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ABSTRACT
The Internet of Services is envisioned as a global Service-
oriented Architecture enabling collaboration across organi-
zational boundaries. However, by monitoring communica-
tion endpoints, attackers can create detailed profiles of ser-
vice consumers and providers even if typical security mech-
anisms such as message encryption are used. In a busi-
ness context, this traffic analysis threatens the relationship
anonymity of the participants and can reveal sensitive in-
formation about an organization’s underlying business pro-
cesses or a service provider’s client base. In this paper, we
discuss the simulation-based evaluation of different attack
scenarios regarding the identification of the service composi-
tions an organization uses. Thus, we offer insights regarding
the limits of anonymity for cross-organizational collabora-
tion in the Internet of Services.

Keywords
Security, Anonymity, Internet of Services, Service-oriented
Architectures, Cross-organizational Collaboration

1. INTRODUCTION
Modern global economies have become fast-paced and highly
competitive, thus, requiring organizations to adapt both
quickly and continuously to changing circumstances and re-
quirements. An important factor to achieve this goal is the

10th International Conference on Wirtschaftsinformatik,
16th − 18th February 2011, Zurich, Switzerland

underlying enterprise Information Technology (IT), which
has to integrate both internal and external systems.

The paradigm of Service-oriented Architectures (SOAs) [22]
offers technological and organizational means in order to im-
prove the alignment between the functional and the IT side,
i. e., by enabling service-based, cross-organizational work-
flows. In the last years, Web services have become both
a mature and successful technology for implementing the
SOA paradigm.

For the near future, the Internet of Services is envisioned as
a global SOA further facilitating cross-organizational collab-
oration [4,26]. The Internet of Services provides the founda-
tion for complex business value networks by supporting the
composition and aggregation of existing services to value-
added services, i. e., using market places as intermediaries
between service consumers and providers. Furthermore, it
is a business model using the Internet as a medium for the
retrieval, combination, and utilization of interoperable ser-
vices. For example, market places could build compositions
using services from different providers and offer these com-
positions as best practices for recurring process needs to
service consumers.

In order to enable such service-based, cross-organizational
collaboration, the security of the communication channels
used, exchanged messages, and participating systems is a
necessity. Regarding the security of Web service technol-
ogy, substantial advancements have been achieved in the last
years as discussed in the standard literature on Web service
security [3,12,25]. However, several technology-independent
and service-specific attacks on SOA have been identified re-
cently, especially in the Internet of Services context [17,18].

One of these attacks aims at identifying the existence of
relationships between collaborating organizations: By ob-
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Figure 1: A fragment of a generic credit application
process and possible mappings to both internal and
external services.

serving the communication between the participants in the
Internet of Services, attackers can create detailed profiles
of service consumers, providers, and also of market places.
Because only the message exchange endpoints have to be
monitored, the use of encryption or other standard mech-
anisms is no protection against this kind of attack, which
is in general communication networks also known as “traf-
fic analysis” [24]. In addition, due to its passive nature, it is
hard to detect and depending on the monitoring means used
this attack may not even be illegal. However, the obtained
information reveals important organizational details, e. g.,
consumers exploring new business opportunities, the antic-
ipation of mergers and acquisitions, or providers changing
their business models.

The security goal that is threatened by this attack is referred
to as “relationship anonymity” in the standard literature on
anonymity research [23]. This means that an adversary can-
not sufficiently distinguish whether the sender and recipient
of a particular message are related or not. It is important
to understand that this kind of anonymity does not apply
to the sender and recipient of the message, i. e., they know
each other. It refers only to third parties, i. e., parties that
are neither sender nor recipient of the message.

A simple, but tangible example from the financial services
domain is a generic credit application process, i. e., where
credit ratings for customers are retrieved from an external
rating agency. More about such an example is shown in
Figure 1: The bank works on credit applications from its
customers, e. g., first entering and storing the customer’s
data in its systems (using an internal access service “Store
Data”). A possible next step would be calculating the con-
crete credit offer, which is a service composition “Calculate
Offer” consisting of both internal and external services, e. g.,
for external credit history ratings. After that, another ser-
vice would route the resulting information to a human de-
cider “Route to Person in Charge” for triggering the next
steps. Finally, if this person’s decision is positive, the offer
would be made. This results in another service composition
“Make Offer”, again consisting of both internal and external
services, e. g., for notifying the customer about the decision,
processing the payout of the credit, etc.

However, just by monitoring the message exchange between
the bank and the rating agency, an attacker can gain infor-
mation about how many people apply for credit, when peak
times are, when the bank works on the applications, and
so on. If complete or parts of service compositions can be
monitored, e. g., if information about successful credit ap-
plications is transferred to mailing and payout services via
Web services, attackers could also infer a percentage of how
many applications are granted or denied. This is very sensi-
tive information rather easily available for attackers and it
is not protected by the common and currently used security
technology, i. e., for Web services.

A comprehensive overview of mechanisms and systems in
order to achieve different types of anonymity in commu-
nication networks is given, e. g., by Edman and Yener [8].
However, even if such standard anonymity mechanisms are
deployed and used correctly, attacks mounted at the edges
of such networks and aiming at typical long-term business
relationships are very likely to be successful. Thus, the goal
of the paper at hand is the following: We investigate how
an adaptation of a typical anonymity attack with respect to
service compositions threatens the relationship anonymity of
service consumers and providers in the Internet of Services.
This is done by measuring the attacker’s success using met-
rics from the field of Information Retrieval while varying key
system parameters such as the number of service providers,
the composition complexity, or the number of observed col-
laborations.

The rest of the paper is structured as follows: Section 2
and 3 outline the analysis and design of our evaluation, i. e.,
how it was set-up and why we made certain design decisions.
Subsequently, Section 4 analyzes and discusses selected re-
sults. In order to place our contributions within the body
of existing research, Section 5 discusses the most relevant
related work in this area. Section 6 sums up the findings
and closes with a brief outlook on future work.

2. ANALYSIS
In this section, the foundation of our research is presented,
i. e., the underlying assumptions, the research question, and
reasons for the selected means to answer this question.

2.1 Attack Selection
First of all, how does a typical attack on anonymity and
anonymity systems look like and where has it to be mounted?
Assuming that basic anonymity systems are being used by
the communicating participants, there are two basic choices
for an attack:

1. Attack the anonymity network itself : The attacker tries to
follow the trail of a message along the nodes of an anonymity
system, e. g., as described by Guan et al. [9] (cf. Figure 2).
However, this is very difficult because of the (usually) high
number of participating nodes and the used security mecha-
nisms. Thus, many nodes would have to be compromised in
order to cover the whole route. In addition, a single missing
node on the route makes this kind of attack even more dif-
ficult, because messages are hard to correlate between the
nodes.

2. Attack the anonymity network edges, i. e., incoming and
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Figure 2: Attack the anonymity system itself.

outgoing messages (cf. Figure 3): This kind of attack fo-
cuses on the communication relationships of the participants
and not on the anonymity network itself. These attacks
are called “Intersection/Disclosure Attacks” and were intro-
duced by Kesdogan et al. [13]. Their name is based on the in-
tersection of the anonymity sets of senders and recipients for
each communication round. However, this intersection was
proven to be equal to a known NP-complete problem, thus,
a statistical variant was developed by Danezis [5], reducing
the required resources for the attack while still achieving
good results.

Unlike the standard disclosure attacks, the so-called “Statis-
tical Disclosure Attack” does not provide the attacker with
definite information about the communication relationships
but with a probability of each potential relationship. Basi-
cally, this requires the attacker to observe a large amount of
interactions from which he can calculate the respective rela-
tionship probabilities. Selected details of these calculations
are discussed as part of our simulation model in Section 3.2.

We chose this attack type for our evaluation, because it is a
particular threat for strategic, long-term relationships, i. e.,
relationships that are custom in the field of service-based
cross-organizational collaboration. In addition, the attack
is basically independent from the used anonymity system,
thus, based on certain assumptions that will be outlined
below, it is a threat for most deployed anonymity systems.

For this paper, the Statistical Disclosure Attack is adapted
for the Internet of Services scenario, i. e., attackers aim to
identify the service compositions that organizations use for
executing their processes. More details on these adaptations
are given in Section 3.

2.2 Research Question
As outlined above, we assume for our research that orga-
nizations use external services (and compositions thereof)
for executing their processes. Furthermore, we assume that
basic countermeasures against traffic analysis are in place,
thus, non-trivial attacks are needed because an attacker can-
not just intercept any message in order to retrieve sender and
recipient information from its header.

From this and the selected attack type follows the research
question we try to answer in this paper: “How does an adap-
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Figure 3: Attack the edges of the anonymity system.

tation of the Statistical Disclosure Attack regarding service
compositions threaten the relationship anonymity of service
consumers and providers in the Internet of Services?”

For answering this question, we varied key system param-
eters such as the number of service providers, the compo-
sition complexity, or the number of observed collaborations
and measured the attacker’s success using metrics from the
field of Information Retrieval. We chose a simulation-based
approach because it will be an initial indicator for how well
business relationships in the Internet of Services are pro-
tected against dedicated attacks. The reasons for using a
simulation instead of, e. g., a testbed, are the following:

An important reason is noise reduction, i. e., dealing with
specific technology (and its integration challenges) for im-
plementing a cross-organizational testbed distracts from the
attacker’s focus, which is on revealing relationships between
organizations. Furthermore, the attacks need to be per-
formed in a completely controlled environment. Our focus is
not on providing a real implementation of such attacks but
on developing a model that gives us information about how
dangerous they are. In addition, although enabling tech-
nologies such as Web services exist, a truly global SOA such
as the Internet of Services is not yet available and, thus, can-
not serve as a foundation for investigating dedicated attack
scenarios.

3. SIMULATION DESIGN AND SETUP
This section discusses the underlying design decisions of our
simulation model, i. e., the general assumptions, an overview
of the model, brief implementation information, and the dif-
ferent evaluated configurations are presented.

3.1 General Simulation Assumptions
For our simulation model, we assume the following regard-
ing the different entities: The system uses end-to-end en-
cryption that cannot be broken in time. Furthermore, it
delivers messages to recipients in batches, e. g., using a so-
called “Threshold Mix” [5, 13].

The attacker is passive and static, i. e., the attacker observes
only and does not adapt his attack behavior. In addition,
he can observe messages leaving and entering the network
(not necessarily all messages) and can guess when a message
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Figure 4: Schematic flow of the simulation model.

entering is likely to leave. Furthermore, the attacker knows
the anonymity system’s parameters (e.g., batchsize) and the
market place’s offerings, i. e., what compositions are avail-
able and what providers they consist of. Also, the partici-
pants have a consistent communication behavior, i. e., they
have strategical, long-term communication relationships and
do not change their service providers frequently.

These are typical and well-proven assumptions in the field of
anonymity research similar to those in the related work, e. g.,
assuming nearly worst-case scenarios from the anonymity
system’s point of view. Based on this foundation, the model
is described in the next section.

3.2 Simulation Model
The attack is modeled as a stochastic model of a time-step
simulation. For an overview, the basic flow of the simulation
is shown in Figure 4. In addition, these steps are described
in the following in more detail:

1. Initialization: The first step of the initialization is the
generation of the overall supply of service compositions. Here,
a service composition consists of at least one service, i. e.,
the ID of the respective service provider. The assignment of
service providers to compositions is done randomly, in our
model based either on a uniform popularity distribution of
the providers or a Zipfian one [31]. A Zipfian distribution
means that the relative probability of the i-th most popular
service provider to be used is proportional to 1/iα, leading
to a more realistic selection probability of service providers.
Breslau et al. showed that the requests of Web pages follow
a Zipfian distribution with an exponent α of about 0.75 [2].
This finding is adopted for our simulation because it pro-
vides a realistic estimation of service offerings on the In-
ternet. Zipfian distributions were used before in the area
of anonymity research, e. g., by Shmatikov and Wang [27].
From the generated service compositions, the organization
under observation, here called Alice Corp. (“Alice”) selects
a certain number for executing her (business) processes.

2. Cross-organizational Collaboration: With the service of-
ferings and the compositions used by Alice determined, the

cross-organizational collaboration starts. At each time-step
of the simulation, Alice contacts one of the service providers
that are part of her used service compositions. As in real col-
laboration scenarios, Alice is not the only one communicat-
ing with service providers. Thus, there is also the so-called
“background”, i. e., other service consumers communicate
with different service providers as well at each time-step.
This background fills the remaining slots of the anonymity
system’s batch of size b. The recipients of the background
are denoted by the vector ~u and distributed according to the
general provider distribution, i. e., either uniform or Zipfian
as described above. The attacker is assumed to know or
approximate this distribution for his calculations. At each
time-step i, the attacker intercepts the batch of messages ~oi
or a fraction thereof, depending on the attacker’s spread.

3. Attacker’s Calculations: At regular intervals, e. g., time-
step t, the attacker performs calculations for identifying Al-
ice’s service providers in general and the corresponding ser-
vice compositions in particular. The core of the calculations
is based on the formal model of the classic Statistical Dis-
closure Attack [5]. Thus, as proven by Danezis, the attacker
approximates Alice’s recipients (~v) after t time-steps based
on the observed output of the anonymity system (

∑t
i=1 ~oi),

the batchsize b, and the known/approximated background
distribution (~u):

~v ≈ b
∑t
i=1 ~oi

t
− (b− 1)~u (1)

Using vector ~v as approximated above and the stored ob-
served vectors ~o, the attacker calculates each vector ~rk by
multiplying each element of ~ok (observed in round k) with
the respective element of ~v, afterwards normalizing the re-
sults using their dot product (|~v · ~ok|):

~rk =
~v · ~ok
|~v · ~ok|

(2)

This then contains the probabilities about the service pro-
viders Alice communicated with in time-step k, i. e., the
higher the resulting value of an element in ~rk, the more
likely this service provider was used by Alice in round k.

The attacker then uses the maximum probability of each ~rk,
i. e., the service provider Alice most likely communicated
with in time-step k. This knowledge is then combined with
the knowledge about the available service compositions, e. g.,
retrieved from the market places in the Internet of Services.
Thus, the probability of each composition containing the
most likely provider of time-step k is increased. Because the
attacker does this iteratively for all observed time-steps, he
builds an internal model of the service compositions Alice is
using, assigning a probability to each possible composition.

The validation of the model is done as suggested by North
and Macal [20]. It is based on the identified requirements,
the plausibility of the assumptions, and the general devel-
opment process, because the Internet of Services is not yet
available for a comparison validation. These necessary as-
pects were discussed above and found to be valid for our
model.

Using this specification as a foundation, a brief overview of
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the model’s implementation is given in the next section.

3.3 Model Implementation
The simulation model is implemented using Repast Sim-
phony, an agent-based modeling toolkit1. Repast has the
advantage of providing a frame for the general simulation,
such as methods that are executed at each time-step of the
simulation, a graphical user interface for configuring simu-
lation parameters, and built-in functionality for tracing and
logging simulation results. Furthermore, Repast models can
be implemented using the Java programming language, thus,
there is no need to learn yet another special modeling lan-
guage.

A particular implementation aspect is the generation of ran-
dom numbers based on the Zipfian (or Zeta) distribution in
order to achieve more realistic results than using a basic uni-
form distribution for randomly selecting service providers.
We calculated numbers of this distribution based on the fol-
lowing procedure, where F (x) can be any cumulative distri-
bution function [14]:

F (x) = Pr(X ≤ x), y = F (x) ⇐⇒ x = F−1(y) (3)

Thus, a random number X of distribution F (x) can be gen-
erated by using X = F−1(U), where U is uniformly dis-
tributed. In our case, we used the Apache Commons Math-
ematics Library version 2.12 for calculating the inverse cu-
mulative probability F−1(U) of the Zipfian distribution, ex-
tending it regarding much faster random number generation
as required for our simulation runs.

For verification purposes, test cases with pre-calculated re-
sults of the attack are compared to the (non-stochastic) re-
sults of simple attack runs of our model. These test cases
can be used, e. g., for verifying the results of the simulation
model after changes to the underlying algorithms have been
made.

The next section describes how the model and its implemen-
tation can be configured in order to reflect different attackers
and attack scenarios.

3.4 Configuration
For the evaluation runs of our simulation model, it can be
configured in a variety of ways, modeling different attack
scenarios and attacker capabilities. The used configuration
parameters are described in the following:

Service compositions are generated based on the maximum
number of services per composition (mSC) and the total
number of (different) service compositions (C). From these,
Alice selects randomly a number of used compositions (aC).

Service providers influence the simulation by their overall
number (N) and their popularity distribution, which can
be either uniform or Zipfian. Furthermore, the Zipfian dis-
tribution is detailed by it skewness. Based on Breslau et
al.’s seminal work on Zipfian distributions in the Web as

1http://repast.sourceforge.net, last access on January
3, 2011.
2http://commons.apache.org/math/, last access on Jan-
uary 3, 2011.

shown above, we chose a skewness of α = 0.75 for our sim-
ulations [2].

The anonymity system is characterized by the batchsize (b),
i. e., the number of messages leaving the system per time-
step.

The attacker’s capabilities are modeled by the parameter
spread (S), which denotes the percentage of how many out-
going messages the attacker can intercept.

For the attack to have any chance of success, the following
relationship must hold, as shown by Danezis [5]:

m <
N

b− 1
(4)

However, the parameter m, i. e., the number of Alice’s recip-
ients, is no longer directly available in our model, because
it is partially based on random variables. It can be ap-
proximated before-hand by aC ×mSC, which serves as an
upper bound for m. At run-time, i. e., after the initialization
phase, m can be determined exactly by counting the number
of distinct service providers in all service compositions used
by Alice.

As a preparation for the simulation runs, we performed a
number of calibration runs in order to determine the most
important parameters to be observed. The main distinction
is the provider popularity, modeled by a uniform or Zip-
fian distribution. These are then evaluated regarding the
impact of the overall number of service providers, the max-
imum number of services per composition, the number of
compositions used by Alice, and the attacker’s spread, i. e.,
his access to outgoing messages. Based on these configu-
ration decisions, the next section describes the performed
simulations and discusses selected results.

4. OUTPUT ANALYSIS AND DISCUSSION
This section discusses the used evaluation metrics and se-
lected results of the performed simulations. Due to space-
constraints, some results are omitted here, e. g., the impact
of the number of available compositions (C).

For each single configuration, e. g., each different value for
N , 100 simulation runs were performed in order to achieve
a suitable level of confidence for assessing the results [11].

4.1 Evaluation Metrics
In order to evaluate the attacker’s performance, i. e., his suc-
cess regarding the identification of Alice’s service composi-
tions, we use well-proven metrics from the field of Informa-
tion Retrieval [15]. These metrics were chosen, because we
consider the problem of retrieving a set of “relevant” docu-
ments from a larger set of documents to be very similar to
the attacker’s goal of identifying certain compositions from
the overall supply of service compositions. In addition, our
scenario has the advantage of specifying definitely, what“rel-
evant” documents, i. e., compositions, are: The ones used by
Alice. Figure 5 shows the respective sets of our scenario in
order to apply typical Information Retrieval metrics for our
evaluation. Alice’s compositions (relevant) are denoted with
A, the attacker’s identifications (retrieved) with B.
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All service compositions

A
relevant

Alice’s compositions

B
retrieved
(ranked)

Compositions identified by the attacker

Figure 5: Retrieved/relevant sets of our attack sce-
nario for applying Information Retrieval metrics.

Thus, the metrics mean in our scenario the following: Preci-
sion denotes the fraction of the identified compositions that

are actually used by Alice, i. e., |A∩B||B| . Recall denotes the

fraction of how many of Alice’s compositions could be iden-

tified by the attacker, i. e., |A∩B||A| .3

As the attacker assembles a ranked list of Alice’s composi-
tions, i. e., sorted by their respective probability, this can be
considered for the evaluation as well: Mean Average Preci-
sion (MAP) considers the position of Alice’s compositions
in the attacker’s list of identified compositions. The more of
Alice’s compositions are at the top of the list, thus, having
a high probability, the higher the MAP. However, even if
more of Alice’s compositions are identified correctly, MAP
will decrease if these are ranked lower. More details on these
metrics can be found in the works by Manning et al. or Mof-
fat and Zobel [15,19].

4.2 Impact of the Number of Service Providers
The results for different numbers of service providers, i. e.,
precision, recall, and MAP, are shown in Figure 6. In all
these figures, the three metrics on the left are based on a
uniform provider distribution while the three on the right
are based on a Zipfian one. Furthermore, the y-axis uses a
logarithmic scale in order to facilitate the comparison be-
tween the two distributions.

The measurements were taken after a rather short amount of
interactions, i. e., 1,000 collaborations between Alice and her
service providers. The reason behind this is to investigate
how variations of certain system parameters influence the
attacker’s results.

Uniform: Recall is basically not affected by the number of
service providers, as all of Alice’s compositions are identi-
fied. However, opposed to what one might expect, precision
rises if the number of different service providers increases.
The reason for this might be, that Alice’s and the back-
ground’s interactions are distributed over a larger number of
possibilities, thus, they stand out more prominently. MAP
differs significantly from precision and has a very high and
about constant value over the observed N . This means, that
Alice’s compositions are always at the top of the list of com-
positions assembled by the attacker. In general, the attacker

3However, a recall of 1.0 can be achieved easily by identify-
ing all available service compositions as Alice’s.

 0.01

 0.1

 1

Precision Recall MAP Precision Recall MAP

Uniform (left) and Zipfian (right) provider distribution

12,500 25,000 50,000 100,000 200,000

Figure 6: Varying the number of service providers
N , each after 1,000 time-steps, 95% confidence inter-
vals (b = 125, C = 1,000, aC = 10, mSC = 8, S = 100%).

is very successful in this type of scenario, being mostly inde-
pendent from the overall number of service providers in the
system.

Zipfian: This scenario’s results are completely different for
the attacker. While recall is rather good, both precision and
MAP are insufficient for the attacker, achieving not even
10%. This is due to the clustering around prominent service
providers, which makes it for the attacker hard to distinguish
between Alice and the background. However, as seen above
for the uniform distribution, the increase in providers works
for the attacker, leading to more providers on the “long tail”
of the Zipfian curve, thus, making profiling easier. For ex-
ample, an increase by factor 4 of the service providers leads
to a doubling of MAP.

4.3 Impact of the Number of Compositions
Used by Alice

The results for different numbers of Alice’s service composi-
tions are shown in Figure 7.

Uniform: The variety, i. e., number, of Alice’s compositions
has a strong impact on the metrics. While the recall for 5
to 50 compositions is still very good, it declines heavily with
100 and 200 compositions used. Precision is not affected as
heavily, but MAP declines even more than recall, leaving the
attacker with a reasonable amount of found compositions,
but which are very late in his ranked list (thus, not of much
use for him). Therefore, as could be expected, Alice using
more different service compositions is more difficult for the
attacker.

Zipfian: As above, the attacker’s results against a Zipfian
provider distribution are much worse than for the uniform
one. The general trend is similar, but the degradation is
more graceful than for N , e. g., recall decreases with the in-
crease of Alice’s compositions. However, precision is rather
unaffected by this increase, but for high numbers of used
compositions, it even increases as well (with low and about
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Figure 7: Varying the number of compositions used
by Alice aC, each after 1,000 time-steps, 95% con-
fidence intervals (N = 200,000, b = 125, C = 1,000,
mSC = 8, S = 100%).

constant values of MAP, though). This trend is due to the
rising chances of the attacker identifying compositions be-
cause there are more of them.

4.4 Impact of the Maximum Number of Ser-
vices per Composition

The results for different values for the maximum of services
per composition are shown in Figure 8.

 0.001

 0.01

 0.1

 1

Precision Recall MAP Precision Recall MAP

Uniform (left) and Zipfian (right) provider distribution

5 10 20 40 80 160

Figure 8: Varying the number of services per com-
position mSC, each after 1,000 time-steps, 95% con-
fidence intervals (N = 200,000, b = 125, C = 1,000,
aC = 10, S = 100%).

Uniform: This parameter has a stronger impact than the
number of Alice’s compositions. The results are affected
significantly, especially for complex compositions, i. e., high
mSC between 80 and 160, which make the identification
more difficult. However, recall is not affected as much, it is
at most down to about 75%. The impact on MAP is not

so heavy, at least less than on precision and not as much as
for high aC values. In total, this is still a success for the
attacker.

Zipfian: The trend is here similar as for the uniform dis-
tribution, but the results are by far worse for the attacker.
Although recall is rather high, both precision and MAP de-
crease significantly with a decreasing number of services per
composition due to the same reasons as above. In total, this
is to be regarded as insufficient for the attacker.

4.5 Impact of the Attacker’s Spread
The results for different spread values of the attacker are
shown in Figure 9.
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 1
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Figure 9: Varying the attacker’s spread S, each af-
ter 1,000 time-steps, 95% confidence intervals (N =
200,000, b = 125, C = 1,000, aC = 10, mSC = 8).

Uniform: Interestingly, the spread of the attacker does not
seem to influence the attacker’s results very much. Except
for 10% access to the anonymity system’s messages, the at-
tacker achieves very good results that are in accordance with
the N = 200,000 runs as discussed above. A possible expla-
nation is, that the spread only affects the time required by
the attacker for achieving certain results, e. g., a 10% spread
at 1,000 time-steps could lead to similar results as a 100%
spread at about 100 time-steps. This aspect will be investi-
gated further in our future work.

Zipfian: This has a devastating effect on the attacker’s re-
sults. Precision and MAP fall in general below 1% (with
the exception of 100% spread that is similar to the obtained
results above for N = 200,000). Recall is better, but does
not reach 20%, which is insufficient for the attacker. The
presumption of the attacker needing more time if less mes-
sages can be observed should be investigated further as well
in this scenario.

4.6 Impact of the Number of Time-Steps
The above evaluations considered a short, fixed amount of
time in order to determine the impact of different system
parameters. In addition, it is also beneficial to investi-
gate how the metrics evolve over time, i. e., where the lim-
its of anonymity in cross-organizational collaboration or of
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the attacker could be. For this, we used the following se-
lected scenarios from above with an underlying Zipfian ser-
vice provider distribution.

 0.01

 0.1

 1

Precision Recall MAP

1,000 time-steps 25,000 time-steps 50,000 time-steps

Figure 10: Evolution of attacker’s results with aC =
100 and Zipfian distribution, 95% confidence inter-
vals (N = 200,000, b = 125, C = 1,000, mSC = 8,
S = 100%).
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Figure 11: Evolution of attacker’s results with
mSC = 80 and Zipfian distribution, 95% confidence
intervals (N = 200,000, b = 125, C = 1,000, aC = 10,
S = 100%).

High number of Alice’s compositions (ac = 100): As shown
in Figure 10, more time, i. e., more observations, gives the
attacker a slight advantage. While the additional knowledge
regarding MAP from 1,000 to 25,000 time-steps is high, ad-
ditional 25,000 observations do not contribute much, reach-
ing in total still only about 10%. Precision and recall do
not improve much as well, so that a significant improvement
after even more observations is unlikely.

High composition complexity (mSC = 80): Observing a sce-
nario with a high maximum number of services per com-
position over a longer time does not improve the attacker’s
results as depicted in Figure 11. Precision and MAP remain

 0.001
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 0.1

 1
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1,000 time-steps 25,000 time-steps 50,000 time-steps

Figure 12: Evolution of attacker’s results with S =
50% and Zipfian distribution, 95% confidence inter-
vals (N = 200,000, b = 125, C = 1,000, aC = 10,
mSC = 8).

about constant at their very low values between 1 and 2%.
However, the very high recall can be slightly improved from
1,000 to 25,000 time-steps, but not much after that.

Medium spread (S = 50%): Regarding the attacker’s bad
results for irregular access to the anonymity system’s mes-
sages, additional time does not help as shown in Figure 12.
All observed metrics remain nearly constant at their low val-
ues, precision and MAP at most reaching 1%. As pointed
out above, significant gains cannot be expected even after
more time-steps.

In general, making more observations is only one approach
for the attacker and not a very good one, i. e., it is most likely
only used as a last resort. Other approaches, e. g., improving
the internal calculations, the general model, etc. are more
likely to threaten the overall anonymity in the Internet of
Services. Such possibilities will be discussed below as future
work.

A summary and further discussion of the overall results is
given in Section 6.

5. RELATED WORK
Regarding specific attacks on anonymity, this paper focuses
on attacks on the boundaries of anonymity systems, i. e., the
Statistical Disclosure Attack [5] from the general class of In-
tersection/Disclosure Attacks [13]. Within this attack class,
only simple sender-recipient-relationships were investigated
so far.

However, the concept of service compositions in the Inter-
net of Services introduces additional complexity, i. e., with
respect to the relationships between service consumers, the
compositions they use, and the networks of service providers
that constitute these compositions. Thus, in order to gain
knowledge about an organization’s processes, for example,
by identifying the service compositions it uses, an attacker
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has to confirm the relationships between service consumers
and providers, inferring from this knowledge the service com-
positions this organization is most likely to use.

As a starting point for our investigations of this new sce-
nario, we adapted the basic variant of the Statistical Disclo-
sure Attack. Therefore, other variants and extensions were
not considered so far, e. g., the use of Mix networks or dif-
ferent batching algorithms as described by Mathewson and
Dingledine [16] or utilizing graph theory in order to relax
specific user behavior assumptions of the attack model as
introduced by Troncoso et al. [28].

Furthermore, the attack on relationship anonymity investi-
gated in this paper must not be mixed up with the exten-
sive research on Web service privacy, e. g., [10, 29, 30]. Web
service privacy deals with the content of the exchanged mes-
sages, e. g., users’ personal data, and how this information
is further processed and possibly shared. It is an important
aspect of the overall security goal “confidentiality”, not of
anonymity [1, 7].

On the other hand, the important aspect of anonymous com-
munication between the different organizational participants
of an SOA, i. e., with respect to third parties in order to
conceal important business relationships has not been ad-
dressed so far. Further aspects of anonymity, i. e., the issue
of anonymous Web service provision as well as consumption
is addressed, e. g., by Papastergiou et al. [21]. However, it
is questionable whether this is a desirable functionality for
cross-organizational collaboration where it is important that
both service consumer and provider know and trust each
other, i. e., for legal reasons such as compliance or audit.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we investigated the impact of attacks that aim
at revealing business relationships of collaborating organiza-
tions. These attacks are of a particular danger in the field
of cross-organizational service-based collaboration, because
attackers can create detailed profiles of service consumers,
providers, and also of market places by monitoring commu-
nication endpoints. Thus, sensitive information about the
underlying business processes of the communicating organi-
zations can be inferred easily.

Sophisticated countermeasures exist for achieving the re-
quired type of anonymity, so that an attacker cannot suf-
ficiently distinguish whether the sender and recipient of a
particular message are related or not. However, even if such
standard anonymity mechanisms are deployed and used cor-
rectly, attacks mounted at the edges of such networks and
aiming at typical long-term business relationships are very
likely to be successful.

Therefore, this paper investigated the following research ques-
tion: “How does an adaptation of the Statistical Disclosure
Attack regarding service compositions threaten the relation-
ship anonymity of service consumers and providers in the
Internet of Services?”

In order to answer this question, the well-known “Statistical
Disclosure Attack” was extended regarding service compo-
sitions in the Internet of Services scenario. This extension

was then evaluated using a simulation model of different at-
tacker models and attack scenarios, which was implemented
with the Repast Simphony toolkit.

While the results based on a uniform provider distribution
look promising for the attacker’s success, such a distribution
cannot necessarily be expected in the real world, i. e., the
future Internet of Services. The used Zipfian distribution,
whose skew parameter is inspired by the access distribution
of Web pages, has the strongest impact on the attacker’s
results. This leads to a clear defeat of the attacker for the
observed parameters, even if more observations are made.

In addition, if the observed organization (“Alice”) uses many
different compositions or mainly ones with a high composi-
tion complexity, this makes the attacker’s defeat even clearer.
As an organization cannot just increase its process complex-
ity for improved security, this could be achieved by extend-
ing the concept of “dummy traffic” with respect to using
“dummy compositions” or “dummy services” therein, e. g.,
obfuscating real compositions with additional (irrelevant)
services.

Further impact can be achieved by increasing the number of
offered compositions or the batchsize of the anonymity sys-
tem. However, increasing the batchsize is likely to have seri-
ous side-effects, e. g., regarding important Quality of Service
parameters such as the response time of service requests.

These findings might suggest anonymity is not that much
in danger in an Internet of Services with a suitable provider
distribution. However, the attacker can also improve his
chances of success by including further information such as
the providers’ replies into his internal calculations. In addi-
tion, outside knowledge can be used as well, e. g., a bank
is more likely to collaborate with other financial service
providers than with providers from the logistics, pharmaceu-
tical, or automotive sector. These aspects will be addressed
in our future work, because the threat of revealing sensitive
process information remains. Thus, our next steps will be
to evaluate the existing model with other configuration pa-
rameters, e. g., even more observations, and to extend the
attacker model regarding industry sector information and
replies from service providers, e. g., continuing the work by
Danezis et al. [6].
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