
Association for Information Systems
AIS Electronic Library (AISeL)

ECIS 2000 Proceedings European Conference on Information Systems
(ECIS)

2000

Cache-based Query Processing for the Boolean
Retrieval Model
Jae-heon Cheong
Seoul National University

Sang-goo Lee
Seoul National University

Follow this and additional works at: http://aisel.aisnet.org/ecis2000

This material is brought to you by the European Conference on Information Systems (ECIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ECIS 2000 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Cheong, Jae-heon and Lee, Sang-goo, "Cache-based Query Processing for the Boolean Retrieval Model" (2000). ECIS 2000
Proceedings. 113.
http://aisel.aisnet.org/ecis2000/113

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fecis2000%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2000?utm_source=aisel.aisnet.org%2Fecis2000%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2000%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2000%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2000?utm_source=aisel.aisnet.org%2Fecis2000%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2000/113?utm_source=aisel.aisnet.org%2Fecis2000%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Cache-based Query Processing for the Boolean Retrieval Model
Jae-heon Cheong and Sang-goo Lee*

Department of Computer Science

Seoul National University

San 56-1 Shillim-dong Kwanak-gu, Seoul, Korea

{cjh, sglee}@cygnus.snu.ac.kr

Abstract- We propose a new method of processing general
Boolean queries utilizing previous query results stored in a
result cache in a mediator architecture. A simple but noble
normalization form is developed to describe keyword-based
Boolean queries and the content of the result cache. We propose
Boolean query processing algorithms based on this form of
presentation that utilizes the result cache. We show that the
proposed method theoretically guarantees improved
performance over the conventional query processing method
without using a cache.

I. INTRODUCTION

The fast and wide spread of the Internet has caused
exponential increase in the amount of information that can be
obtained from it. An Internet search engine plays the role of a
lighthouse in this sea of information. The recent growth in the
number of search engines has generated the need for mediator
systems. Mediator systems provide users with seamless
access to information from diverse and heterogeneous
information sources (collections) on the Internet [1].

In general, the collections that a mediator system deals
with are geographically distributed over the network.
Therefore, if we assume that every collection is configured
optimally, the performance of the mediator system is mainly
influenced by the data transmission time between the
mediator and the individual search engines. In order to reduce
the size of the query results being transferred, most
contemporary mediator systems makes use of results of
previous queries stored in a result cache in answering the
current query. A result cache can also be used to answer a
query partially or completely even when some of the
collections are temporarily unavailable. Unfortunately,
however, most cache-based query processing methods
adopted by current mediator systems are based on a simple
query model considering only conjunctive queries.

Cache representation and inference based on the general
Boolean model give rise to complicated problems. First of all,
it is not feasible for a result cache to be equipped with a
keyword index, such as an inverted file, since it cannot be
known in advance what keywords will occur in queries in a
certain time frame. Thus, if a query contains at least one
keyword not already in the result cache, the entire cache must
be searched exhaustively for proper sub-results that satisfy
the current query. Another complication arises when
collections do not support the ‘NOT’ operator. To retrieve the

* Author’s work was supported in part by research fund provided by
the Korea Research Foundation, Support for Faculty Research
Abroad.

the portion of the result for a query Q that is not already in
the result cache C (we call this a miss result), a new query ‘Q
AND NOT C’ (the miss query) would be sent to the
collections. If, however, some of the collections do not
support the ‘NOT’ operator, the mediator cannot retrieve
those results directly.

In this paper, we present an efficient method that makes
use of the result cache to minimize the size of result that
needs to be retrieved from the target collections for a
keyword-based Boolean query. The main idea of our method
is to partition a result cache into several disjoint sub-results.
Each sub-result is represented by a sub expression of the
original one. By doing this, we can considerably reduce the
search space of a result cache and can find query results more
efficiently. We propose a new normalized form, a variation of
the disjunctive normal form (DNF), to describe queries and
the cached results. Also presented are algorithms to process
Boolean queries with a result cache. The miss results can be
answered effectively even when the target collections do not
support the ‘NOT’ operator. We show that the proposed
scheme is better in terms of performance than schemes that
do not use cached results.

Other issues pertaining to cache management, such as
replacement strategies and consistency maintenance, are
beyond the scope of his paper and are left to future work.

In the next section, we present other works related to the
current topic. A basic cache-based query-processing model is
presented in section III. In section VI, we propose our new
method of cache-based query processing. Performance issues
are considered in section V. We conclude the paper in section
VI with a summary of our contributions and a brief
discussion on future directions.

II. RELATED WORKS

There have been a number of articles on semantic data
caching [2, 3, 4, 5, 6]. In [2], the detailed method of rewriting
an initial query using a cached query is described. However a
single database environment is assumed and the algorithm for
finding a query match (a hit query in our context) is
incomplete. A query optimization method is proposed in [3],
which uses cached queries in a mediator system named
HERMES. This system, however, deals with only simple
conditions of the form c1θc2 (where θ is any of <, ≤, or =).
Cache replacement strategies based on recency and semantic
distance of cached queries are considered in [4], while
consistency problems of conjunctive queries are dealt with in
[5]. The query approximation method presented in [6] also
considers only conjunctive queries.

Perhaps the work most closely related to semantic caching
in the database literature is [7], which deals with materialized
views [7]. This work, however, deals only with conjunctive
queries in SQL. A scheme for rewriting queries under the
Boolean query model considering the capabilities of
information sources is presented in [8]. The rewriting method
is carried out predicate by predicate.

In [9], a query history based virtual index (QVI) is
proposed. It is based on the observation that queries are
repeated over time and users. However, only simple keyword
queries like ‘Retrieve documents that contain ‘Database’ and
‘Warehouse’ were considered. We propose to extend this
basic idea to the general Boolean retrieval model.

III.PRELIMINARIES

In this section, we present some basic concepts necessary to
build our new method. First of all, we adopt the keyword-
based Boolean query model, where a query, for instance,
“Retrieve documents that contain both keywords ‘digital’ and
‘library’” can be represented by a Boolean expression ‘digital
AND library’. For notational convenience, we use the symbol
‘∧’, ‘∨’, and ‘¬’ to denote the Boolean operators ‘AND’,
‘OR’, and ‘NOT’, respectively.

A. Query Model

In a keyword-based Boolean query model, queries are
defined recursively as follows:

Definition 1 (Query):

1. A keyword is a query.
2. If A is a query, then (¬A) is a query.
3. If A and B are queries, then (A ∧ B) and (A ∨ B) are also

queries.
4. All queries are generated by applying the above rules.

On the Internet, the target of a query is the set of
documents. A document can be defined as a conjunction of
keywords that occur in it. A document is an answer to a query
if the keywords in the document are such that make the query
expression true. A set of documents can be represented as a
Boolean query expression such that the result of the
expression would be exactly the set of those documents.

Definition 2 (Query Result): For a given query Q, the query
result of Q, denoted by [Q], is defined as a set of documents
that satisfy Q. The result of a query ¬Q is defined as U – [Q],
where U is the universal set of documents. The result of a
query A ∧ B and A ∨ B is defined as [A] ∩ [B] and [A] ∪ [B]
respectively.

If the results of two different queries are the same, we say
that these two queries are equivalent. A query is a sub-query
of another query if the results of the former are fully
contained in those of the latter.

Example 1: Suppose the set of keywords is {t1, t2, t3, t4, t5, t6}
and the whole set of documents is { t1, t2∧t3, t1∧t3∧t5, t4∧t6,
t5∧t6}. Then, the set of results of a query (t1∨t2)∧(t3∨t5) is {t2∧t3,
t1∧t3∧t5}. !

To simplify our query model, we assume that all keywords
are independent of each other.

B. Query Processing with A Result Cache

A result cache is the collection of previously posed queries
and their results.

Definition 3 (Result Cache): Suppose Q1, Q2, …, Qn are
queries that have been issued by users up to this point. The
current result cache, denoted by C, is defined as the
disjunction of previous queries (Q1 ∨ Q2 ∨ … ∨ Qn).

By definition of the query result, the result of C, denoted
by [C], is as follows:

[C] = [Q1 ∨ Q2 ∨ ... ∨ Qn]

= [Q1] ∪ [Q2] ∪ ... ∪ [Qn]

When a new query is submitted, it can be decomposed into
two sub-queries; a hit query and a miss query. While a hit
query can be answered from the current result cache, a miss
query must be transferred to the appropriate collections to get
answers.

Definition 4 (Hit Query, HQ): For a given query Q, if a
query QC subsumes (Q ∧ C), then QC is called a hit query for Q
and C. QC is called the optimal hit query (OHQ) if QC is
equivalent to Q ∧ C.

Definition 5 (Miss Query, MS): For a given query Q, if a
query Q¬C subsumes (Q ∧ ¬C), Q¬C is called a miss query for
Q and C. Q¬C is called the optimal miss query (OMQ) if Q¬C

is equivalent to Q ∧ ¬C.

Intuitively, if the result of Q ∧ C is not empty and Q is not
equivalent to C, then the original query Q can be both a hit
query and a miss query for Q and C by itself. If Q is
equivalent to C, the optimal hit query for Q and C is
equivalent to Q. And if Q ∧ C is empty, the optimal miss
query for Q and C is equivalent to Q.

Example 2: Suppose a query Q is B ∧ (A ∨ C) and the current
cache C is A ∨ (B ∧ C). Then, the OHQ is Q ∧ C = (A ∧ B) ∨
(A ∧ C) ∨ (B ∧ C) and the OMQ is Q ∧ ¬C = (B ∧ ¬(A ∨ C)).
!

Step 1: Query Decomposition

Step 2 : Retrieve Results

Step 3 : Integrate Results & Update the Cache

Query

Hit Query Miss Query

Results from the Cache
Results from the
Data Sources

Fig. 1. Query Processing Using a Result Cache

The procedure to process queries using a result cache is
composed of 3 steps as shown in fig. 1.

Step 1 (Query Decomposition): When a query is posed, the
mediator decomposes the query into a HQ and a MQ. In
general, the initial query can be used as both HQ and MQ.

Step 2 (Retrieve Results): The mediator retrieves cached
results from the cache by applying HQ, and un-cached results
by sending MQ to the appropriate search engines. If we use
an OHQ, we can reduce the time to retrieve data from the
cache. The size of the results that need to be transferred from
the search engines can be minimized by using an OMQ.

Step 3 (Integration of Results & Cache Update): generates
The final result is generated by integrating the results from
the cache and those from the data sources. The cache is
updated with the results retrieved from the data sources.

III.PROBLEM STATEMENT

In order to realize the above procedure, we should have
reasonable and practical solutions to the following problems.

First of all, if we want to minimize the whole computation
time, we should decompose the initial query into an OHQ and
an OMQ. However it might be costly if the decomposition
process is employs general logic inference. In addition,
splitting up a query into two parts leads to more complicated
queries that might be too expensive to process.

Second, if the size of a cache is large, the time required to
get answers from the cache can be quite long.

Finally, since it is common that miss queries contain one or
more ‘NOT’ operators and there might exist some search
engines that cannot directly answer those miss queries
because they do not support the ‘NOT’ operator. To those
search engines, the mediator should send a query that
subsumes the miss query and does not contain any ‘NOT’
operator. Then, irrelevant data should be filtered out.
Unfortunately, however, it is expensive and complicated to
compute those subsuming queries.

IV. UNFOLDED DISJUNCTIVE NORMAL FORM (UDNF)

A. UDNF

The results of a result cache are partitioned into several sub-
results, and each sub result is represented by a minterm. A
minterm for a given set of keywords is defined as a
conjunction in which every keyword occurs exactly once,
either in its positive or negative form [11]. For example, if
the set of keywords is {A, B, C} then the set of minterms is
{A∧B∧C, A∧B∧¬C, A∧¬B∧C, ¬A∧B∧C, A∧¬B∧¬C,
¬A∧¬B∧C, ¬A∧B∧¬C, ¬A∧¬B∧¬C}.

Any Boolean formula can be equivalently transformed into
a disjunction of selected minterms.

Example 3: A formula A∨B for the set of keywords {A, B} is
equivalent to (A∧¬B)∨(A∧B) ∨(¬A∧B), which is a
disjunction of minterms. !

Unfolded Disjunctive Normal Form (UDNF), a variation of
the DNF, is represented by a disjunction of appropriate
minterms, where every conjunct are pairwise disjoint or
unsatisfiable. This means that the intersection of the result
sets of any two conjuncts is always empty. In example 3, the
resulting formula is the UDNF of A∨B.

Definition 6 (UDNF): A formula F is said to be in an
unfolded disjunctive normal form if and only if F has the
form of F = F1 ∨ F2 ∨ … ∨ Fn, where each of F1, … Fn is a
minterm.

UDNF is used to represent both queries and the cache.
Initially, the cache is empty. When the first query is posed,
the query is transformed into its UDNF and sent to the data
sources for results. The cache is then initialized with this
query and its results.

In general, it is well known that normalization of a Boolean
expression is very expensive and often leads to an
exponential increase in the size of the formula. In this paper,
we propose an incremental algorithm that processes the query
efficiently with cached results. We show that UDNF leads to
a more efficient search of results in the cache without using
any special index structures. In addition, we can simply
generate a query subsuming the optimal miss query by using
UDNF.

B. Generation of UDNF

In this section, we introduce a method to generate a UDNF
for a given Boolean expression. Algorithm 1 describes the
normal method to generate the UDNF from an initial query.
NormGenUDNF(A, B) returns a set of minterms in the UDNF
of B under the set of attributes A.

Algorithm 1: Normal Generation of UDNF

NormGenUDNF(A, B)
InputA: set of keywords

B: target Boolean expression
Output UDNF of B considering A
BEGIN
1. Convert B to the corresponding postfix form.
2. U : set of minterms that can be generated by A
3. for every literal li of B
4. convert li to the disjunction of appropriate
 minterms of U
5. end for
6. R ← minterms of the first left literal
6. for every Boolean operator op of B
7. lr: minterms of the second argument of op
8. if op is ‘AND’ then
9. R ← R ∩ lr
10. else op is ‘OR’ then
11. R ← R ∪ lr
12. end if
13. end for
14. return R
END

The main drawback of algorithm 1 is that its time
complexity is exponential in the number of total keywords,
even though the number of keywords of the current Boolean
expression is far smaller than the number of all keywords.
For this reason, the UDNF of the cache is generated
incrementally by considering only the current keywords.
IncGenUDNF(CU, a) of algorithm 2 returns a new set of
minterms extended by a new keyword a.

Algorithm 2: Incremental Generation of UDNF

IncGenUDNF(a, CU)
Input CU: current UDNF

a: new keyword
Output new UDNF of CU
BEGIN
1. for every conjunct ci of CU
2. ci ← ci ∧ a
3. CU ← CU ∪ ci
4. ci ← ci ∧ ¬a
5. CU ← CU ∪ ci
6. end for
7. return CU
END

In using algorithm 2 to maintain the current cache, we
should split each sub-result of the cache into two whenever a
new keyword is added. For example, suppose the UDNF of
the current cache is (A ∧ B) ∨ (A ∧ ¬B) and C is a new
keyword, then the new UDNF of the cache will be (A ∧ B ∧
C) ∨ (A ∧ B ∧ ¬C) ∨ (A ∧ ¬B ∧ C) ∨ (A ∧ ¬B ∧ ¬C). The
first sub-result of the cache represented by (A ∧ B) must be
split into two other sub-results represented by (A ∧ B ∧ C)
and (A ∧ B ∧ ¬C) respectively. To do this, every query object
of the sub-result should be checked at least once against the
new keyword C.

C. Decomposition of a Query into OHQ and OMQ

In this subsection, we introduce a method to decompose a
query into two sub-queries, OHQ and OMQ. We also propose
a method to compute a query that subsumes the OMQ and
does not contain a ‘NOT’ operator.

We first present two theorems.

Lemma 1: Let {m1, m2, ..., mn} be the universal set of
minterms defined by the set of keywords. Suppose Q is a
Boolean expression and is represented by m1 ∨ m2 ∨ ... ∨ mk

where k ≤ n. If Q is true, then only one mi (1 ≤ i ≤ k) is true
and the other mis are false.

Proof) Suppose mi and mj (1 ≤ i, j ≤ k, i ≠ j) are true at the
same time when Q is true. Since mi and mj are not identical,
there is at least one common keyword that occurs in mi (mj) in
negated form and in mj (mi) in non-negated form. Let a be
that common keyword. Since mi and mj are true, mi ∧ mj

should also be true, which requires a∧¬a to be true, which is
a contradiction. Consequently, if both mi and mj are true, then
mi should be identical to mj.

Theorem 1: For a given query Q and a cache C, let M1 = {m1

∨ m2 ∨ … ∨ mn | mi is a minterm that occurs in both QUDNF

and CUDNF}. Then M1 is logically equivalent to Q ∧ C.

Proof)

M1 ⇒ Q ∧ C:

Suppose M1 is true. M1 is the disjunction of some
minterms. Therefore, there exists at least one minterm that
occurs in M1 and is true. Since all minterms of M1 occurs in
QUDNF and CUDNF simultaneously, QUDNF ∧ CUDNF should be
true. And Q ∧ C is true, too.

M1 ⇐ Q ∧ C:

Suppose Q ∧ C is true. Since Q ∧ C is equivalent to QUDNF

∧ CUDNF, QUDNF ∧ CUDNF should also be true. Suppose QUDNF

is q1 ∨ q2 ∨ ... ∨ qm and CUDNF is c1 ∨ c2 ∨ ... ∨ ct where qi and
cj are minterms. Then, QUDNF ∧ CUDNF is (q1 ∧ c1) ∨ (q1 ∧ c2)
∨ ... ∨ (q1 ∧ ct) ∨ (q2 ∧ c1) ∨ ... ∨ (qm ∧ ct). Since QUDNF ∧
CUDNF is true, there exists at least one (qi ∧ cj)(1 ≤ i ≤ m, 1 ≤ j
≤ t) that is true. If qi is not identical to cj, qi ∧ cj should be
false according to lemma 1. Therefore, qi should be identical
to cj and would be a member of M1. By the definition of M1,
M1 is true.!

Lemma 2: If Q is a Boolean expression, then ¬QUDNF is
logically equivalent to the disjunction of minterms that does
not occur in QUDNF.

Proof) Let {m1, m2, ..., mn} be the universal set of minterms
defined by the set of keywords. Suppose QUDNF is m1 ∨ m2 ∨
... ∨ mk where k ≤ n. Then, ¬QUDNF = ¬m1 ∧ ¬m2 ∧ ... ∧ ¬mk.

¬m1 ∧ ¬m2 ∧ ... ∧ ¬mk ⇒ mk+1 ∨ m k+2 ∨ ... ∨ mn:

Suppose ¬m1 ∧ ¬m2 ∧ ... ∧ ¬mk is true. Then, m1, m2, ...,
and mk should be false at the same time. Since m1 ∨ m2 ∨ ... ∨
mn should be true by definition of a minterm, there exists at
least one minterm that is true in {mk+1, m k+2 ,..., mn}.
Therefore, mk+1 ∨ m k+2 ∨ ... ∨ mn is true.

¬m1 ∧ ¬m2 ∧ ... ∧ ¬mk ⇐ mk+1 ∨ m k+2 ∨ ... ∨ mn:

Suppose mk+1 ∨ m k+2 ∨ ... ∨ mn is true. Then, there exists at
least one mi (k+1 ≤ i ≤ n) that is true. Therefore, m1 ∨ m2 ∨ ...
∨ mk should be false and ¬mj (1 ≤ j ≤ k) should be true.
Consequently, ¬m1 ∧ ¬m2 ∧ ... ∧ ¬mk is true. !

Theorem 2: For a given query Q and a cache C, let M2 = {m1

∨ m2 ∨ … ∨ mn | mi is a conjunction that occurs in QUDNF but
not in CUDNF}. Then M2 is logically equivalent to Q ∧ ¬C.

Proof)

M2 ⇒ Q ∧ ¬C:

Suppose M2 is true. Since M2 is a disjunction of minterms
and there exists at least one minterm in M2 which is true.
Since all minterms of M2 occurs in QUDNF, QUDNF is true.
Since all minterms of M2 do not occur in CUDNF, they all
occur in ¬CUDNF according to lemma 1. Therefore, If M2 is
true, then QUDNF ∧ ¬CUDNF is true.

M2 ⇐ Q ∧ ¬C:

Suppose Q ∧ ¬C is true. Since Q ∧ ¬C is equivalent to
QUDNF ∧ ¬CUDNF, QUDNF ∧ ¬CUDNF is true also. Suppose
QUDNF is q1 ∨ q2 ∨ ... ∨ qm and ¬CUDNF is c1 ∨ c2 ∨ ... ∨ ct

where qi and cj are minterms. Then, QUDNF ∧ ¬CUDNF is (q1 ∧
c1) ∨ (q1 ∧ c2) ∨ ... ∨ (q1 ∧ ct) ∨ (q2 ∧ c1) ∨ ... ∨ (qm ∧ ct).
Since QUDNF ∧ ¬CUDNF is true, there exists at least one (qi ∧
cj) (1 ≤ i ≤ m, 1 ≤ j ≤ t) that is true. Suppose there exists at
least one keyword that occurs in qi in negated (or non-
negated) form and in cj in non-negated (or negated, resp.)
form. Since qi and cj are minterms, qi ∧ cj should be false.
Therefore, qi and cj may not contain a common keyword
negated in qi and not negated in cI, or visa versa. Therefore, qi

and cj must be identical. Since cj occurs in ¬CUDNF, cj may
not occur in CUDNF according to lemma 2. By the definition of
M2, M2 should be true.!

Algorithm 3: Generation of OHQ and OMQ

GenOHMQ(C,Q)
Input C: UDNF of the current cache

Q: current query
Output OHQ and OMQ
BEGIN
1. for every keyword a of Q that does not occur in C
2. C ← IncGenUDNF(a, C)
3. end for
4. Q ← NormGenUDNF(all keywords of Q, Q)
5. for every keyword a of C that does not occur in Q
6. Q ← IncGenUDNF(a, Q)
7.end for
8.OMQ ← Q
9. for every conjunct q of Q
10. for every conjunct c of C
11. if c implies q then
12. OHQ ← OHQ ∪ c
13 OMQ ← OHQ − c
14. end if
15. end for
16. end for
17. return OHQ and OMQ

END

According to theorems 1 and 2, it is clear that the OHQ and
the OMQ can be found by a simple conjunct matching
procedure. Since results in the cache are partitioned and each
partition is represented by a unique minterm, we can simply
retrieve the results of OHQ from the cache. In algorithm 3,
we show the method for decomposing a query into OHQ and
OMQ.

D. ‘NOT’ Operator

The following theorem makes it possible to retrieve the
results of the OMQ without using negations. This is useful
when the target data source does not support the ‘NOT’
operator.

Lemma 3: Suppose Q = mi ∨ mj (i ≠ j) where mi and mj are
minterms defined on the set of keywords. Let ni (pi) be the
sub-conjunct of negative (positive, resp.) literals of mi and
A(ni) be the set of atoms in ni. If A(ni) ⊄ A(nj) and A(nj) ⊄
A(ni), then Q is logically equivalent to (pi ∨ pj) ∧ (ni ∨ nj).

Proof) Since mi = pi ∧ ni and mj = pj ∧ nj, mi ∨ mj = (pi ∧ ni) ∨
(pj ∧ nj). And (pi ∨ pj) ∧ (ni ∨ nj) = (pi ∧ ni) ∨ (pj ∧ nj) ∨ (pi ∧
nj) ∨ (pj ∧ ni).

For pi ∧ nj (or pj ∨ ni) , there exist two cases.

(1) A(ni) ∩ A(nj) = ∅

In this case, there should exist at least one keyword that
occurs in pi in non-negated form and in nj in negated form.
Consequently, pi ∧ nj is always false.

(2) A(ni) ∩ A(nj) ≠ ∅

Since both A(ni) − A(nj) and A(nj) − A(ni) are not empty,
there exists at least one keyword that occurs in pi in non-
negated form and in nj in negated form. Therefore, pi ∧ nj is
false like in the first case.

From (1) and (2), every pi ∧ nj (or pj ∧ ni) should be false.
Therefore, (pi ∨ pj) ∧ (ni ∨ nj) is equivalent to (pi ∧ ni) ∨ (pj ∧
nj). Since mi is (pi ∧ ni) and mj is (pj ∧ nj), Q is equivalent to
(pi ∨ pj) ∧ (ni ∨ nj). !

Let N(mi) be the number of literals that occur in mi. Then,
we can state the following lemma.

Lemma 4: Suppose Q = mi ∨ mj (i ≠ j) where mi and mj are
minterms defined on the same set of keywords. If A(ni) ⊃
A(nj) and N(ni) − N(nj) = 1, then Q is logically equivalent to
(pi ∨ pj) ∧ (ni ∨ nj).

Proof) (pi ∨ pj) ∧ (ni ∨ nj) = mi ∨ mj ∨ (pi ∧ nj) ∨ (pj ∧ ni).
Since A(ni) ⊃ A(nj), pj ∧ ni is false but pi ∧ nj is not. Since
N(ni) − N(nj) = 1, the only keyword that does not occur in pi

∧ nj occurs in mi in negated form and in mj in non-negated
form. Let that keyword be a. Then, pi ∧ nj is logically
equivalent to (pi ∧ nj ∧ a) ∨ (pi ∧ nj ∧ ¬a). Since (pi ∧ nj ∧ a)
and (pi ∧ nj ∧ ¬a) are identical with mi and mj, respectively,
Q is logically equivalent to (pi ∨ pj) ∧ (ni ∨ nj). !

The following theorem presents a necessary condition for
computing a subsuming query of an OMQ.

Theorem 3: Let QUDNF be the UDNF of a given query Q.
Formally, QUDNF can be defined as follows: QUDNF = m1 ∨ m2

∨ … ∨ mn where mi is a minterm defined under a set of
keywords. For any two minterms mi and mj (i ≠ j), if either
A(ni) ⊄ A(nj) and A(nj) ⊄ A(ni) or A(ni) ⊃ A(nj) and N(ni) −
N(nj) = 1, then Q is logically equivalent to (p1 ∨ p2 ∨ ... ∨ pn)
∧ (n1 ∨ n2 ∨ ... ∨ nn).

Proof) Q = (p1 ∧ n1) ∨ (p2 ∧ n2) ∨ ... ∨ (pn ∧ nn). And

(p1 ∨ p2 ∨ ... ∨ pn) ∧ (n1 ∨ n2 ∨ ... ∨ nn) = (p1 ∧ n1) ∨ (p2 ∧
n2) ∨ ... ∨ (pn ∧ nn) ∨ (p2 ∧ n1) ∨ ... ∨ (p2 ∧ nn) ∨ ... ∨ (pn ∧
nn).

For those i ≠ j such that A(ni) ⊄ A(nj) and A(nj) ⊄ A(ni), pi

∧ nj and pj ∧ ni are false according to lemma 1. And for i ≠ j
such that A(ni) ⊃ A(nj) and N(ni) − N(nj) = 1, pj ∧ ni is false
and pi ∧ nj is logically equivalent to pi ∧ ni according to
lemma 2. Consequently, Q is logically equivalent to (p1 ∨ p2

∨ ... ∨ pn) ∧ (n1 ∨ n2 ∨ ... ∨ nn). !

If an OMQ satisfies the conditions mentioned in theorem 3,
a new query that subsumes the OMQ and does not contain
any ‘NOT’ operator can be generated easily. An OMQ (a ∧
¬b ∧ c) ∨ (¬a ∧ b ∧ c) ∨ (a ∧ b ∧ ¬c) is logically equivalent
to ((a ∧ c) ∨ (b ∧ c) ∨ (a ∧ b)) ∧ (¬a ∨ ¬b ∨ ¬c). The first
part, ((a ∧ c) ∨ (b ∧ c) ∨ (a ∧ b)), is sent to the data
collections and the second part, (¬a ∨ ¬b ∨ ¬c), is used to
filter out the extraneous results in the integration stage.

A query that contains a minterm that does not satisfy the
conditions of theorem 3 is processed differently. For
example, suppose an OMQ is (a ∧ ¬b ∧ c ∧ ¬d) ∨ (¬a ∧ b ∧
c ∧ d) ∨ (a ∧ b ∧ ¬c ∧ d) ∨ (¬a ∧ b ∧ ¬c ∧ ¬d) ∨ (a ∧ ¬b ∧
c ∧ d). This OMQ as a whole does not satisfy the conditions

of theorem 3. We partition this OMQ into two sub-queries.
The first sub-query is composed of the first four minterms
and the remainder is the second sub-query. Then, we can
apply theorem 3 to each sub-query separately (see fig. 2).

(a∧¬b∧c∧¬d)∨(a∧b∧¬c∧d)∨
(¬a∧b∧c∧d)∨(¬a∧b∧¬c∧¬d)

a∧¬b∧c∧d

((a∧c)∨(a∧b∧d)∨(b∧c)∨b)∧
((¬b∧¬d)∨¬c∨¬a∨(¬a∧¬c∧¬d))

(a∧c∧d)∧(¬b)

send (a∧c)∨(a∧b∧d)∨(b∧c)∨b
to collections

send (a∧c∧d) to
collections

filter out the result with
((¬b∧¬d)∨¬c∨¬a∨(¬a∧¬c∧¬d))

filter out the result with
(¬b)

Union

Fig. 2. Partitioning an OMQ

There can be more than one way to partition an OMQ. In
the above example, another partition, namely {(a ∧ ¬b ∧ c ∧
¬d)} ∨ {(¬a ∧ b ∧ c ∧ d) ∨ (a ∧ b ∧ ¬c ∧ d) ∨ (¬a ∧ b ∧ ¬c
∧ ¬d) ∨ (a ∧ ¬b ∧ c ∧ d)}, is possible.

V. PERFORMANCE

In this section, we analyze the performance of our method.
First, we compute the lower bound of the hit ratio of the
cache under the reasonable assumption of [10].

Lemma 3: Suppose the probability that a keyword denoted
by t being answered from the cache is p. For two independent
keyword t1 and t2, the probability that the result of t1 ∧ t2 and
t1 ∨ t2 may be answered from the cache is 2p−p2 and p2

respectively.

Proof) If we were to get the result of t1 ∧ t2 from the cache,
either t1 or t2 should be answerable from the cache. Therefore,
the probability of t1 ∧ t2 is 2p−p2.

In the case of t1 ∨ t2, both of t1 and t2 should be answerable
from the cache. So, the probability of t1 ∨ t2 should be p2. !

Theorem 4: Suppose the probability that a keyword being
answered from the cache is p. The probability that a Boolean
query Q being answered from the cache, denoted by P(Q), is
also equal to p regardless of the number of keywords in Q.

Proof (by induction on n, the number of keywords in Q)
i) n = 1
P(Q) = P(t) = p
ii) Suppose Pn=k is equal to p.
The query of n = k+1, Qn=k+1, can be generated by adding a

new keyword t with either ‘∧’ or ‘∨’ to the query of n = k,
Qn=k.

P(Qn=k ∧ t) = P(Qn=k) + P(t) − P(Qn=k)P(t) = 2p−p2

P(Qn=k ∨ t) = P(Qn=k)P(t) = p2

Pn=k+1 = (P(Qn=k ∧ t) + P(Qn=k ∨ t)) / 2 = p, assuming the
two cases are equally likely. !

This can be verified for n = 2 and n = 3. For n = 2, from
Lemma 3,

Pn=2 = (2p−p2 + p2) / 2 = p.

For n = 3, there can exist four types of Boolean expressions
such as t1∧t2∧t3, t1∨t2∨t3, (t1∧t2)∨t3, (t1∨t2)∧t3, since ordering
is meaningless. According to lemma 3,

P(t1∧t2∧t3) = 3p−3p2+p3

P(t1∨t2∨t3) = p3

P((t1∧t2)∨t3) = P(t1∧t2) × P(t3) = 2p2−p3

P((t1∨t2)∧t3) = P((t1∨t2) + P(t3) − P((t1∨t2)P(t3) = p+p2−p3

If we assume all the above types of query might occur
equally frequently, then the resulting probability Pn=3 is:

Pn=3 = ((3p−3p2+p3) + (p3) + (2p2−p3) + (p+p2−p3)) / 4
= p

Next, we show that our method is efficient. For the proof
of efficiency of our method, we use the following notation:

tD is the average time to decompose a query.
tC is the average time to retrieve data from cache.
tS is the average time to retrieve data from a search engine.
h is the hit ratio of the current cache (0 ≤ h ≤ 1).
dC is the average number of data objects in a conjunct of

the cache.
nQ is the number of distinct keywords in a query.
mQ is the number of distinct keywords that is in a query
 but not in the cache.
nC is the number of distinct keywords in the cache.
mC is the number of distinct keywords that is in the cache

but not in a query.

First of all, we assume that dC is greater than 2. This
assumption is practical enough since it is common that the
number of results for a query is large.

Lemma 4: tC > tD

Proof) Since tD is proportional to the complexity of
algorithm 3, we can say the following.

mCnQmQnCmQnC

mCnQmQnCnQmQnC

dCtC

tD
++++

++++

+⋅=

++=

22

222

Therefore, ()

 +−−=− ++

mC
mCnQmQnC dCtDtC

2

1
1212

Since mCnQmQnC +=+ and 2>dC ,

0>− tDtC

tDtC >∴ !

Theorem 5: If both
tC

tS
and h are large enough, then

()() 01 >⋅−+⋅+− tShtChtDtS

Proof) Let
tC

tS
 be k . Then,

()()

tDkhtC

tCktStDtCtCkh

tDtCtSh

tDtChtSh

tShtChtDtS

−−⋅⋅=
⋅=−−⋅=

−−=
−⋅−⋅=

⋅−+⋅+−

)1(

)()(

)(

1

Θ

According to lemma 4, tDtC > . So, in order to make
tDkhtC −−⋅⋅)1(positive, ()1−⋅ kh should be greater than

or equals to 1. Therefore, it should be that k > 1 + 1/h. In
addition, we can state that h is greater than or equal to p, the
probability that a query with any number of keywords might
be answered from the cache, due to theorem 4. Since it has
been reported that on the average 88% of the total queries
uses terms that have been used already [10], we can assume
that p is about 0.88. Therefore, the hit ratio of the cache
should be at least 0.8. Since 1 + 1/h = 1 + 1/0.8 = 2.25, there
should exist a k greater than 2.25 which is practically
feasible. !

In theorem 5, ()()tShtChtD ⋅−+⋅+ 1 is the time to
compute the result of a query when the result cache is used
and tS is the time when we do not use the cache. Therefore,
our method guarantees better performance than a general
solution that does not use cached results.

VI. CONCLUSION AND FUTURE WORKS

In this paper we studied the management of a result cache
under the Boolean retrieval model in a mediator context. We
proposed a method based on propositional logic. We can
apply our method to a keyword-based Boolean retrieval
model.

We showed that our method is more efficient in terms of
performance than solutions that do not make use of cached
results. Unfortunately, however, the size of a representation
for a result cache increases exponentially as query history
grows. We are revising a solution to this problem by means
of the partitioned representation. We are currently extending
the scheme so that it can be applied to an attribute-based
query model. In addition, we are particularly interested in the
storage model and access methods for the result cache.
Furthermore, empirical studies based on the specific cost
model are being pursued.

REFERENCES

[1] G. Wiederhold, Mediators in the Architecture of Future
Information Systems, IEEE Computer, Mar. 1992, pp.
38-49.

[2] C. M. Chen and N. Roussopoulos, The Implementation
and Performance Evaluation of the ADMS Query
Optimizer: Integrating Query Result Caching and
Matching. EDBT 1994, pp. 323-336.

[3] S. Adali, K. S. Candan, Y. Papakonstantinou, and V. S.
Shubrahmannian, Query Caching and Optimization in
Distributed Mediator Systems, proceedings of ACM
SIGMOD International Conference on Management of
Data, Montreal, Canada, June 1996, pp. 137-148.

[4] S. Dar M. J. Franklin, B. T. Jonsson, D. Srivastava, and
M. Tan, Semantic Data Caching and Replacement,

proceedings of the 22nd VLDB conference , 1996, pp.
330-341.

[5] A. M. Keller and J. Basu, A Predicate-based Caching
Scheme for Client-Server Database Architectures, the
VLDB journal, Vol. 5, No. 1, 1996, pp. 35-47.

[6] D. Miranker, M. Taylor, and A. Padmanaban, A
Tractable Query Cache By Approximation, Technical
Report, MCC, 1998.

[7] S. Abiteboul and O. M. Duschka, Complexity of
Answering Queries using Materialized View,
proceedings of ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, Seattle,
WA, June 1998.

[8] K. C. Chang, H. Garcia-Molina, and A. Paepcke, Boolean
Query Mapping Across Heterogeneous Information
Sources, IEEE Transactions on Knowledge & Data
Engineering, Vol. 8, No. 4, 1996, pp. 515-521.

[9] Dong-gyu. Kim and Sang-goo. Lee, QVI: Query-based
Virtual Index for Distributed Information Retrieval
System, proceedings of ISCA 13th International
Conference CATA, 1998, pp.152-155.

[11] M. M. Mano, Digital Logic and Computer Design,
Prentice-Hall, Englewook Cliffs, NJ, 1979.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2000

	Cache-based Query Processing for the Boolean Retrieval Model
	Jae-heon Cheong
	Sang-goo Lee
	Recommended Citation

	Microsoft Word - Paper_nachbearbeitet.doc

	search: search

