literature has identified several
success measures such as project activity
levels, development team size, and time
taken to fix software bugs (Crowston,
Howison, & Annabi, 2006). Given that OSS
software tend to be continually in
development, there is relatively very little
understanding of a key measure of OSS
success - the project’s progress (Crowston,
Annabi, & Howison, 2003). Open source
software (OSS) projects also are known to
suffer from resource constraints, since most
such projects have very few developers
working on them. Many OSS projects try to
survive and sustain development work by
relying on voluntary donations from users.
Several do not have the experts such as
usability experts, documentation writers,
etc., to help improve their final product.

Despite these constraints, open source
projects still have to compete with
commercial software producers who have
more resources at their disposal. In order to
compete effectively, open source software
projects need to develop and release stable
versions of their product early and often.
Since software benefit from network effects,
it is important that the stable version is
released as early as possible to leverage
first-mover advantages inherent in network
products. However, there are no studies,
particularly empirical, that we know of which
investigate OSS projects’ progress towards
stable release. In this paper, our objective is
to understand the effects of an OSS
project’s characteristics on the time taken to
release a stable version of the OSS after it
has been made public (i.e., after it has been
registered in the leading open source
software repository SourceForge
(www.sourceforge.net)). Our study uses
survival analysis and the framework of OSS
success derived from DeLone and
McLean’s IS success model (DeLone &
McLean, 2003)

Among the several interesting findings, are
two in which the levels of developer interest
and user interest have a negative impact on
the project’s progress in the early days of
the project (i.e., it takes longer to reach a
stable status). As the time from the project
registration increases, developer-interest
and user-interest have positive impacts on
the time to release stable versions. We also
find that the choice of Weak-Copyleft
license for the OSS project increases the
time taken by the project to reach stable
status, while a Strong-Copyleft license
results in faster progress to a stable status
during the first 229 days of the OSS project.

The rest of our paper is organized as
follows. We review the related literature in
the next section, followed by our research
hypotheses in section 3. In section 4 we
present the Extended Cox hazard model
used for our study. We then describe the
data, model estimates and the results of
hypotheses testing. We conclude the paper

2

Pacific Asia Journal of the Association for Information Systems, Vol. 7, Iss. 2 [2015], Art. 1

https://aisel.aisnet.org/pajais/vol7/iss2/1
DOI: 10.17705/1pais.07201

http://www.sourceforge.net/

Application of Survival Model to Understand Open Source Software Release / Sen et al.

Pacific Asia Journal of the Association for Information Systems Vol. 7 No. 2, pp-1-24 / June 2015 3

with a discussion of our results and
managerial implications.

Review of Related Literature

Several noteworthy trends in the OSS arena
have emerged and should be highlighted at
the outset. The notion that OSS
development efforts are best represented by
a small fraction of technical experts has
long passed, as users and developers of all
types increasingly integrate open source
software into IT solutions. OSS has
experienced widespread mainstream
adoption, with predictions reaching as high
as 80% of all commercial software
packages to include some elements of
open-source technology in 2012 (Driver,
2010). As organizations strive to reach a
balanced software portfolio, the breadth of
OSS solutions are expanding from
horizontal support solutions (operating
systems, web browsers) towards vertical
solutions (functional, business unit specific
applications).

Although the longer-term implications of
these OSS trends remain to be seen, some
noteworthy consequences have become
clear. For example, OSS development is
shifting towards ensuring that a final “whole
product” is completed and released, with
greater emphasis placed on project
progression success factors and final
project outcomes (Fitzgerald, 2006; Driver,
2010; Bardhan, Kauffman, & Naranpanawe,
2010). Greater structure is needed in the
OSS development process, leveraging
fundamental project management
techniques, and with greater focus towards
the measurement and timing of defined
outcomes. IT industry analysts are
encouraging companies to launch formal
enterprise wide open source software
governance programs, to better manage
complex licensing arrangements, integrate
findings into baseline service level
agreements (SLAs) and to better prepare
for ramifications of mergers and acquisitions
(Fitzgerald, 2006; Driver, 2010; Bardhan et
al., 2010). Another notable consequence is

a shift towards less emphasis being placed
on developer skills and greater emphasis
being placed on the extent of end-user
involvement and the degree of developer
participation in OSS projects (Fitzgerald,
2006; Driver, 2010).

Understanding the objective measures of
OSS project success is important since it
helps OSS project managers to evaluate
their projects and take steps to meet the
project goals (Crowston et al., 2006). The
literature on OSS proposes measures of
success of OSS projects from perspective
of the OSS development process and which
could complement the traditional success
measures. One study has identified project
activity level, development team/community
size (i.e. number of active contributors to
the project), and time taken to fix software
bugs as key measures for OSS project
success (Crowston et al., 2003). Another
study has identified as success measures
the extent to which a project attracts input
from the development community (e.g.
number of developers), and the extent to
which it produces observable outputs such
as the addition of new features to the
software or the fixing of software bugs
(Stewart, Ammeter & Maruping, 2006).
Users’ interest over time (i.e. change in the
number of subscribers to an OSS project)
and the amount of development activity (i.e.
the number of files released) have also
been used as measures of OSS project
success (Stewart et al., 2006). Finally, given
the large number of abandoned information
systems projects (Ewusi-Mensah, 1997),
the completion of a project may be an
important measure of success. Howison
and Crowston (2004) suggest that the
progress of the OSS project to a stable
status can be a proxy for project completion
since most OSS projects are always in
development.

The “project progress as a measure of
success” argument is also supported by
software engineering literature, which
identifies software attributes such as
completeness, consistency, testability,
usability, and reliability as measures of

3

Sen et al.: Application of Survival Model to Understand Open Source Software

Published by AIS Electronic Library (AISeL), 2015

Application of Survival Model to Understand Open Source Software Release / Sen et al.

Pacific Asia Journal of the Association for Information Systems Vol. 7 No. 2, pp-1-24 / June 2015 4

software quality (e.g. Bardhan et al., 2010;
Gorton & Liu, 2002). Since these attributes
improve as the software progresses towards
a stable state, the ability to release a
stable/mature version of the software under
development is considered a useful
indicator of project success (Crowston et al.,
2003; Mockus, Fielding, & Herbsleb, 2002).
OSS development projects, when compared
with commercial software development, can
present project resource challenges
(financial, human and timeline), in addition
to the reliability and accessibility of those
resources. The resource constraints can
result in delayed release of a stable version
of the software. Hence, how quickly the
software reaches a stable and usable state
is a good success measure (Crowston &
Scozzi, 2002).

To understand the predictors of OSS
success, the DeLone and McLean’s model
of information systems (IS) success is the
most commonly used in OSS research
(Crowston et al., 2006). The DeLone and
McLean’s model suggests six interrelated
factors for system success – system quality,
information quality, use, user satisfaction,
individual impact and organizational impact
(DeLone & McLean, 2003). However, these
conventional measures focus on the use
and the use environment of the software. In
the case of OSS, the use environment is
difficult to observe while the development
environment is more publicly visible
(Crowston et al., 2006). Hence, other
measures may be useful in OSS to
complement traditional software success
measures. The literature on OSS proposes
measures of success of OSS projects from
perspective of the OSS development
process and which could complement the
traditional success measures. One study
has identified project activity level,
development team/community size (i.e.
number of active contributors to the project),
and time taken to fix software bugs as key
measures for OSS project success
(Crowston et al., 2003). Another study has
identified as success measures the extent
to which a project attracts input from the

development community (e.g. number of
developers), and the extent to which it
produces observable outputs such as the
addition of new features to the software or
the fixing of software bugs (Stewart et al.,
2006). Users’ interest over time (i.e. change
in the number of subscribers to an OSS
project) and the amount of development
activity (i.e. the number of files released)
have also been used as measures of OSS
project success (Stewart et al., 2006).

The OSS literature has also identified
several predictors of OSS success. These
predictors are the characteristics of the OSS
projects and the characteristics of the key
stakeholders involved (i.e., developers and
end-users). Bonaccorsi and Rossi (2003)
suggest that server-based OSS projects,
such as Apache web server, are more
successful than client-based OSS projects,
such as Linux. Other researchers find that
the degree and nature of network
embeddedness of an OSS project impact its
success and that greater embeddedness
does not always result in project success
(Grewal, Lilien, & Mallapragada, 2006).
Stewart et al., (2006) studies sponsored and
non-sponsored OSS projects and found that
non-restrictive licenses in general increase
end-user interest in the projects than
restrictive licenses. Lerner and Tirole (2005)
show that OSS applications geared toward
end-users and system administrators have
restrictive licenses while those aimed at
developers have less restrictive licenses.
Subramaniam, Sen and Nelson (2009)
show that the effects of restrictive licenses
on project activity is somewhat nuanced.
The adverse impact of license
restrictiveness on project activity holds only
if the target audience for the OSS project is
other developers and not when they are
system administrators. Other project factors
related to OSS success are the operating
system platform and the underlying
programming language of the OSS project
(Subramaniam et al., 2009). One of the
defining characteristics of an OSS project is
the voluntary participation of developers in
creating, debugging and maintaining the

4

Pacific Asia Journal of the Association for Information Systems, Vol. 7, Iss. 2 [2015], Art. 1

https://aisel.aisnet.org/pajais/vol7/iss2/1
DOI: 10.17705/1pais.07201

Application of Survival Model to Understand Open Source Software Release / Sen et al.

Pacific Asia Journal of the Association for Information Systems Vol. 7 No. 2, pp-1-24 / June 2015 5

software resulting from the project. Hence,
some of the OSS success factors identified
in the literature relate to the developers
themselves, such as developer motivation
and interest (Bonaccorsi et al., 2003) and
the presence of a critical mass of
developers in the project (Mockus et al.,
2002). While the above predictors have
received attention in OSS studies, to the
best of our knowledge, there are no studies
which investigate these predictors’ impacts
on an OSS project’s progress towards
releasing a stable version of the software.
Our study will help to fill this gap and add to
our understanding of the dynamics of OSS
project management and success.

Model and Hypotheses

In this section, we discuss the research
model (Figure 1) and the hypotheses. As
presented in the literature review, the
DeLone and McLean (2003) success model
was updated by OSS scholars to take into
account the more publicly visible
development environment of open source
projects. User interests and developer
interests were used to indirectly measure
the information quality and system quality.
In our paper, we borrow from these updated
research by Crowston et al (2006), Stewart
et al (2006), and Subramaniam et al (2009).
We begin the OSS project progress which is
the dependent variable in our model.

OSS Project Progress: There are several
ways to identify an OSS project’s
development status in order to assess its
progress. Based on system development
life cycle principles, a software project can
be in one of five stages - Requirements
Planning, Analysis, Design, Development,
and Maintenance (Hoffer, George, &

Valacich, 2008). Projects in the later stages
of the life cycle are considered closer to
stable/mature status than projects in the
earlier stages. Sourceforge.net, a repository
of information about OSS projects and the
source for the empirical data in our study,
uses the following stages of project status:
Planning, Pre-Alpha, Alpha, Beta,

5

Sen et al.: Application of Survival Model to Understand Open Source Software

Published by AIS Electronic Library (AISeL), 2015

Application of Survival Model to Understand Open Source Software Release / Sen et al.

Pacific Asia Journal of the Association for Information Systems Vol. 7 No. 2, pp-1-24 / June 2015 6

Production/Stable, Mature, and Inactive.
The development status of each project is
reported by its project administrator(s) and
Sourceforge allows selection of projects by
their status. The projects in stages
Production/Stable and Mature are
considered stable projects and have the
best chance to build a user community
around them (Krishnamurthy, 2002).
Though the stages are important measures
of progress, the time to reach that stage is
important as well. Unike commercial
software development settings, OSS
projects are sustained by efforts of
volunteer programmers who contribute to
projects concurrently (or at separate times)
and often do so in their spare time (between
paid projects or in down-cycles). Similar
challenges are experienced with managing
other OSS project resources such as with
financial, technical and intellectual property.
Collectively these constraints can increase
the possibility of OSS project delays and
further underscore the relevance and
importance of understanding time to release
a stable version of software. For most
projects, Sourceforge also reports the date
of project registration and the date of the
most recent file release. In section 4.0 (on
method and data collection), we provide
additional explanation for use of the project
status scale and dates provided by
Sourceforge.

Predictors of Project Progress

In an open source environment, the projects
depend on voluntary contributions and,
hence, the ability of a project to attract the
interest of and contributions from
developers is important for the project’s
success (Stewart et al., 2006). Also, many
aspects of the project’s development
process are publicly visible through updates
on the project’s website or on repositories
such as Sourceforge. Hence, Crowston et al
(2006) reason that the data available about
the development process can complement
the measures used in studies on traditional
software success. Thus, based on the OSS
literature, two categories of predictors can
be identified. The OSS license (Crowston et

al., 2003; Stewart et al., 2006), operating
system (Subramaniam et al., 2009), and
programming language (Subramaniam et al.,
2009) all represent the attributes of the OSS
project itself, which have been shown to
affect its success. In addition, the OSS
license has been shown to have a
significant impact on the project’s success
(Lerner and Tirole, 2005; Subramaniam et
al, 2009). On the other hand, the developer
interest (Krishnamurthy, 2002; Stewart et al.,
2006) and end-user interest (Krishnamurthy,
2002; Parker & Van Alstyne, 2005; Stewart
et al., 2006) are important to the success of
and represent the OSS stakeholders’
impacts on OSS projects. Thus, our
research focuses on these two categories of
predictors. Our hypotheses development
begins with the explanation of the impact of
OSS license.

OSS License: One of the main
characteristics that differentiate various
OSS licenses is the degree of restrictions
imposed on the user to re-distribute
software derived or modified from OSS
software (Fershtman & Gandal, 2007).
OSS license plays an important role in the
success or failure of the project by
impacting the interests of users and
developers in the project (Subramaniam et
al., 2009). For example, studies on OSS
project performance find that users’ interest
in an OSS project and the project’s activity
levels are affected by the OSS license
choice made by that project’s administrators
(Crowston et al., 2003; Stewart et al., 2006).
The license is an important signal about the
utility of an OSS project to the developers
(Sen, Subramaniam, & Nelson, 2008-9).
Lerner and Tirole (2005) propose three
classes of OSS licenses based on the
restrictiveness of redistribution rights (highly
restrictive, restrictive, and unrestrictive).
Other studies use the three levels of relative
restrictiveness in their empirical studies on
software licensing (Fershtman et al., 2007;
Sen et al., 2008-9) and project success
(Subramaniam et al., 2009).

Existing research on OSS project’s success
has found that restrictive licenses have an

6

Pacific Asia Journal of the Association for Information Systems, Vol. 7, Iss. 2 [2015], Art. 1

https://aisel.aisnet.org/pajais/vol7/iss2/1
DOI: 10.17705/1pais.07201

Application of Survival Model to Understand Open Source Software Release / Sen et al.

Pacific Asia Journal of the Association for Information Systems Vol. 7 No. 2, pp-1-24 / June 2015 7

adverse impact on user-interest in an OSS
(e.g. Stewart et al., 2006). The license can
also increase the complexity of working with
the OSS product. This adverse impact could
be attributed to resistance from
organizations or individuals who prefer to
retain the rights for reuse of the software
code in a way that best serves their
objectives. For example, software that
includes any amount of GPL licensed (a
Strong-Copyleft license which is highly
restrictive) code has to be released under
GPL license. Overall, the license choice can
influence OSS project development timing
at all stages and through various means.
Potential project contributors, sponsors,
advocates and users (both organizations
and individuals) must make participation
decisions, business judgments (and
predictions) and schedule their timing.
These business judgments must be
carefully evaluated, weighed, and in some
particularly complex cases (e.g. weak copy-
left) with the consultation of intellectual
property (IP) experts, attorneys and/or
review boards. It is anticipated that fewer
licensing restrictions are likely to attract
greater stakeholder participation and
cooperation, which in turn results in project
managers to release a stable and functional
product as quickly as possible. This leads to
the following hypothesis:

H1: OSS projects that adopt less
restrictive licenses will take relatively
shorter duration to release a stable
version of their software than do OSS
projects that adopt more restrictive
licenses.

Operating System: The importance of the
operating system for OSS is closely related
to the Free Software Foundation launched
by Stallman (2009), and the efforts of the
Computer Science Research Group (CSRG)
at the University of California at Berkeley to
improve UNIX in the 1970s and 1980s.
During the 1980s and early 1990s, open
source software developers in several
relatively isolated groups continued to use
and improve the UNIX operating system as
a voluntary community effort. The Internet

and the user group USENET helped to
coordinate their development efforts and
much of the software developed by these
different groups was integrated. As a result
of this integration, complete environments
could be built on top of UNIX using open
source software. In short, developers using
UNIX and Linux operating systems formed
the initial core of the OSS community and
these developers created various other
applications, libraries, and utilities that
complemented or supplemented the various
flavors of UNIX and Linux in existence. It is
only recently, that we have started to see
other operating systems, such as Windows,
being used in open source. Since most
developers in the OSS community still work
with UNIX/Linux operating system, we
expect that OSS developed for UNIX or
Linux operating systems will benefit from
the ready availability of this operating
system expertise, its’ large installed base
and compatibility with a wide range of
products (and standards) and the
associated positive network effects. This
leads to the following hypothesis:

H2: OSS projects that develop software
for UNIX/LINUX operating systems will
take relatively shorter duration to
release to a stable version of their
software than do OSS projects that
develop software for other operating
systems.

Programming Language: Unlike users of
proprietary software, the users of open
source software can make changes to the
source code to fit their needs and hence the
programming language of the software
becomes important in determining the
extent of participation in OSS projects. The
dominance of C and C-like programming
languages for OSS can be attributed to the
role of C as the system implementation
language for the nascent UNIX operating
system (Ritchie, 1996). In fact, the UNIX
kernel is written in C language and C is one
of the preferred languages of OSS
developers for codes that require portability,
processing speed, real-time response
needs, or tight coupling to the UNIX/Linux

7

Sen et al.: Application of Survival Model to Understand Open Source Software

Published by AIS Electronic Library (AISeL), 2015

Application of Survival Model to Understand Open Source Software Release / Sen et al.

Pacific Asia Journal of the Association for Information Systems Vol. 7 No. 2, pp-1-24 / June 2015 8

kernel. Existing programs like parser
generators or GUI builders that generate C
code reduce the efforts required to code the
rest of a small application using C. The
availability of high-quality C compilers as
open-source software over the Internet,
including the best-known and most widely
used Free Software Foundation's GNU C
compiler, adds to the advantage of C
programming language as a development
platform. The C and C-like languages are
still the preferred programming languages of
software developers. We expect that open
source software projects open to code
written in C and C-like programming
languages are likely to benefit through a
large and diverse installed base of product
compatibility, wide availability of subject
matter experts (business and technical),
code reuse, programming skills, software
libraries, and other network effects of a well-
developed, global development platform
and experience. This leads to the following
hypothesis:

H3: OSS projects that develop software
using C and C-like programming
languages will take relatively shorter
duration to release to a stable version of
their software than do OSS projects that
use other programming languages.

Developer Interest: Open source software
is continually improved by feedback from
the community and changes made in
response to this feedback. Greater
developer interest and participation in a
project increases the speed with which
features can be integrated into the software.
More developers can also help to test
earlier versions of the software and to
identify and resolve bugs. Thus, a project’s
progress is enabled by its activity levels and
is a sign of productive development
community (Crowston et al., 2003; Stewart
et al., 2002). One of the motivations for
developers to participate in open source
projects is to signal about their advanced
programming skills to potential employers
(Lerner et al., 2005) and to earn peer-
recognition for these skills (Bonaccorsi et al.,
2003). An active and successful project

provides the developers with the increased
visibility among potential employers and
peers. Since projects reaching a stable
stage quicker indicate more success among
the open source community, we
hypothesize that developer interest in an
OSS project is also associated with faster
project progress.

H4: OSS projects with greater developer
interest will take relatively shorter
duration to release a stable version of
their software.

User interest: One of the important roles
provided by users in open source projects is
as test subjects. Users who are interested
in alternatives to their proprietary software
may start using alpha or beta versions of
the open source software and provide their
feedback by way of identifying bugs or
suggesting new features to be added. The
more user interest a project attracts, it
signals its utility to the OSS project
managers and developers and leads to
more project activity (Stewart et al., 2006).
In order to permanently convert these users
to their open source alternative, project
administrators are motivated to provide a
stable version sooner rather than later.
Therefore, we hypothesize that user interest
in an OSS project affects the project’s
progress.

H5: OSS projects with greater user
interest will take relatively shorter
duration to release a stable version of
their software.

The next section describes the statistical
model and the data analysis.

Statistical Model, Data, and
Estimation Results

Model: Since we are interested in
investigating the determinants of the time
taken to reach a certain status, we can use
one of several survival models for analysis
of the data. Survival models are used in
studying the occurrence, progression and

8

Pacific Asia Journal of the Association for Information Systems, Vol. 7, Iss. 2 [2015], Art. 1

https://aisel.aisnet.org/pajais/vol7/iss2/1
DOI: 10.17705/1pais.07201

Application of Survival Model to Understand Open Source Software Release / Sen et al.

Pacific Asia Journal of the Association for Information Systems Vol. 7 No. 2, pp-1-24 / June 2015 9

timing of events. (Allison, 1995 page 1).
Survival analysis techniques include life
tables, Kaplan-Meier estimators,
proportional hazards regressions, and
competing risks models. Survival models
help to address two features of the data that
cannot be handled with conventional
statistical methods, such as logistical
regression (Allison, 1995 page 4). These
features are censoring (cases where the
event has not yet occurred) and time-
dependent covariates. In the case of our
study, survival models allow us to
accommodate the fact that OSS projects
reach stable status at different times, and
some projects have yet to reach this stage
(projects for which censored data is used).
The Cox Proportional Hazard (PH) model,
one of the semi parametric survival models,
is considered a robust model since the
coefficient estimates have good properties
regardless of the actual shape of the
baseline hazard function and in large
samples the estimates are approximately
unbiased and their sampling distribution is
approximately normal (Allison, 1995 page
115). Thus, with the Cox PH model, using a
minimum set of assumptions, we can obtain
the primary information sought in this study.

However, a key assumption required for the
Cox PH model is that the hazards for each
predictor are proportional at all points in
time (Allison, 1995) and that the hazards
ratio does not change with time. We test the
Cox PH model on our dataset first to
estimate the constancy of hazards ratio of
each predictors. As explained later in the
“Model Estimation” section, some of the
predictors violate the proportional hazards
assumption, and these violations are
equivalent to interactions between one or
more covariates with time. Hence, we use
the extended Cox PH Model (Allison, 1995),
which is specified as follows.





2

1

1

1

)(exp[)())(,(
p

j

jj

p

i

iio tXXthtXth 

 (1b)

where iX (i=1...p1) are time-independent

predictors,)(tX j (j=1...p2) are the

interaction terms for the covariates that

interact with time,)(tho is the baseline

hazard function, βi and j are row vectors

of the model coefficients. In the extended
Cox model, if the coefficient of an
interaction term is positive, then the effect of
the related covariate increases linearly with
time and if the coefficient is negative, the
effect decreases with time. The
corresponding coefficient of that covariate
can be interpreted as the effects of the
covariate on project progress at time zero
(Allison, 1995). A detailed explanation of our
justifications for using the Extended Cox
model and the interpretations of Cox
regression coefficients are provided in
Appendix A.

Data: The data used in this study comes
from the archives of Sourceforge.net 1 ,
which maintains a large database of open
source software projects. For each project,
the database provides a description of the
software, links for download and other
project information, and a history of the
project's releases. For our panel dataset,
we used the monthly data of the projects. In
our model, the event is an open source
project releasing a stable version of the
software (i.e., registering its software
release status as Production/Stable or
Mature in Sourceforge database). The date
of entry of a project into our study is the
date on which the project registered with
Sourceforge. The dependent variable
(Days_to_Stable) is the time between
registering at Sourceforge and the date of
Product/Stable or Mature release status. If
the version released is not
Production/Stable or Mature when our study
completed (October 2005), the observation
is right-censored. When studying events in
survival analysis, the origin time is an
important choice and researchers should

1 Greg Madey, ed., The SourceForge Research Data
Archive (SRDA). University of Notre Dame.
<http://zerlot.cse.nd.edu/> [Last accessed 5/01/2006]

9

Sen et al.: Application of Survival Model to Understand Open Source Software

Published by AIS Electronic Library (AISeL), 2015

http://zerlot.cse.nd.edu/

Application of Survival Model to Understand Open Source Software Release / Sen et al.

Pacific Asia Journal of the Association for Information Systems Vol. 7 No. 2, pp-1-24 / June 2015 10

choose the origin that has the strongest
effect on the hazard function. For example,
when studying the treatment of a disease,
the point of diagnosis of the disease may be
a more useful and definitive origin point to
understand the impact of the treatment
options. A fundamental principle of open
source projects is to allow users and
developers, in addition to project initiators,
to contribute by providing feedback, fixing
bugs, designing new features, and refining
code. Registering a project at Sourceforge,
which is the leading registry of open source
projects, helps project initiators to move
their project to the open source arena.
Hence, the point of origin in our study for
the time to release a stable version begins
when the project is registered on
Sourceforge.

Since our data source is Sourceforge, we
use the project status scale provided by
Sourceforge (to be consistent across the
projects). The Production/Stable and
Mature status are the highest levels on the
scale (we are ignoring the Inactive status).
While the Sourceforge scale does not
provide definitive descriptions of each level
in the scale and project administrators may
differ on the precise way to understand the
scale, it is reasonable to expect the project
administrators to agree that a
Production/Stable or Mature software is one
that has met the functional requirements set
as the project goals. In general, projects in
the Production/Stable and Mature status do
not have bugs known to the project
developers, perform as expected by the
developers, and is ready to use “out of the
box” by non-development users.
Furthermore, one of the reasons for project
administrators (who are in most cases
themselves developers) to participate in
open source projects is to enhance their
reputation among peers and they have very
little incentive to lie or exaggerate the
project status.

To avoid the pitfalls of using a secondary
data source such as Sourceforge.net
(Howison et al., 2004), we did not use
spiders or software to “screen-scrap” data

from the Sourceforge.net website. Instead,
we accessed data directly from a data
warehouse, which is populated with
Sourceforge data on a regular basis. The
Sourceforge database contains information
on more than 200,000 software projects.
For the purpose of this study we consider
only those projects which had registered
between January 1999 and October 2005
(cut-off date) and for which complete
information could be obtained. The number
of such projects was 25,609. We found that
11,580 projects that had not released any
files since their registration with Sourceforge.
This lack of file release may indicate that
the projects were inactive or were
abandoned and we excluded these
observations from our dataset.

In our dataset, there is a possibility that
some of the projects had already developed
a stable release before registering at
Sourceforge (e.g., these projects may
register with Sourceforge to get more
exposure). When the event has occurred
before the project enters our study, the
observation is left-censored. To reduce the
effects of such left-censored observations
on our results, we exclude projects that had
become stable within 100 days of
registering with Sourceforge. There were
1006 projects excluded this way from our
dataset. We also checked for outliers and
found that while most projects had released
their most recent file within 2000 days of
registration at Sourceforge, there were eight
projects that had released their most recent
files after 3000 days. We excluded these
eight projects from our study. There were no
projects that had released their most recent
files between 2000 and 3000 days since
their registration. Our final sample size, thus,
is 13,015.

The power (and the validity) of survival
analysis is related to the number of events
rather than the number of participants.
Simulation studies have suggested that at
least 10 events need to be observed for
each covariate considered, and anything
less could lead to biased regression
coefficients (Peduzzi et al., 1995). In this

10

Pacific Asia Journal of the Association for Information Systems, Vol. 7, Iss. 2 [2015], Art. 1

https://aisel.aisnet.org/pajais/vol7/iss2/1
DOI: 10.17705/1pais.07201

Application of Survival Model to Understand Open Source Software Release / Sen et al.

Pacific Asia Journal of the Association for Information Systems Vol. 7 No. 2, pp-1-24 / June 2015 11

study, we have 10 covariates in the model
(including the interactions of time-
dependent variables and time), and
therefore a sample size of 13,015 is
considered adequate. There were 3,919
OSS projects in our sample that reported
the development stage as Production/Stable
or Mature (i.e., stable status). On an
average it took 1006 days for the OSS
projects to reach the stable status. The
maximum number of days to reach stable
status was 2000, while the minimum was
101 days. Table 1 presents the measures of
the independent variables collected from
Sourceforge.net and Table 2 presents the
summary statistics of the sample of projects

used in this study. While both the user
interest and developer interest variables
measure interest, their operationalization is
different because of the different nature of
these measures. Number of developers can
go up or down every month. It is hard to get
an exact count for total number of
developers because the same developer
may join a project and then leave it and then
join back. Therefore, there could be
common developers in each count. On the
other hand, number of downloads only goes
up. So we use the maximum of this number
(in any month) which corresponds to the
cumulative total number of downloads in a
month.

Table 1 - Independent Variables and Descriptions/Measures

Independent Variable Description/Measure

Developer Interest
(i.e. Num-Developers)

Average number of developers who worked on the OSS project each
month for which we have data.

User Interest
(i.e. Downloads)

Total number of downloads of the OSS till time t

Strong-Copyleft
This measure equals 1 when the OSS is released under a Strong-Copyleft
license such as GPL, and 0 otherwise.

Weak-Copyleft
This measure equals 1 when the OSS is released under a Weak-Copyleft
license such as LGPL, and 0 otherwise

UNIX
This measure equals 1 when the OSS will work with various flavors of
UNIX and Linux, and 0 otherwise.

CGroup
This measure equals 1 when the OSS or some component of the OSS
was developed using C and C-like languages, and 0 otherwise.

As we can see from the summary statistics
(Table 2), about 30% of projects are in
stable status, and most of the projects
release their software under Strong-Copyleft
license (approximately 71%). The operating
systems for 87% of the projects in our
sample were the various flavors of UNIX
and Linux, and 49% of the projects use C,
C++, C# and/or Visual C programming
languages. The distribution of the
dependent variable Days_to_Stable for
those OSS projects that achieved stable
status is plotted in Figure 2.

Model Estimates: The acceptable
goodness of fit of our model is indicated by
the statistically significant chi-square value
of the difference between the log likelihood
(i.e., -2LL) measures of the null model and
the proposed model (Hair et al., 2006). For
our model χ2 value is 1018.64 with 10
degrees of freedom (p=0.000), which
implies that we can reject the null
hypothesis that all effects of the
independent variables on project progress
are zero. Further, we use the Schoenfeld
residuals to test for PH assumption and the
results are shown in Table 3. As we see in
Table 3a, the PH assumption is violated for

11

Sen et al.: Application of Survival Model to Understand Open Source Software

Published by AIS Electronic Library (AISeL), 2015

Application of Survival Model to Understand Open Source Software Release / Sen et al.

Pacific Asia Journal of the Association for Information Systems Vol. 7 No. 2, pp-1-24 / June 2015 12

LN_Downloads (user interest), and UNIX
(operating system), and also for the whole
model (i.e. Global Test is significant at
p=0.05). Therefore, the Extended Cox
Model is appropriate for this data set. Finally,
assuming a conservative threshold value of
VIF<2 (The generally accepted threshold is
VIF<10 (Hair et al., 2006) and the VIF in our

study range from 1.01 to 1.62.) and
Tolerance >0.3, we find that the model does
not suffer from any significant multi-
collinearity between independent variables
of interest (Table 3b). The coefficient
estimates and the corresponding hazard
ratios for the model are shown in Table 4.

Table 2 - Descriptive Statistics

Total number of OSS projects in sample 13015

Number of OSS Project that have reached stable status 3919 (30.11%)

Censored observations (i.e. Projects that failed to reach stable status) 9096 (69.89%)

Predictors Min Max Mean Std. Deviation

Average Number of Developers 1 138 2.59 3.77

Downloads 1 8.60e+07 40732 870070

Predictors
Approximate
Proportion

License is Strong-Copyleft (i.e. Strong_copyleft = 1) 71%

License is Weak-Copyleft (i.e. Weak_copyleft = 1) 13%

License is Non_Copyleft (i.e. Strong-Copyleft=0; Weak_Copyleft =0) 16%

Run on Various Flavors of UNIX/Linux (i.e. UNIX =1) 87%

Programming language used C and C-like (i.e. CGroup = 1) 49%

12

Pacific Asia Journal of the Association for Information Systems, Vol. 7, Iss. 2 [2015], Art. 1

https://aisel.aisnet.org/pajais/vol7/iss2/1
DOI: 10.17705/1pais.07201

Application of Survival Model to Understand Open Source Software Release / Sen et al.

Pacific Asia Journal of the Association for Information Systems Vol. 7 No. 2, pp-1-24 / June 2015 13

Table 3a - Test of PH Assumption

 rho Chi2 df Prob>Chi2

Num_of_Developers -0.020 3.34 1 0.0676

LN_Downloads -0.091 34.70 1 0.0000

Strong_Copyleft 0.010 0.55 1 0.4590

Weak_Copyleft -0.015 1.15 1 0.2839

UNIX -0.032 4.75 1 0.0294

CGroup 0.021 2.27 1 0.1323

Developers*g(t) 0.017 2.47 1 0.1161

Download*g(t) 0.117 56.99 1 0.0000

Strong_Copyleft*g(t) -0.018 1.64 1 0.2006

UNIX*g(t) 0.045 8.92 1 0.0086

Global Test 110.50 10 0.0000

Table 3b - Test of Multicolliearity

PREDICTORS VIF SQRT-VIF Tolerance R-Squared

Num_of_Developers_mean 1.13 1.06 0.8850 0.1150

LN_Downloads 1.13 1.07 0.8813 0.1187

Strong 1.62 1.27 0.6163 0.3837

Weak 1.61 1.27 0.6194 0.3806

Unix 1.01 1.01 0.9880 0.0120

CGroup 1.02 1.01 0.9794 0.0206

Table 4 - Coefficient Estimates

PREDICTORS
Days-Stable

Coefficients)( Hazard Ratio P>z

Num_of_Developers -0.347 0.707 0.000

LN_Downloads -0.921 0.398 0.000

Strong-Copyleft 0.902 2.464 0.003

Weak-Copyleft -0.159 0.853 0.007

UNIX -2.300 0.100 0.000

CGroup -0.265 0.767 0.000

Developers*g(t) 0.046 1.047 0.000

Download*g(t) 0.172 1.187 0.000

Strong_Copyleft*g(t) -0.166 0.847 0.000

UNIX*g(t) 0.366 1.442 0.000

g(t)=ln(Days_to_Stable)

Model χ2 (10) = 1018.64; Final model significance p<0.000

Appendix A provides a detailed explanation
of the interpretations of the survival model
coefficients. It also explains why the Cox
model was chosen for our study. The
significance of the coefficient of each
predictor is used to assess the support for

the relevant hypothesis. The hazard ratio
(HR) for each predictor is computed using
the coefficients of the predictor along with
other interactive terms involving the
predictor. An HR value greater than 1 for a
predictor implies that an increase in the

13

Sen et al.: Application of Survival Model to Understand Open Source Software

Published by AIS Electronic Library (AISeL), 2015

Application of Survival Model to Understand Open Source Software Release / Sen et al.

Pacific Asia Journal of the Association for Information Systems Vol. 7 No. 2, pp-1-24 / June 2015 14

value of the predictor will quicken the
progress of the project towards stable status
(positive impact). Alternatively, an HR value
less than 1 implies that an increase in the

value of the predictor will slow down the
project progress (negative impact) and a HR
value of 1 implies no effect of the predictor
on the progress.

For independent predictors that interact with
time (i.e., developer-interest, user-interest,
license, and operating system), we plot the
HR values for each predictor against the
age of the project (i.e. days since the project
was registered at Sourceforge) 2 . This
allows us to trace the impact of the predictor
on the progress of projects of various times
since registration. Thus, the interpretation of
the hypotheses test for these predictors
should be made conditional on the time
since registration of the project.

2 To make our discussion easier to follow, we use the
term “project age” to refer to the project’s time since
registration at Sourceforge.

Discussion

The results of the hypotheses tests are
summarized in Table 5 and explained in
detail in the following sections. The HR
plots for predictors are shown in figures 2
through 5.

Impact of License on Project Progress
(Hypothesis 1): Our results show that
hypothesis H1 about license impacts is
supported. The effect of any particular
license choice on project progress is
assessed on the basis of the hazard ratio
(HR). The impact of Strong-Copleft license,
compared to Non-Copyleft licenses, on
Days_to_Stable is given by the
expression

)]ln(*166.0902.0exp[)lnexp(93 tt   ,

Table 5

Hypotheses Result

H1: OSS projects that adopt less restrictive licenses
will take relatively shorter duration to release a stable
version of their software than do OSS projects that
adopt more restrictive licenses.

Weak-Copyleft Vs. Non-Copyleft:
Supported.

Strong-Copyleft Vs. Non-Copyleft:
Supported (Figure 3)

H2: OSS projects that develop software for
UNIX/LINUX operating systems will take relatively
shorter duration to release to a stable version of their
software than do OSS projects that develop software
for non-UNIX/Linux operating systems.

Supported (Figure 4)

H3: OSS projects that develop software using C and
C-like programming languages will take relatively
shorter duration to release to a stable version of their
software than do OSS projects that use other
programming languages.

Not Supported.

H4: OSS projects with greater developer interest will
take relatively shorter duration to release a stable
version of their software.

Supported (Figure 6)

H5: OSS projects with greater user interest will take
relatively shorter duration time to release a stable
version of their software.

Supported (Figure 7)

14

Pacific Asia Journal of the Association for Information Systems, Vol. 7, Iss. 2 [2015], Art. 1

https://aisel.aisnet.org/pajais/vol7/iss2/1
DOI: 10.17705/1pais.07201

Application of Survival Model to Understand Open Source Software Release / Sen et al.

Pacific Asia Journal of the Association for Information Systems Vol. 7 No. 2, pp-1-24 / June 2015 15

where β3 and β9 are the coefficients of the
license and license-time interaction
variables respectively, and t ranges from
101-2000 days. As seen in Figure 3, the HR
values are greater than 1 for projects whose
time since registration is less than 229 days.
This means that Strong-Copyleft license
positively impacts a project’s rate of
progress if the project’s time since
registration is less than 229 days. For
projects whose time since registration is
greater than 229 days, having Strong-
Copyleft license will slow the progress
towards stable status (HR<1). Interestingly,
Weak-Copyleft license has a negative
impact on the time to reach stable status
(HR<1) which means that projects with
Weak-Copyleft licenses are likely to take
longer to reach stable status compared to
projects with Non-Copyleft licenses. This
negative impact does not change with
project’s time since registration and hence
we have not plotted the HR values in a
graph.

The significant positive impact of Strong-
Copyleft license during the early days of an
OSS project could explain the widespread
use of such licenses in OSS projects.
Initially OSS project managers need to build
support from the open source community,
which favors Strong-Copyleft license such
as GPL. In fact, the proponents of open
source software advise project initiators to
make their licenses GPL compatible3. Since
more than 70% of the OSS projects
registered at Sourceforge are released
under GPL, it is reasonable to conclude that
the open source community favors more
restrictive licenses. The restrictive licenses
could be favored by the OSS community for
the following reasons: (a) The OSS
community can benefit from the network
effects generated by the large number of
open source projects released under such a
license (e.g. a choice of GPL license

3 Wheeler, D.A. “Make Your Open Source Software
GPL-Compatible. Or Else.” Available at
http://www.dwheeler.com/essays/gpl-compatible.html
[Released 5/6/2002, revised 6/26/2013, last accessed
9/1/2013].

increases the likelihood that the software
will be able to find another complementary
software also released under GPL); (b) The
OSS community uses the restrictive license
to ensure that any derivatives of OSS are
not released under commercial or
proprietary licenses (Stallman, 2003).
Therefore, project managers that release
OSS under a strongly restrictive license
should initially attract relatively more
support from the open source community
(including from project contributors), which
in turn should reduce the time it takes for
the project to release a stable version of the
software.

This early support by the OSS community is
evidently not without limitations, since
Strong-Copyleft licensing (versus that of
Non-Copyleft licensing) can have negative
impact on longer-term projects (registered
for more than 229 days). Over the longer-
term (and consistent with Hypothesis 1),
Non-Copyleft licensing can expedite project
progress by reducing licensing complexity,
opening the door to the entire software
community (and beyond) and generating
greater levels of organizational, commercial
and individual interests. The finding that
Weak-Copyleft (moderate licensing
restrictions) has a consistent negative
impact an OSS project’s rate of progress
also lends support regarding the notion that
complexity in licensing can delay project
progress. This helps in explaining the
dominance of extreme licensing types of
Stong-Copyleft and Non-Copyleft.
However, when a project administrator
utilizes a hybrid licensing arrangement
(Weak-Copyleft), intellectual property (IP)
and legal experts need to be consulted,
business judgments must be carefully
evaluated and weighed, ultimately causing
delays in project progress.

Impact of Operating System on Project
Progress (Hypothesis 2): Our results show
that hypothesis H2 about the operating
system impacts is supported. The effect of
operating system choice on project progress
is assessed on the basis of the hazard ratio
(HR), which is given

15

Sen et al.: Application of Survival Model to Understand Open Source Software

Published by AIS Electronic Library (AISeL), 2015

http://www.dwheeler.com/essays/gpl-compatible.html

Application of Survival Model to Understand Open Source Software Release / Sen et al.

Pacific Asia Journal of the Association for Information Systems Vol. 7 No. 2, pp-1-24 / June 2015 16

as

)]ln(*366.03.2exp[)lnexp(105 tt   ,

where β5 and β10 are the coefficients of the
operating system and operating system-
time interaction variables respectively, and t
ranges from 101-2000 days. The plot of HR
in figure 4 shows a negative effect of Unix /
Linux operating systems on project progress
for the first 537 days, and then turns to a
positive affect thereafter (since HR goes
higher than 1.)

One explanation for this result is as follows.
While there are historical reasons to
suggest that the OSS community is more
likely to favor UNIX/Linux operating systems
(Hypothesis 2), the anticipated benefits of
the choice of UNIX/Linux (e.g. availability of
operating system expertise, large installed
base and compatibility with a wide range of
products, standards and the associated
positive network effects) are delayed by 18
months. With 80% of OSS Projects
registered at Sourceforge designated with
Unix/Linux operating system, OSS
stakeholders have a large selection of
projects to participate in (or initiate on their
own). Evidently the Unix/Linux designation
is not distinctive enough to entice faster
progress from the community during early
phases of development. Once early
milestones are achieved and project viability
has been demonstrated, however, a
bandwagon effect seems to take hold after
18 months.

Impact of Programming Language on
Project Progress (Hypothesis 3): Since
this predictor does not interact with time, we
use the Kaplan-Meier failure estimates to
understand its impact on the outcome. The
plot of the failure estimates in Figure 5
shows that OSS projects’ using C and C-like
programming languages (i.e. C, C++, C#)
progress towards releasing a stable
software at a slower pace. This indicates
that hypothesis H3 about programming
language impacts is not supported.

One possible explanation could be that
while experienced developers still favor C
and C-like languages, newer developers

lean towards more recent languages such
as Java, Perl, and Php. Based on the
statistics of top computer languages from
Sourceforge, Java, Php, and Perl have
been increasing in usage and together
accounted for about 37% of usage in 2006.4
The C and C-like languages contain several
string functions that are prone to buffer over
flow errors and lack features such as
exception handling, function overloading,
optional function arguments and garbage
collection that most modern languages
possess. One could argue that due to
backward compatibility, C has not been
updated to take advantage of increased
memory and processor power to implement
such things as automatic memory
management. As a result of these
limitations, projects that use C and C-like
languages could have a more challenging
time generating interests in the OSS
community, attracting project sponsors, and
achieving technical compatibility with new
and emerging product lines. This could
explain the slower pace of progress for
projects using C and C-like languages in our
study.

Impact of Developer Interest and User
interest on Project Progress (Hypothesis
4 and Hypothesis 5): Our results show that
hypotheses H4 and H5 are supported. The
effects of developer-interest on project
progress is assessed on the basis of the
hazard ratio (HR), given
as

)]ln(*046.0347.0exp[)lnexp(71 tt  

, where β1 and β7 are the coefficients of the
developer interest and developer interest-
time-time interaction variables respectively,
and t ranges from 101-2000 days. As seen
in figure 6, developer-interests have a
positive impact on progress only for projects
with more than 1889 days since registration
at Sourceforge.

The effect of user-interest on project
progress is assessed on the basis of the
hazard ratio (HR), which is given

4 http://www.cs.berkeley.edu/~flab/languages.html
[Last accessed 05/07/08]

16

Pacific Asia Journal of the Association for Information Systems, Vol. 7, Iss. 2 [2015], Art. 1

https://aisel.aisnet.org/pajais/vol7/iss2/1
DOI: 10.17705/1pais.07201

http://www.cs.berkeley.edu/~flab/languages.html

Application of Survival Model to Understand Open Source Software Release / Sen et al.

Pacific Asia Journal of the Association for Information Systems Vol. 7 No. 2, pp-1-24 / June 2015 17

by

)]ln(*172.0901.0exp[)lnexp(82 tt  

, where β2 and β8 are the coefficients of the
user-interest and user interest-time
interaction variables respectively, and t
ranges from 101-2000 days. As seen in
figure 7, user interest has a positive effect
for projects with more than 189 days since
registration.

The level of user-interest in an OSS project
has an earlier (and greater) impact on its
progress towards a stable release than
does the level of developer-interest. The
presence of more developers may result in

continuing add-ons or modifications to the
software, thus delaying the project from
releasing a stable version. Thus, for most
OSS projects that are not very large, the
project administrators could implement
policies to control the excess participation of
developers. Some of these policies could
include accepting only changes that add
significant value to the software or forming a
smaller group of developers who can make
quick decisions on the software
specifications. More end-users, on the other
hand, may motivate OSS project managers
to release a usable product quickly and
build a community loyal to the project.

17

Sen et al.: Application of Survival Model to Understand Open Source Software

Published by AIS Electronic Library (AISeL), 2015

Application of Survival Model to Understand Open Source Software Release / Sen et al.

Pacific Asia Journal of the Association for Information Systems Vol. 7 No. 2, pp-1-24 / June 2015 18

18

Pacific Asia Journal of the Association for Information Systems, Vol. 7, Iss. 2 [2015], Art. 1

https://aisel.aisnet.org/pajais/vol7/iss2/1
DOI: 10.17705/1pais.07201

Application of Survival Model to Understand Open Source Software Release / Sen et al.

Pacific Asia Journal of the Association for Information Systems Vol. 7 No. 2, pp-1-24 / June 2015 19

Conclusion

Collectively, the findings reveal an OSS
community at a cross-roads - between its
rich history of a close-knit, developer centric
community on the one hand, and the
growing influence of a broader-base, end-
user orientated community on the other.
Specifically, user-interests were found to
positively influence OSS project progress
four and one-half years earlier than
developer interests. The use of conventional
programming languages such as C and C-
like languages negatively impact project
progress, as does the use of Unix / Linux
based operating systems during the first
one and one-half years of a project’s
duration. Also, the OSS community’s
preference for Strong-Copyleft licensing
does positively influence OSS progress on
shorter-term projects (less than 8 months in
duration) and the broader-based, less
restrictive Non-Copyleft licensing has a
positive influence on OSS progress
thereafter.

One of the limitations of our paper is that
the data can be considered as old.

However, the variables used in our study
are neither subjective nor contextual and
have been shown to consistently relate to
project success. Hence, we believe that our
results will hold even for more recent data.
Our paper leaves some issues unaddressed,
which could be investigated in future
research. The indicator variables in our
model for project progress do not include
characteristics specific to project developers.
The impacts of the developers’
characteristics on project progress could be
very insightful, especially if their
simultaneous impacts on the choice of end-
user license, programming language, and
operating system are considered in the
analysis.

The results of this paper can be interpreted
as a tool to understand the importance of
the OSS project’s characteristics in
determining its contribution to the open
source community, as measured by its
ability to provide a stable product. This
research also partially explains the
prevalence of restrictive Strong-Copyleft
licenses, such as GPL, in open source
projects. OSS projects that use more

19

Sen et al.: Application of Survival Model to Understand Open Source Software

Published by AIS Electronic Library (AISeL), 2015

Application of Survival Model to Understand Open Source Software Release / Sen et al.

Pacific Asia Journal of the Association for Information Systems Vol. 7 No. 2, pp-1-24 / June 2015 20

recent software tools, such as the Windows
operating system or Java programming
language are more likely to release a stable
product faster than projects that use the
traditional hallmarks of open source – UNIX
operating system and C programming
language. Other researchers can further
investigate the inter-relationships among the
predictors identified in our study and
develop a more comprehensive model of
OSS project progress. From a practitioner
perspective, our results can help OSS
project managers to understand which OSS
project characteristics can be controlled in
order to meet the project goals.

 Acknowledgements

The data for this study was made available
from the Sourceforge Research Data
Archive (SRDA) maintained by Prof. Greg
Madey at the University of Notre Dame
http://zerlot.cse.nd.edu/

References

Allison, P.D. (1995). “Survival Analysis
Using SAS: A Practical Guide,” Cary,
NC: SAS Institute Inc.

Bardhan, I.R., Kauffman, R.J. and

Naranpanawe, S. (2010). “IT project
portfolio optimization: A risk
management approach to software
development governance”, IBM
Journal Research & Development,
54(2), March / April 2010, pp1-18.

Bonaccorsi, A. and Rossi, C. (2003). “Why

Open Source Software Can
Succeed?,” Research Policy, (32:7),
2003, pp 1243.

Cox, D.R. “Regression Models and Life

Tables,” (1972). Journal of Royal
Statistical Society, Series B, (34),
1972, pp 187-220.

Crowston, K., Howison, J., and Annabi, H.

(2006). “Information Systems
Success in Free and Open Source
Software Development: Theory and
Measures,” Software Process:
Improvement and Practice, (11:2),
2006, pp 123-148.

Crowston, K., Annabi, H., and Howison, J.

(2003). “Defining Open Source
Software Project Success.” In
Proceedings of the 24th International
Conference on Information Systems,
Seattle, WA. December 2003.

Crowston, K. and Scozzi, B. (2002). “Open

source software projects as virtual
organizations: Competency Rallying
for Software Development,” In IEEE
Proceedings Software, (149:1), 2002,
pp 3-17.

DeLone, W. and McLean, E.R. (2003). “The

DeLone and McLean Model of
Information Systems Success: A Ten-
Year Update,” Journal of Management
Information Systems, (19:4), Spring
2003, pp 9–30.

.
Driver, M, “Key Issues for Open-Source

Software, 2010”, Gartner Research
#G00175310, April 26, 2010.

Ewusi-Mensah, K. (1997). “Critical Issues

in Abandoned Information Systems
Development Projects,”
Communications of the ACM, (40:9),
pp 74-80.

Fershtman, C. and Gandal, N. (2007).

“Open Source Software: Motivation
and Restrictive Licensing,”
International Economics and
Economic Policy, (4:2), pp 209-225.

Fitzgerald, B. (2006). “The Transformation

of Open Source Software”, MIS
Quarterly, 30(3), 587-598.

20

Pacific Asia Journal of the Association for Information Systems, Vol. 7, Iss. 2 [2015], Art. 1

https://aisel.aisnet.org/pajais/vol7/iss2/1
DOI: 10.17705/1pais.07201

http://zerlot.cse.nd.edu/

Application of Survival Model to Understand Open Source Software Release / Sen et al.

Pacific Asia Journal of the Association for Information Systems Vol. 7 No. 2, pp-1-24 / June 2015 21

Gorton, I., and Liu, A. (2002). “Software
Component Quality Assessment in
Practice: Successes and Practical
Impediments,” In Proceedings of the
24th International Conference on
Software Engineering, IEEE Computer
Society, pp 555-558.

Grewal, R., Lilien, G.L., and Mallapragada,

G. (2006). “Location, Location,
Location: How Network
Embeddedness Affects Project
Success in Open Source Systems,”
Management Science, 52(7), July
2006, pp 1043-1056.

Hair, J. F. Jr. et al. “Multivariate Data

Analysis” (Sixth Edition), Pearson
Prentice Hall, 2006.

Hann, I., Robert, J., and Slaughter, S.A.

(2004). “Why developers participate in
open source software projects: an
empirical investigation” In Proceedings
of the 25th International Conference on
Information Systems, 13-15th
December 2004, pp 821-830.

Hoffer, J.A., George, J.F., and Valacich, J.S.

(2008). “Modern Systems Analysis
and Design” (Fifth Edition), Pearson
Prentice Hall, 2008.

Howison, J. and Crowston, K. “The Perils

and Pitfalls of Mining Sourceforge,”
(2004). In Proceedings of Mining
Software Repositories Workshop,
International Conference on Software
Engineering, Edinburgh, Scotland,
May 25 2004.

Kogut, B. and Metiu, A. (2001). “Open

Source Software Development and
Distributed Innovation,” Oxford Review
of Economic Policy, (17:2), pp. 248-
264.

Krishnamurthy, S. (2002). “Cave or

community? An empirical investigation
of 100 mature open source projects”
First Monday, (7:6), 2002.

Lerner, J. and Tirole, J. (2005). “The Scope

of Open Source Licensing,” Journal of
Law, Economics, and Organization,
(21:1), April 2005, pp 20-56.

Martin, B. (1998). “Information Liberation,”

Freedom Press: London (UK), p. 29-
56. 1998. [Available at
www.uow.edu.au/arts/sts/bmartin/pubs
/98il/il03.html Last accessed
5/01/2006].

Mockus, A., Fielding, R.T., and Herbsleb,

J.D. (2002). “Two Case Studies of
Open Source Software Development:
Apache and Mozilla," ACM
Transactions on Software Engineering
and Methodology, (11:3), pp 309-346.

Nelson, M., Sen, R., and Subramaniam, C.

(2006). “Understanding Open Source
Software Development- A Research
Classification Framework,”
Communications of AIS, (17:12), pp
266-287.

Parker, G. and Van Alstyne, M. “Innovation

through optimal licensing in free
markets and free software.” Available
at http://ssrn.com/abstract=639165
(Last accessed 10/20/2007].

Peduzzi, P., Concato, J., Feinstein, A.R.,

and Holford, T.R. (1995). “Importance
of events per independent variable in
proportional hazards regression
analysis II: accuracy and precision of
regression estimates,” Journal of
Clinical Epidemiology, (48), 1995, pp
1503−1510.

Ritchie, D.M. (1996). “The development of

the C Language,” in Thomas J. Bergin,
Jr. and Richard G. Gibson, Jr. (Eds)
History of Programming Languages-II,
ACM Press (New York) and Addison-
Wesley (Reading, Mass).

Sen, R. (2007). “A Strategic Analysis of

Competition between Open Source

21

Sen et al.: Application of Survival Model to Understand Open Source Software

Published by AIS Electronic Library (AISeL), 2015

http://www.uow.edu.au/arts/sts/bmartin/pubs/98il/il03.html
http://www.uow.edu.au/arts/sts/bmartin/pubs/98il/il03.html
http://ssrn.com/abstract=639165

Application of Survival Model to Understand Open Source Software Release / Sen et al.

Pacific Asia Journal of the Association for Information Systems Vol. 7 No. 2, pp-1-24 / June 2015 22

and Proprietary Software
Applications,” Journal of Management
Information Systems, (24:1), Summer
2007, pp 233-258.

Sen, R., Subramaniam, C., and Nelson, M.L.

(2008-9). “Determinants of the Choice
of Open Source Software License,”
Journal of Management Information
Systems, (25:3), Winter 2008-9, pp.
207-239.

Stallman, R.M. (2009). “Why “Open

Source” Misses the Point of Free
Software”, Communications of the
ACM, 52:6, June 2009, pp 31-33.

Stallman, R.M. (2003). “Copyleft: Pragmatic

Idealism,” In Free Software, Free
Society: The Selected Essays of
Richard M. Stallman. Available at
http://www.gnu.org/philosophy/pragma
tic.html [Last Accessed on 05/01/06].

Stewart, K. J., and Ammeter, T. (2002). “An

Exploratory Study of Factors
Influencing the Level of Vitality and
Popularity of Open Source Projects,”
Twenty-Third International Conference
on Information Systems, pp 853-857.

Stewart, K.J., Ammeter, A.P., and Maruping,

L.M. (2006). “Impact of license choice
and organizational sponsorship on
success in open source software
development projects,” Information
System Research, (172), pp 126-144.

Stewart, K.J., and Gosain, S. (2006). “The

impact of ideology on effectiveness in
open source software development
teams,” MIS Quarterly, (30:2), pp 291-
314.

Subramaniam, C., Sen, R., and Nelson, M.L.

(2009). “Determinants of Open
Source Software Project Success: A
Longitudinal Study,” Decision Support
Systems, (46), pp 576-585.

Appendix A

In this appendix, we explain why Cox
regression model is more suitable to our
study than other multivariate models,
including structural equation models. We
also explain how the Cox regression
coefficients are interpreted.

The following are the reasons for using Cox
regression for our study.

1. Focus of the Study- Cox regression is
designed for analysis of time until an
event or time between events, and out
paper studies time until an event.

2. Censored Data: Censored observations
occur in all “time to event” data unless
the data are historical, with all data
present for all observations. Traditional
regression methods would require either
dropping censored cases, thereby
risking sample selection bias, or treating
censored cases the same as those for
whom the event occurred in the final
time period of observation, which will
also bias the coefficient estimates.
Unlike these regression methods that
use maximum likelihood estimation of
parameters, Cox regression uses partial
likelihood methods, which do not
assume uncensored data. In Cox
regression, the coefficient estimates are
based only on the uncensored cases,
but all cases are used when estimating
the baseline hazard function. Thus Cox
regression uses all available information
and is considered a full information
method. Since we have censored data
in this study, we believe that Cox
regression is a more suitable method.

3. Time Varying Independent Variables:
Downloads and Developer-Interest
could be time varying. Time varying
independent variables such as these
can be handled in Cox regression but
not in traditional regression.

22

Pacific Asia Journal of the Association for Information Systems, Vol. 7, Iss. 2 [2015], Art. 1

https://aisel.aisnet.org/pajais/vol7/iss2/1
DOI: 10.17705/1pais.07201

http://www.gnu.org/philosophy/pragmatic.html
http://www.gnu.org/philosophy/pragmatic.html

Application of Survival Model to Understand Open Source Software Release / Sen et al.

Pacific Asia Journal of the Association for Information Systems Vol. 7 No. 2, pp-1-24 / June 2015 23

Interpreting the model coefficients: The
interpretation of the coefficient estimates is
made easier by using the Hazard ratio (HR),
also called the odds ratio. The hazard ratio
is the probability of the event occurring in
time t + 1, given survival to time t (i.e. given
that the event has not occurred till time t). A
hazard ratio of 1 indicates the variables in
the model have no effect on time to event
for the status variable. For hazard ratio
below 1, the greater the covariate, the less
the odds of the event occurring (increasing
predicted survival times). For hazard ratio
above 1, the greater the covariate, the
higher the odds of the event occurring. For
instance, if a covariate is Weak-Copyleft (0,
1) with 1 being Weak-Copyleft licensed
OSS, and if the hazard ratio is 1.1, and if
the event is Status=Stable, then the risk of
reaching stability is 1.1 times greater for
OSS with Weak-Copyleft than for OSS with
other licenses (Weak-Copyleft=0),
controlling for any other covariates in the
model.

For independent predictors that interact with
time (i.e., developer-interest, user-interest,
license, and operating system), we plot the
HR values for each predictor against the
age of the project (i.e. days since the project
was registered at Sourceforge) 5 . This
allows us to trace the impact of the predictor
on the progress of projects of various times
since registration. Thus, the interpretation of
the hypotheses test for these predictors
should be made conditional on the time
since registration of the project.

About the Authors

Ravi Sen is an Associate Professor in the
department of Information and Operations
Management at the Mays Business School,

5 To make our discussion easier to follow, we use the
term “project age” to refer to the project’s time since
registration at Sourceforge.

Texas A&M University. He received his
Ph.D. in Business Administration from the
University of Illinois at Urbana–Champaign
in 2003. His research interests include
economics of electronic commerce, open
source software, and software security. He
has published in the Journal of
Management Information Systems, Decision
Support Systems, International Journal of
Electronic Commerce, Communications of
the AIS, Electronic Markets, Journal of
Electronic Commerce Research, and others.

Matthew L. Nelson is an Associate
Professor in the Department of Accounting
and Business Information Systems. He
holds a PhD from the University of Illinois at
Urbana–Champaign. His research interests
include information technology valuation,
open source software, and IT standards. He
has published in Journal of Management
Information Systems, Decision Support
Systems, Information and Management,
Communications of the Association for
Information Systems, Electronic Markets,
Mathematical and Computer Modeling and
others.

Chandrasekar Subramaniam is an
Associate Professor in the Department of
Business Information Systems and
Operations Management at the Belk
College of Business, University of North
Carolina at Charlotte. He received his PhD
from the University of Illinois at Urbana–
Champaign. His current research interests
include data analytics, e-business, value of
information technology, interorganizational
systems, open source software, and IT
security. He has published in several MIS
journals, including Journal of Management
Information Systems, Decision Support
Systems, International Journal of Electronic
Commerce, Communications of the AIS,
and Information Systems Frontiers.

23

Sen et al.: Application of Survival Model to Understand Open Source Software

Published by AIS Electronic Library (AISeL), 2015

	Building User Engagement for Successful Software Projects: Meaningfulness, Safety, and Availability

