
Association for Information Systems
AIS Electronic Library (AISeL)

All Sprouts Content Sprouts

4-10-2008

Iteration in Systems Analysis and Design: Cognitive
Processes and Representational Artifacts
Nicholas Berente
Case Western Reserve University, nxb41@case.edu

Kalle Lyytinen
Case Western Reserve University, kalle@case.edu

Follow this and additional works at: http://aisel.aisnet.org/sprouts_all

This material is brought to you by the Sprouts at AIS Electronic Library (AISeL). It has been accepted for inclusion in All Sprouts Content by an
authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

Recommended Citation
Berente, Nicholas and Lyytinen, Kalle, " Iteration in Systems Analysis and Design: Cognitive Processes and Representational Artifacts"
(2008). All Sprouts Content. 109.
http://aisel.aisnet.org/sprouts_all/109

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fsprouts_all%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sprouts_all?utm_source=aisel.aisnet.org%2Fsprouts_all%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sprouts?utm_source=aisel.aisnet.org%2Fsprouts_all%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sprouts_all?utm_source=aisel.aisnet.org%2Fsprouts_all%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sprouts_all/109?utm_source=aisel.aisnet.org%2Fsprouts_all%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Working Papers on Information Systems ISSN 1535-6078

Iteration in Systems Analysis and Design: Cognitive
Processes and Representational Artifacts

Nicholas Berente
Case Western Reserve University, USA

Kalle Lyytinen
Case Western Reserve University, USA

Abstract
The idea of iteration is inherent to systems analysis and design methodologies and practices.
In this essay we explore the notion of iteration, and distinguish two dimensions of iteration:
iterations inherent in cognitive processes and iterations over representational artifacts.
Cognitive iterations can be concerned with the design; the design process; or stages within
the design process. Representational artifacts can take the form of documentation or the
software code itself. We identify and discuss the promise of â��iterative developmentâ��
and compare this promise to empirical findings on the effects of iterative methods. The
findings are generally consistent with expected outcomes. We conclude with an observation
that the difference between â��iterative developmentâ�� and more traditional
methodologies lies not in the presence of iteration, but in the locus of visibility and control,
and the associated timing and granularity.

Keywords: Iterative Development, Design Iteration, Evolutionary Prototyping, Evolutionary
Enhancement, Software Prototyping, Agile Methodologies, Rapid Application Development

Permanent URL: http://sprouts.aisnet.org/5-23

Copyright: Creative Commons Attribution-Noncommercial-No Derivative Works License

Reference: Berente, N., Lyytinen, K. (2005). "Iteration in Systems Analysis and Design:
Cognitive Processes and Representational Artifacts," Case Western Reserve University, USA
. Sprouts: Working Papers on Information Systems, 5(23). http://sprouts.aisnet.org/5-23

 Sprouts - http://sprouts.aisnet.org/5-23

http://creativecommons.org/licenses/by-nc-nd/3.0/

BERENTE AND LYYTINEN/ITERATION IN SYSTEMS ANALYSIS AND DESIGN

Introduction

 System analysis and design has always been an iterative process. Recent agile methods
recognize iterative development as a fundamental principle of design (Cockburn 2002), but the
idea of iteration is not new. From the earliest development methodologies and practices, the idea
of iteration has been inherent in discussions among researchers and practitioners, although not
always explicitly. Therefore, for those researching and managing systems development it is
important to understand what can iterate, why iterations occur, and the implications of iteration
on design outcomes.

In this essay we will explore the notion of iteration, and how it applies to systems
analysis and design. We distinguish two dimensions of iteration: iterations inherent in cognitive
processes and iterations over representational artifacts. We identify and discuss genres of iterated
representational artifacts that are prescribed by mainstream system development methodologies.
We then review the sparse empirical body of research on the effects of iteration and observe that
empirical research on iteration focuses almost entirely on one form of iterating artifact: the
evolutionary prototype. The findings associated with evolutionary prototypes are generally
consistent with expected outcomes.

We conclude with a provocation. If iteration forms a fundamental property of all systems
analysis and design methodologies, then what, exactly, is the difference between iterative and
traditional, “non-iterative” development practices? It certainly is not the existence or non-
existence of iteration, as in this regard there is less of a difference than one might suppose.
Rather, differences lie in the conditions that define iterative behavior and content - in notions of
visibility and control.

Iteration Defined

 We need to carefully address the iteration concept because it underpins most
development practices. Yet, the term “iteration” is not always used to address the same aspect of
design. For example, iteration commonly refers to the cyclical generation of functional software
code and its testing (Beck 2002), but it also describes repetition of a phase of development due to
rework (Davis 1974), or successive sub-phases within a main phase (Iivari and Koskela 1987).
Less common applications of the word can be found. For example, Checkland and Scholes
(1999) indicate that the cyclical comparison of conceptual models to the real world as a form of
iteration. Iterative activities go often by different names, such as “prototyping” to iteratively
elicit user input (Alavi 1984), “rounds” of iterative design activities to reduce risk (Boehm
1988), or even a “dance” of human interactions toward increased mutual understanding (Boland
1978).

The term “iteration” is used in a variety of disciplines and in different contexts of speech.
It is defined as “the repetition of a process” in computer science, “a specific form of repetition
with a mutable state” in mathematics, and in common parlance it is considered synonymous for
repetition in general (Wikipedia, 2005). The “iterative method” describes a problem-solving
methodology in many fields, including computer science and mathematics. These iterative
methods share the description of techniques “that use successive approximations to obtain more

© 2005 Sprouts 5(4), pp 178-197, http://sprouts.case.edu/2005/050411.pdf 179

 Sprouts - http://sprouts.aisnet.org/5-23

BERENTE AND LYYTINEN/ITERATION IN SYSTEMS ANALYSIS AND DESIGN

accurate solutions … at each step” (Barrett, et al. 1994). The problem-solving system is said to
converge when a solution that satisfies the problem criteria is reached through iteration.

Although all of these uses bear a Wittgensteinian family resemblance (Blair 2005), the
fundamental aspect of iteration relates to a question of whether iteration is goal-driven or mere
repetition. Dowson illustrates the difference vividly when speaking of a choice between Sisyphus
and Heraclitus while modeling software processes:

The Greek mythic hero Sisyphus was condemned to repeatedly roll a rock up, a hill, never
to quite achieve his objective; the Greek philosopher Heraclitus maintained that "You can
never step in the same river twice". That is, do we see iteration as repetition of the same (or
similar) activities, or does iteration take us to somewhere quite new? (Dowson 1987, p.37)

Here we contend that simply equating iteration with mere repetition does not capture

what is the most salient aspect in its common usage. Use of the term “iteration” implies an
objective and the progression towards that objective, whereas repetition has no such implication.
Software development activity necessarily involves work towards closure, which is delivering a
product. Even if repeated activities bear a strong resemblance to each other, some learning within
an individual or progress in the development project can be reasonably assumed to take place as
steps or operations in the development process are carried out many times. Therefore, no formal,
single definition of the term “iteration” will be presented here. Rather, following the spirit of its
many uses, we assume that key ideas associated with iteration are: 1) looping operations or
repeated activities, and 2) a progression toward convergence or closure, that is, development and
implementation of an information system.

Systems analysis and design occurs within the minds of individual developers, among
developers, and between developers and other groups. Iterations take place both cognitively,
within the mind of a developer, and socially, across individuals. An object, or artifact, can also
be iterated as it evolves in discrete steps toward some notion of completion as recognized by the
rules of the genre which define its completeness. We contend that there are two fundamental
forms of iteration in the systems analysis and design process: (1) iterating cognitive processes
which take place in the minds of the developers, often through interactions with representations;
and (2) iterations over representational artifacts that are used by designers and other people
during the design. These include instantiations of the software code itself. To understand
cognitive iteration, it is important to explore how minds of designers work. This task is not
unproblematic due to the intangibility and non-observability of cognitive activity.
Representational artifacts, however, are tangible objects representing something about the
design, and can be identified, discussed, and tracked in a straightforward manner. Therefore, in
the following we will analyze theoretical views of cognitive iteration in design and then examine
how these cognitive processes are reflected in changes in representational artifacts.

Cognitive Iteration in Design

 From one angle all systems analysis and design depends on what goes on in the heads of
designers. It is a commonly held belief that this cognitive activity occurs in an iterative fashion,
where some form of mental looping operations take place to guide the design. A substantiation
of this simple observation, beyond a mere statement, demands that we open ourselves to the vast
cognitive science literature, as well as the wide array of treatments of cognitive phenomena in

© 2005 Sprouts 5(4), pp 178-197, http://sprouts.case.edu/2005/050411.pdf 180

 Sprouts - http://sprouts.aisnet.org/5-23

BERENTE AND LYYTINEN/ITERATION IN SYSTEMS ANALYSIS AND DESIGN

psychology, design, computer science, and information systems research – complete with
accompanying often rival epistemologies and ontological assumptions. Rather than attempting
to justify any distinct ontological stance in this essay, we will next broadly review what we
characterize as the “rationalistic” view of cognition. We also address an alternative tradition as
represented in some critiques of artificial intelligence and ethnographic analyses of design work.
We will then offer examples from these two traditions in their treatment of cognitive iteration in
software design. The goal of this section is thus to illustrate commons thread of iterative activity
that permeate all perspectives on software design, and then to highlight the importance of
representational artifacts in iteration from an individual designer’s standpoint.

Views of Designer’s Cognition
 The mainstream view of designer’s cognition falls squarely within what computer
scientists refer to as the “symbol system hypothesis” of cognitive activity (Newell & Simon
1976). This hypothesis claims that cognitive activity is essentially comprised of “patterns and
processes, the latter being capable of producing, modifying, and destroying the former. The
most important property of these patterns is that they designate objects, processes, or other
patterns, and that, when they designate processes, they can be interpreted.” (Newell & Simon
1976, p. 125)

Two concepts that are associated with designer’s cognition in this view: abductive
reasoning (Peirce 1992) and mental models (Johnson-Laird 1980). The reasoning process of a
designer is described as abductive (retroductive) inference (a chain of operations), in contrast to
it being inductive or deductive inference, which are well known modes of inference in scientific
studies (Peirce 1992). Abduction generates a design hypothesis (a mapping between a problem
space and a solutions space), often a good guess by the designer in the face of an uncertain
situation, to a given problem and then works with this hypothesis until it is no longer deemed
practical – at which time another hypothesis is generated. Simon (1996) describes this form of
cognitive activity as nested “generate-test cycles” and argues that they are fundamental to design.
He conceives design as problem solving, where designers engage in a “heuristic search” of
design alternatives, and then choose (decide) a satisficing design to go forward. When the
alternative is shown not to be the proper course, a new cycle of heuristic search begins. During
the design process, designers engage in iterative learning about both the problem space and the
solution space (Simon 1996, Cross 1989).

Another critical aspect in viewing designer cognition is by enlisting the aid of mental
models that represent both the problem spaces and the solutions spaces and which show how
specific mental operations manipulate them and their connections during the design. “Mental
model” here becomes a generic term which is used to describe (meta) concepts that organize
representations of problems and solutions. This includes terms such as frames, schemas, causal
mental models, situational models, etc. (Brewer 1987). This notion was popularized by Johnson-
Laird (1980) to refer to cognitive representations that are constructed as required to assist human
cognition. Mental models are not images of problems or solutions, but can lead to such images.
Specific, localized mental models are expected to both draw from and contribute to a global
schema of “generic knowledge structures” within the individual that can later be leveraged to
form new “episodic” mental models during design (Brewer 1987).

These central ideas underpinning design cognition have been characterized to form the
essence of the “rationalistic tradition” of cognition. Yet alternatives exist to this approach, and
they criticize some of its fundamental assumptions, including critiques of artificial intelligence

© 2005 Sprouts 5(4), pp 178-197, http://sprouts.case.edu/2005/050411.pdf 181

 Sprouts - http://sprouts.aisnet.org/5-23

BERENTE AND LYYTINEN/ITERATION IN SYSTEMS ANALYSIS AND DESIGN

(Winograd & Flores 1986, Suchman 1987) and theories of cognition in social psychology
(Weick 1979, Bruner 1990; Hutchins 1995; etc.). Attempts at unifying the common thread of a
wide range of rationalistic theories are seen problematic, as they address issues such as
“meaning” in a simplistic and objective manner, though the meaning of meaning is more
nuanced and situated (Suchman 1994). In the rationalistic tradition “the machinery of the mind
has taken precedence in theory building, insofar as mental representations and logical operations
are taken as the wellspring for cognition” (Suchman 1994 p.188). A group of alternatives to this
tradition that are particularly salient to research on design cognition can be called the “situated
action” perspective, which exposes “the socially constructed nature of knowledge, meaning, and
designs… no objective representations of reality are possible; indeed, intelligence is not based
exclusively on manipulating representations” (Clancey, Smoliar, & Stefik 1994, p.170).

The situated action view does not focus exclusively within an individual’s mind. Rather,
it looks at the interactions between social and contextual phenomena within the ongoing activity
of a designer (Suchman 1987, Winograd & Flores 1986). An example of an iterative cognitive
activity in this tradition would be the idea of a hermeneutic circle of interpretation where the
individual leverages his “pre-understanding” to understand something within its context and
forms a new “pre-understanding” (Winograd & Flores 1986). Each hermeneutic circle can be
considered a single cognitive iteration.

Although mainstream management and design research generally aligns with the
rationalistic tradition, there is an increasing amount of research that emphasizes interpersonal
negotiation and dialog as key to the design process (Bucciarelli 1994; Clark & Fujimoto 1991).
In this view the idea of cognitive iteration is not the neat, temporally-ordered and fully-formed
hypothesis or mental model of a design within an individual. Rather, it is a messy, partially-
formed object of dialogue that is created in negotiation and laden with meaning and interests and
evolves through hermeneutic cycles of dialogue. In the situated action view, the notion of a
discrete cognitive iteration thus loses its vividness.

To summarize cognitive design iterations, we must first be aware of the assumptions of
each of the two traditions, as each tradition offers a different view of iteration. The rationalistic
tradition will assume fully-formed and well organized mental models or hypotheses during
design, whereas the situated action perspective will assume iterative, partial understandings of
the design as realized in action and dialogue. Either way, both these cognitive iterations address
three aspects:

 (1) the design object;
 (2) the design process as a gradual movement of the “mental” object; and
 (3) the steps or stages within the design process.

Mainstream system design research typically assumes cognitive iteration in the form as

prescribed in the rationalistic tradition and seeks to map the mental operations into a set of
operations in the artifacts. Since the mid 1990s, however, there has been a growing amount of
research that draws upon the situated action perspective (Cockburn 2002; Bergman et al 2002;
Hazzan 2002; Boland & Tenkasi 1995; etc.). Next we review ways in which the information
systems literature has addressed cognitive iteration and its three aspects of design activity in
prescriptive and descriptive accounts of systems design activity.

© 2005 Sprouts 5(4), pp 178-197, http://sprouts.case.edu/2005/050411.pdf 182

 Sprouts - http://sprouts.aisnet.org/5-23

BERENTE AND LYYTINEN/ITERATION IN SYSTEMS ANALYSIS AND DESIGN

Cognitive Iterations within Design
Surprisingly, cognitive iterations have gone largely unaddressed in systems design

literature. Although the design literature draws upon the systems approach (Churchman 1968),
the mainstream systems design research rarely accounts for the iterating, dialectical cognitive
process inherent in design (Churchman 1971). In contrast, systems development literature has
focused mainly on the cognitive iterations associated with steps or stages in the design process;
less so with the design process itself, or cognitive iterations about the design. Table 1 offers
examples of each form of cognitive iteration as recognized in the literature. This is not an
exhaustive list. Rather, it is intended as an illustration.

Cognitive
Iterations

Description

Method

Source

Stages in the Design Process
Phase Iteration between definition, design & implementation processes Life cycle Davis 1975
Round Iterations of plans, prototypes, risk analyses together Spiral Model Boehm 1988
Iteration Inception, elaboration, construction and transition cycle Rational Kruchten 2000
Time-box Time period within which planned iteration of running, tested code eXtreme Programming Beck 2002
Design Process
Model Method engineering, method as model n/a Brinkkemper 1996
Maturity Formal assessment of the designer and design process maturity Capability maturity Humphrey 1989
Iteration Reflection on methodology, cycle between artifact & representation Soft Systems Checkland 1981
Design
Learning Iteratively learning about the problem and the design together n/a Alavi 1984
Object system Conceptualization of the anticipated socio-technical work-system n/a Lyytinen 1987
Hermeneutic Cycle of comparison between artifact, context and understanding Soft Systems Checkland 1981
Dialog Cycles of cooperation and conflict between developers and users ETHICS Mumford 2003

Table 1. Cognitive Iterations

Cognitive Iteration of Stages in the Design Process. In the system design tradition,
cognitive activity is implicitly assumed to coincide with formal stages of the design – the
moments at which a given aspect of the software crystallizes and is “frozen.” The most common
conceptual iteration observed in systems design is that of the step, stage, or phase of the design.
Stages are iterated when they are repeated during the design. Such iterations have traditionally
been considered inevitable, necessary evils in system development (Royce 1970, Davis 1974),
but are now more commonly thought to enhance the system quality across multiple dimensions
(Brooks 1995, Basili & Turner 1975, Boehm 1981, Floyd 1984, McCracken & Jackson 1982,
Keen & Scott Morton 1978, Cockburn 2002, Beck 2002, Larman & Basili 2003). Such stages
can be formal, such as the requirements determination phase which results in “frozen”
requirements (Davis 1982), or they can be fairly indeterminate, such as “time-boxed” steps
(Beck 2002; Auer, Meade, & Reeves, 2003; Beynon-Davies et al 1999). Stages and phases of
the process are prescribed by a methodology but are not directly related to the status of designs
or the code itself. Other terms for such repeating steps in the methodology are “rounds” (Boehm
1988) and “iterations” (Kruchten 2000; Larman 2004; Beck 2002). The rationalistic tradition
within system design tends to equate (at least implicitly) cognitive iterations of the design with
the formal procedural iterations.

© 2005 Sprouts 5(4), pp 178-197, http://sprouts.case.edu/2005/050411.pdf 183

 Sprouts - http://sprouts.aisnet.org/5-23

BERENTE AND LYYTINEN/ITERATION IN SYSTEMS ANALYSIS AND DESIGN

Cognitive Iteration about the Design. Cognitive iterations associated with the design
process are not necessarily limited to those within the process, but can also relate to the
designer’s conception about the process. For example, using the idea of a method as a formal
model, iteration is recognized in the method engineering literature (Brinkkemper 1996; Rossi et
al 2005; Tolvanen & Lyytinen 1993). Formal methodologies cannot specify all that tasks to be
completed during design, as problems change, so designers must reflect on their actions in order
to be successful (Checkland 1981). Through this reflection, designers learn and continuously
expand their practices (Rossi et al 2005). As practices evolve and designers learn by iterating
over their cognitive models of the method, they capture the rationale for method-related
iterations which reduces design errors and facilitates the evolution of methods and associated
mental models (Rossi et al 2005).

Cognitive Iteration of the Design. The situated action tradition frequently ventures

beyond stages and models of the process and draws attention to other forms of cognitive iteration
inherent in design. For example, systems design has been likened to a hermeneutic circle
(Boland & Day 1989), where a designer iteratively compares an artifact with its context to
understand its meaning. Checkland (1981) recommends specific representations, such as rich
pictures and holons, to guide a system developer in iterative cognitive, or hermeneutic, cycles
between the representations, personal judgments, and understandings of reality that progressively
refine his underlying conception. To understand a given process, the analyst iterates cognitively
between perceptions of the social world external to him, his internal ideas, various
representations, and the methodology of the analysis (Checkland and Scholes 1999).

Researchers have also likened forms of system development to dialectic cycles
(Churchman 1971). Such cycles are evident in participatory approaches to design that encourage
dialogs between system developers and the user community (Floyd 1989, Mumford 2003).
These dialogs result in a series of explicit agreements concerning system functionality, the
anticipated environment, or appropriate methodologies (Mumford 2003). They typically involve
iterations of cooperation and conflict that are intended to improve user-related outcomes such as
user satisfaction or system use.

Other approaches consistent with the situated action perspective offer radically
alternative cognitive iterations. For example, the PIOCO methodology (Iivari & Koskela 1987)
goes beyond sequential stages in a process and requires iterative problem solving within levels of
abstraction. Rather than freezing portions of the design into predetermined linear phases,
development following a non-linear iterative (recursive) activity is explicitly allowed throughout
the design. The design can be frozen, however, at specific levels of abstraction before tackling
subsequent levels of abstraction.

In all of these examples, the cognitive iteration does not stand on its own, but is
intimately involved with the designer’s interaction with the representational artifact, social
context, or managerial environment. Cognitive iterations are not discrete, fully-formed views of
the information system and its design, but rather, incomplete perspectives about the design and
the design process can therefore be seen to instantiate representations of the system on three
levels: technical (computer system, such as code), symbolic (data & inferences, such as data
models), and the organizational level (tasks supported, such as anticipated socio-technical work
scenarios) (Lyytinen 1987; Iivari & Koskela 1987).

Little empirical research has been conducted about developer’s cognition (Curtis,
Krasner, & Iscoe 1988; Jeffries et al 1981; Boland & Day 1989). Most observe cognitive

© 2005 Sprouts 5(4), pp 178-197, http://sprouts.case.edu/2005/050411.pdf 184

 Sprouts - http://sprouts.aisnet.org/5-23

BERENTE AND LYYTINEN/ITERATION IN SYSTEMS ANALYSIS AND DESIGN

challenges related to design that demand iteration, but do not test iterative versus non-iterative
cognitive practices. Exceptions do exist, however. For example, an early study compared
traditional unidirectional flow of problem information from user to developer during
requirements definition with a more iterative dialogue, where both the user and developer
prepared their suggestions and offered feedback. The iterative method generated greater mutual
understanding, better system design quality, and enhanced system implementability (Boland
1978). In another study, researchers found that novice developers benefited from sequential
processes in database design, whereas expert developers leveraged on iterative behaviors to
improve design outcomes (Prietula & March 1991).

Iterations over Representational Artifacts

 Whatever the content of a designer’s cognitive activity, it integrates representations as
tools by which designers extend their cognition (Simon 1996; Bucciarelli 1994; Hutchins 1995).
A representation is a “way in which a human thought process can be amplified” (Churchman
1968, p.61). Designers represent their designs, the design process, and other associated
information using symbolic and physical artifacts. In the making of these artifacts, in
manipulating and navigating them, and in reflecting on artifacts, design ideas crystallize and
change, and new ideas emerge. Representational artifacts can take the form of documentation
such as models or requirements, or the software code itself. Table 2 describes a number of
iterating representational artifacts described in the literature, and is intended to offer an
illustration of the wide range of representational iterations that are prescribed by different
methodologies – not an exhaustive list.

Artifact Description Method Source
Iterating Document Examples
Requirements Specify project purpose and customer needs Waterfall Royce 1970
Project Control List Tasks that the system is expected to achieve Iterative enhancement Basili & Turner 1975
Data Model Model to support inferences from anticipated use n/a Hirshheim et al 1995
Agreeements Written contracts between users and developers ETHICS Mumford 2003
Risk Analysis Simplify documentation to crucial requirments/specs Spiral Model Boehm 1988
Process Assessment Annual analysis of process & team to gage maturity, etc. Capability maturity Humphrey 1989
Iteration Plan Plan for four nested Rational process phases Rational Kruchten 2000
Inter-Team Specs Specifications of interface between object-oriented teams Crystal Orange Cockburn 1998
Iterating Software Code Examples
Pilot First version of the code that is "thrown away" Waterfall Royce 1970
Version Output of a development process, to be followed by another Life-cycle Davis 1974
Refinement Step-by-step elaboration on initial blunt "complete" code Stepwise refinement Wirth 1971
Enhancement subset of the final code is developed to evolve into final Iterative enhancement Basili & Turner 1975
Prototype Exploratory, experimental, and evolutionary types n/a Floyd 1984
Refactored Code Iteration of entire code made to work on a daily basis eXtreme Programming Beck 2000

Table 2. Iterating Representational Artifacts

To appreciate the nature and role of representational artifacts in systems design, it is

important to view an information system as a dynamic entity (Orlikowski & Iacono 2001).

© 2005 Sprouts 5(4), pp 178-197, http://sprouts.case.edu/2005/050411.pdf 185

 Sprouts - http://sprouts.aisnet.org/5-23

BERENTE AND LYYTINEN/ITERATION IN SYSTEMS ANALYSIS AND DESIGN

Systems evolve, get revised, and behave differently in unique contexts. We assert that there is
no single entity that is the system in a development process rather the system is a shared
ambiguous concept about a slice of reality that can only be more or less accurately approximated
through representations (Lyytinen 1987). Early in the design process, the information system
may be little more than an idea invented by a handful of people whose only tangible artifact is a
vague requirements memo. Later in the process the information system may be represented by
lines of incomplete code, dozens of use cases, and a great number of varying rationales of the
system’s utility. Yet throughout the process, individuals often discuss the information system as
if it were a single, discrete entity, although all individuals only have partial views (Turner 1987)
of this boundary object.

In the following sections we will discuss how representational artifacts iterate and are
iterated that are regarded pivotal in the information systems development and software
engineering literature: the documents associated with the design and the software code. Then
we will address the idea of “iterative development” as reflected in specific ways in which
artifacts are iterated as well as recognized empirical impacts of “iterative development” on
design outcomes.

Iterating Documents
 Early representations of the system during the design center on requirements definitions
associated system specifications. Over the course of the design these representations change
regularly, and often evolve into other representations, such as “as built” software documentation.
Because of this need for connecting with downstream documentation like code, no software
development methodology can overlook iteration across documents entirely, although some,
such as XP (Beck 2002), want to remove documentation from the critical path of system
development.

Traditional system development life-cycle and “heavy-weight” methodologies are
popularly thought to focus on documentation and its iterations downstream, and they thus
encourage “freezing” such documentation upstream in order to move on to the next step in the
design. This popular conceptualization is not, in fact, the case, as every major methodology
allows for iteration of such documents at least to some extent (Boehm 1981, 1988; Kruchten
2000; Humphrey 1989).

The waterfall model (Royce 1970) is the most well known life-cycle methodology and is
often characterized as top-down, unidirectional, and non-iterative. Contrary to this claim, even
in its earliest manifestation Royce suggested that unwanted changes and following iterations are
inevitable, and he recommended a number of practices to address such problems, including
piloting any sizable software project with a “preliminary program design” (Royce 1970, p.331).
This concept was later popularized by Brooks when he stressed to “plan to throw one away; you
will, anyhow” (Brooks 1995, p.116). Royce also suggested iterative maintenance of design
documentation. He understood that requirements change as the developer learns from the
design, and therefore the requirements should evolve through a series of at least five documents
to the final documentation of the design “as built.” Updates to design documentation occur for
two primary reasons: to guide, or to track development.

The extant literature addresses various forms of iteration related to upstream system
representations – some to a great degree, such as requirements determinations (Davis 1982), data
models (Hirschheim et al 1995), and the wide array of documentation within formal
methodologies (Humphrey 1989; Kruchten 2000; Boehm 1981, 1988; Davis 1974; Mumford

© 2005 Sprouts 5(4), pp 178-197, http://sprouts.case.edu/2005/050411.pdf 186

 Sprouts - http://sprouts.aisnet.org/5-23

BERENTE AND LYYTINEN/ITERATION IN SYSTEMS ANALYSIS AND DESIGN

2003; etc.). Although most of the literature addresses changing documents throughout the
design, the value of these changes is not elaborated beyond guiding and tracking. Even more
nuanced views of documentation that treat its creation as problematic, and argue its content to be
flawed (i.e. Parnas & Clements 1986), have made no distinction between the value and cost of
iterations across different representations. There are some exceptions to this, however. For
example, the “Inquiry Cycle Model” (Potts, Takahashi, & Anton 1994) describes iterative
requirements refinement where stakeholders define, challenge and change requirements. Using
requirement goals to drive such practice is expected to be efficient, since many goals can be
eliminated, refined, or consolidated before entering the design step (Anton 1996).

Iterating Software Code

The code evolves through multiple instantiations in many development approaches
including “throw-away” prototypes (Baskerville & Stage 1996), prototypes that evolve into a
final system, or maintenance of different versions of a system. The common usage of “iterative
development” refers normally to software design that proceeds through “self-contained mini-
projects” where each produces partially completed software (Larman 2004). This has
traditionally been referred to as evolutionary prototyping (Floyd 1984, Beynon-Davies et al
1999, Alavi 1984). Such iterative development practices emerged soon after waterfall was made
the “orthodox” model. The idea of “stepwise refinement” involved a blunt, top-down design of
the main system, then a phased decomposition and modular improvement of the code – largely to
increase system performance (Wirth 1971). Stepwise refinement was criticized for requiring
“the problem and solution to be well understood,” and not taking into consideration that “design
flaws often do not show up until the implementation is well underway so that correcting the
problems can require major effort” (Basili & Turner 1975, p.390). To address these issues,
Basili and Turner recommended an “iterative enhancement” where designers start small and
simple, by coding a “skeletal sub-problem of the project.” Then developers incrementally add
functionality by iteratively extending and modifying the code, using a project control list as a
guide, until all items on the list have been addressed. Each iteration involves design,
implementation (coding & debugging), and analysis of the software.

This idea of iterative enhancement forms the foundation of evolutionary prototyping and
many recent agile methods. Agile methodologies are based on the assumption that design
communication is necessarily imperfect (Cockburn 2002), and that software design is a social
activity among developers and users. The most popular agile methodology - extreme
programming, or XP - promotes a variety of iterative development practices such as pair
programming (cognitive iteration during each design step through dialogue), test-first
development (generating test information that guides subsequent iteration), and refactoring
(iterating the artifact during each cycle) (Beck 2002). The structure of XP is almost identical to
the early evolutionary design, where limited functionality is first developed, and then
incrementally expanded. However, XP can take advantage of a number of tool innovations that
were not available for early software developers. Toolsets are now available that enable unit
testing, efficient refactoring, and immediate feedback, and object-oriented environments allow
for modular assembly of significant portions of system. Also, process innovations such as
testing-first, time-boxing, collocation, story cards, pair programming, shared single code base,
and daily deployment mitigate the communication problems found in earlier evolutionary
processes.

© 2005 Sprouts 5(4), pp 178-197, http://sprouts.case.edu/2005/050411.pdf 187

 Sprouts - http://sprouts.aisnet.org/5-23

BERENTE AND LYYTINEN/ITERATION IN SYSTEMS ANALYSIS AND DESIGN

The Promise of “Iterative Development”
The justification of evolutionary prototyping, or more commonly “iterative

development,” centers on trial and error learning about both the problem and solution during
design. Users and developers do not know what they need until they see something. Thus
generating prototypes (mock-ups) assists communication better than traditional abstract upstream
documentation and thereby supports mutual learning (Alavi 1984, Brooks 1995, Basili & Turner
1975, Boehm 1981, Floyd 1984, McCracken & Jackson 1982, Keen & Scott Morton 1978,
Cockburn 2002, Beck 2002, Larman & Basili 2003, etc.). In the following we will review some
of the anticipated outcomes associated with iterative development in the information systems
development and software engineering literature.

Anticipated benefits of evolutionary, or “iterative development” (or prototyping as
methodology) are many. By growing the design in such a matter, software can be developed
more quickly (Brooks 1987). Beyond speed, evolutionary development enables a “more realistic
validation of user requirements,” the surfacing of “second-order impacts,” and increased the
possibility of comparing several alternatives (Boehm 1981, p. 656). Prototyping demonstrates
technical feasibility, determines efficiency of part of the system, aids in design / specification
communication, and structures implementation decisions (Floyd 1984). Prototyping is thought
to mitigate requirements uncertainty (Davis 1982), aid in innovation and increase participation
(Hardgrave & Wilson 1999), reduce project risk (Matthiassen et al 1995; Boehm 1988; Lyytinen
et al. 1996), and lead to more successful outcomes (Larman & Basili 2003). Because developers
generate code rather than plan and document, they are expected to be more productive (Basili &
Turner 1975, Beck 2002, Larman 2004). Therefore projects using evolutionary prototyping can
be expected to cost less (Basili & Turner 1975, Larman & Basili 2003, Cockburn 2002, Beck
2002).

A problem often associated with strict evolutionary development, however, is the lack of
maintaining “iterative” plans for each prototype. Starting with a poor initial prototype could turn
users away; prototyping can contribute to a short-term, myopic focus, and “developing a
suboptimal system” can necessitate rework in later phases (Boehm 1981). Exhaustive design
documentation will still be required even if prototyping forms the primary process (Humphrey
1989). Also, the output of evolutionary development often resembles unmanageable “spaghetti
code” that is difficult to maintain and integrate. These are similar to the “code and fix” problems
that waterfall was originally intended to correct (Boehm 1988). Many problems associated with
evolutionary development include: “ad-hoc requirements management; ambiguous and imprecise
communication; brittle architectures; overwhelming complexity; undetected inconsistencies in
requirements, designs, and implementation; insufficient testing; subjective assessment of project
status; failure to attack risk; uncontrolled change propagation; insufficient automation”
(Kruchten 2000 ch.1).

Not surprisingly, many caution that evolutionary development practices are not suited to
every situation as the idea of continuous iteration makes some unrealistic assumptions.
Evolutionary methods assume that projects can be structured according to short-term iterations,
face-to-face interaction is always tenable and superior to formal upstream documentation, and
the cost of change remains constant over the project (Turk et al, 2005). Issues such as scaling,
criticality, and developer talent will often require hybrid methodologies – or some combination
of evolutionary prototypes with more formal methods (Cockburn 2002, Boehm 2002, Lindvall et
al 2003). Also, evolutionary development often demands complementary assets to succeed
(Boehm 1981, Beck 2002).

© 2005 Sprouts 5(4), pp 178-197, http://sprouts.case.edu/2005/050411.pdf 188

 Sprouts - http://sprouts.aisnet.org/5-23

BERENTE AND LYYTINEN/ITERATION IN SYSTEMS ANALYSIS AND DESIGN

Empirical Impacts of “Iterative Development”

Empirical research on “iterative development” is as scarce as the prescriptive research is
plentiful (Gordon & Biemen 1995; Lindvall et al 2002; Wynekoop & Russo 1997). The
empirical research that does exist has primarily focused on the effects of prototyping on project
success (Alavi 1984, Boehm et al 1984, etc.), while neglecting the impact and role of other
iterating representations in project outcomes. Nevertheless, in the following we assess the state
of empirical research on iterations over representational artifacts.

Promise of Iterative Development Source Supported? Conclusion Source

1. Supports mutual learning
between users and developers

 Yes

learning about the problem &
solution; addresses requirements
uncertainty; more realistic
validation of requirements;
demonstrates technical feasibility

Alavi 1984, Brooks 1995, Basili &
Turner 1975, Boehm 1981, Floyd
1984, McCracken & Jackson
1982, Keen & Scott Morton 1978,
Cockburn 2002, Beck 2002,
Larman & Basili 2003, Davis 1982

 learn about
requirements;
support
communication &
problem solving

Naumann & Jenkins 1982;
Alavi 1984; Boehm, Gray, &
Seewaldt 1984; Necco,
Gordon, Tsai 1987;
Mahmood 1987;
Deephouse et al 1996

2. Improves user-related
outcomes

 Yes

increase participation; more
successful system use

Hardgrave & Wilson 1999;
Larman & Basili 2003

 greater user
involvement;
better user
satisfaction; ease-
of-use; greater
system use

Naumann & Jenkins 1982;
Alavi 1984; Gordon &
Bieman 1993, 1995; Necco
et al 1987; Boehm et al
1984; Mahmood 1987

3. Improves design process Yes
software developed more quickly;
designers more productive; projects
cost less; reduce risk

Brooks 1987; Basili & Turner
1975, Beck 2002, Larman 2004;
Larman & Basili 2003, Cockburn
2002; Matthiassen et al 1995,
Boehm 1988, Lyytinen et al 1996

 shorten lead times
for projects and/or
less effort;
designer
satisfaction

Naumann & Jenkins 1982;
Boehm, Gray, & Seewaldt
1984; Necco, Gordon, Tsai
1987; Gordon & Bieman
1995; Subramanian &
Zarnich 1996; Baskerville &
Pries-Heje 2004; Mahmood
1987

4. Improves design outcomes Mixed
better code with more successful
outcomes; results in code that is
easily modified / maintained;
increased innovativeness

Larman & Basili 2003; Basili &
Turner 1975; Hardgrave & Wilson
1999

supported positively related
to higher system
performance;
more maintainable
code

Alavi 1984, Larman 2004;
Boehm, Gray, & Seewaldt
1984; Gordon & Bieman
1993

 not
supported

less functional
systems, with
potentially less
coherent designs;
"negotiable”
quality
requirements

Boehm et al 1984;
Baskerville & Pries-Heje
2004

5. Requires complementary
practices

 Yes

requires complementary assets /
practices; or more formal structure

Boehm 1981; Beck 2002;
Cockburn 2002, Boehm 2002,
Lindvall et al 2003

 prototyping must
be combined with
other factors, such
as tools,
standards,
expertise, etc.

Naumann & Jenkins 1982;
Alavi 1984; Baskerville &
Pries-Heje 2004; Gordon &
Bieman 1995; Beynon-
Davies et al 2000; Lichter et
al 1993

Table 3. Testing the Promise of "Iterative Development"

Representational artifacts include the documents, data models, and other physical
representations of the software, including artifacts such as user-interface mock-ups and “throw-

© 2005 Sprouts 5(4), pp 178-197, http://sprouts.case.edu/2005/050411.pdf 189

 Sprouts - http://sprouts.aisnet.org/5-23

BERENTE AND LYYTINEN/ITERATION IN SYSTEMS ANALYSIS AND DESIGN

away” prototypes. These representations are addressed quite extensively in the prescriptive
literature, but the iteration of these representations, and the effect those iterations have on design
outcomes is notably absent. The primary exception to this is the research on “throw-away”
prototypes. Although many researchers distinguish between prototypes that occur at different
stages of the design cycle, and are used for different purposes (Floyd 1984; Janson & Smith
1985; Beynon-Davies et al 1999), the empirical literature does not typically highlight a
distinction between these types of prototypes and their outcomes, and when there is a distinction,
there is no significant difference in the outcomes (Gordon & Biemen 1995, 1993).

As indicated earlier, the notion most commonly associated with “iterative development”
is evolutionary prototyping, and this will be the focus of our review. Table 3 summarizes the
expected impacts of evolutionary prototyping, and broadly compares them to empirical findings.
It is important to note that a good number of researchers have found empirical evidence to be
inconclusive on many accounts, and this data is not reported in our review. Also, many
expectations highlight the drawbacks of the evolutionary method, but these criticisms tend to
focus on design outcomes and they are addressed in the fourth item of our review.

The fundamental reason Basili & Turner advocated iterative enhancement is that
problems and solutions are not well understood at the outset of a project, and even if they were
“it is difficult to achieve a good design for a new system on a first try” (1975 p.390). Subsequent
empirical research found prototyping to be an excellent method for users and developers together
to learn about the requirements (Naumann & Jenkins 1982; Alavi 1984; Boehm, Gray, &
Seewaldt 1984; Necco, Gordon, Tsai 1987). Prototyping has been found to support
communication and problem solving between users and developers (Mahmood 1987; Deephouse
et al 1996), and led to greater user involvement (Naumann & Jenkins 1982; Alavi 1984; Gordon
& Bieman 1995). Improved user participation is often credited with better user satisfaction
(Naumann & Jenkins 1982; Necco, Gordon, Tsai 1987), designer satisfaction (Mahmood 1987),
ease of use (Gordon & Bieman 1993; Boehm, et al 1984), and greater use of the system (Alavi
1984; Mahmood 1987). Research on the effects of prototyping on system performance is
generally mixed (Gordon & Bieman 1993). Some found prototyping to be positively related to
higher system performance (Alavi 1984, Larman 2004), but others found that prototyping might
create less robust, less functional systems, with potentially less coherent designs (Boehm et al
1984), and may call for “negotiable” quality requirements (Baskerville & Pries-Heje 2004).

While they advocate iterative enhancement, Basili & Turner (1975) indicate that software
created through modular evolutionary prototypes can require less “time and effort” than
traditional methods, and the “development of a final product which is easily modified is a by-
product of the iterative way in which the product is developed” (1975, p.395). A large number
of subsequent studies indicate that prototyping can shorten lead times for projects and/or less
effort, typically measured by fewer man-hours (Naumann & Jenkins 1982; Boehm, Gray, &
Seewaldt 1984; Necco, Gordon, Tsai 1987; Gordon & Bieman 1995; Subramanian & Zarnich
1996; Baskerville & Pries-Heje 2004). A number of studies also support the assertion that
modular evolutionary prototyping results in more maintainable code (Boehm, Gray, & Seewaldt
1984; Gordon & Bieman 1993).

In most empirical studies, iteration is treated as an independent variable that affects
outcomes. Moderators are often introduced, but not in a systematic manner. For example,
prototyping must be combined with other factors such as powerful development tools (Naumann
& Jenkins 1982; Alavi 1984), a standardized architecture (Baskerville & Pries-Heje 2004),
greater developer expertise (Gordon & Bieman 1995), a complementary culture (Lindvall et al

© 2005 Sprouts 5(4), pp 178-197, http://sprouts.case.edu/2005/050411.pdf 190

 Sprouts - http://sprouts.aisnet.org/5-23

BERENTE AND LYYTINEN/ITERATION IN SYSTEMS ANALYSIS AND DESIGN

2002; Beynon-Davies et al 2000), and “low technology” artifacts and processes for scheduling
and monitoring (Beynon-Davies, Mackay, & Tudhope 2000). Also, if users are not involved,
prototype-based project outcomes can suffer (Lichter et al 1994). Prototyping can also bee seen
as a dependent variable. For example, researchers found that prototyping may pose challenges
for management and planning (Alavi 1984; Boehm et al 1984; Mahmood 1987).

In recent years there has been a dearth of rigorous research on the effects of prototyping
on system development. Most of the empirical literature on the impacts of agile methods is
anecdotal (Lindvall, et al 2002). Although studies in the past have typically compared prototype-
based processes to specification or plan-based processes, current empirical research will likely
assess varying combinations of iterative and specification-based processes (eg Matthiassen et al
1995), or compare variations in agile practices (what types of iterations and by whom counts).
When pursuing either of these research avenues, it would make sense to adopt a more granular
and refined view of iteration and also define the dependent outcome variables more carefully.

Discussion

“Iterative development” has been both advocated and contested as a fundamental systems

analysis and design principle. Yet it has remained a fundamental building block to most modern
design methodologies. In this essay, we have consistently kept the term in quotes because
literally all systems development is iterative. Both cognitive and consequently representational
iterations are fundamental to every design practice. This begs the question, what is the
difference, then, between “iterative” practices of today, and the “non-iterative” traditional
practices? The answer is not the presence of iteration, as both types exhibit iteration in
abundance.

One explanation of the difference can be the way in which the two types of methodology
approach iteration. Both modern and traditional practices focus on iteration as reactive fixes or
improvements based on new information or uncovered problems. Modern methods, however,
tend to anticipate the need for and inevitability of new information, and proactively seek it. The
difference thus is not the presence of iteration, but, rather, the timing and visibility. With earlier
visibility of iteration needs, designers are inviting user input and thus relinquishing a certain
amount of control over iterations. Because this visibility is staged earlier, its granularity with
regard to foundational details and assumptions of the system development is also greater.
Fundamentally “iterative development” is not necessarily more iterative. But it is likely to be
more open, and the control over iterations is shared and at a much more detailed level.

Consider the code as an iterating artifact, for example. All application software iterates
over its life even if its design methodology is the life-cycle model (SDLC; Davis 1974). Each
version of a software system can be considered an iteration. As bugs are fixed or enhancements
added to code – even if consistent with the linear life-cycle method - any new instantiation of
code can be considered an iteration. When all or some portions of the code are compiled, the
result is an iteration of compiled code. Anytime a designer replaces or adds to any part of
working code, he has iterated over that code.

In the traditional life-cycle method, however, the user is not highly involved beyond
listing requirements. Management is not aware of each iteration, they only see the code that is
presented at key milestones. The bricolage of everyday work-arounds, failures, changes, etc., is
often neatly hidden from everyone except the designer himself – as are micro-level assumptions

© 2005 Sprouts 5(4), pp 178-197, http://sprouts.case.edu/2005/050411.pdf 191

 Sprouts - http://sprouts.aisnet.org/5-23

BERENTE AND LYYTINEN/ITERATION IN SYSTEMS ANALYSIS AND DESIGN

and decisions that can have disproportionately large impacts on path dependent future designs.
As systems development became more “iterative,” the veil hiding this practice has been
progressively lifted. Prototyping invited other developers, users, and managers into discussions
at a more granular level of detail sooner during development. When participating in this activity,
those parties adopted more detailed control over the process. Risk analysis (Boehm 1988) that
focuses on system risk and mitigation (rather than over-detailed requirements that draw no real
distinction of risks), exposes the key requirements of design to scrutiny outside of developers.
Pair programming (Beck 2002) opens on-going moment-by-moment deliberations of an
individual developer to observation and demands a dialog with a fellow developer. This
observation indicates that the key contingency for distinguishing iterations between development
practices is not whether one engages in evolutionary prototyping or not. Observations such as
the following indicate that a focus on iteration as such may be misplaced:

• user involvement is a more important determinant of project outcomes than presence

of iterative development (Lichter et al 1994);
• the success of any development, iterative or not, depends more on developer

experience than anything else (Boehm 2002);
• for iterative development to succeed, the complementary practices such as co-

location, pair programming, etc., are essential (Beck 2002).

Therefore, it is not the presence of iteration that primarily determines the outcomes of

systems analysis and design activity. Rather, it is the activities that specific iterations enable or
constrain. The black box of iteration should be opened to understand structures and affordances
of certain prescribed iterations and complementary processes, and their effect on design process
and its outcomes. Rather than asking whether an organization should adopt iterative
development, it is more salient for organizations to ask what level of granularity, visibility, and
control over iteration are appropriate at different times and for different purposes of the design.

Conclusion

The contribution of this essay is to illustrate the multi-dimensionality of iteration.

Iteration is often characterized in the literature as an unproblematic concept - either a
development process is iterative or it is not. We have shown that this emasculated concept is too
simplistic, as all development practices contain significant levels of iteration. Also, we identified
two fundamental dimensions of iteration: cognitive and representational. Cognitive processes of
developers and others involved in the design are necessarily iterative, but this can mean different
things depending on whether the rationalistic tradition or the situated action perspective of
human cognition is adopted. Also, cognitive iterations often involve iterative engagement with
representations acting as both extensions to cognition and mediation between individuals.

In systems analysis and design literature, cognitive iterations are addressed (usually
implicitly) through the iterative treatment of representational artifacts. The perspectives and
meanings that designers ascribe to artifacts are rarely addressed. Instead the technical artifact
itself is the central concern. Typically, the actual cognitive practices within development are not
addressed, but rather the formal steps and stages of the methodology as reflected in
representational outcomes are treated at length. Genres of representations are typically

© 2005 Sprouts 5(4), pp 178-197, http://sprouts.case.edu/2005/050411.pdf 192

 Sprouts - http://sprouts.aisnet.org/5-23

BERENTE AND LYYTINEN/ITERATION IN SYSTEMS ANALYSIS AND DESIGN

advocated and designed to enable communication and human interaction at specific steps and
junction points and such artifacts are expected to change iteratively. This communication is not
always seen as unproblematic, but seldom is the nature of these representations addressed in how
they support the cognitive activities of design groups or their iterations.

We identify two primary forms of representation: the documents associated with the
analysis and design; and the software code itself. Although there are many representational
artifacts for both types which are prescribed by advocates of particular methodologies, the
empirical literature is limited to the examination of iterations over the software code as
evolutionary prototyping and its impacts. Recent “iterative development” identifies entirely with
the centrality of iterations being associated with the code.

We have indicated that the essential difference between what is widely considered as
“iterative development” and traditional software development is the audience for the iteration.
Iterative development creates iterations specifically for visibility to some portion of the
managerial and user community earlier in the process, and at a more granular level. With such
activity, developers are also relinquishing a degree of control. Because of the dual nature of
software code – acting as a representational artifact of the system as well as a fundamental
physical structure within the task system – analysis of iterations solely on the basis of the
presence of evolutionary prototyping appears problematic. The iterative processes by which key
concerns arise throughout the development process are essential to understanding success. These
processes can be facilitated by evolutionary prototyping, but also by the creative use of other
representational artifacts, generative language and dialogue, or other collaborative mechanisms.
Also, all prototypes are generally characterized as equal. Opening the black box of “iterations”
over code and other representational artifacts is essential to understanding better outcomes
associated with different design practices.

References
Alavi, M., (1984) “An Assessment of the Prototyping Approach to Information Systems

Development,” Communications of the ACM 27(6) 1984
Anton, AI (1996) “Goal-Based Requirements Analysis,” Proceedings of ICRE ‘96
Auer, Ken; Meade, Erik; and Reeves, Gareth; (2003) “The Rules of the Game,” in Maurer,

Frank, & Wells, Don, eds, Extreme Programming and Agile Methods – XP/Agile
Universe 2002, Lecture Notes in Computer Science 2753, August 2003

Barrett, Barry, Chan, Demmel, Donato, et al. (1994) Templates for the Solution of Linear
Systems - Building Blocks for Iterative Methods SIAM 1994,
http://www.netlib.org/templates/Templates.html

Basili & Turner, (1975) "Iterative Enhancement: A Practical Technique for Software
Development". IEEE Transactions on Software Engineering. v.~SE-1, n.~4, December
1975, pp.390--396.

Baskerville, RL; Stage, J; (1996) “Controlling prototype development through risk analysis,”
MIS Quarterly, 1996

Baskerville, R; Pries-Heje, J; (2004) “Short cycle time systems development,” Information
Systems Journal, 2004

Beck, K. (2002). Extreme Programming Explained: Embrace Change. Addison-Wesley.

© 2005 Sprouts 5(4), pp 178-197, http://sprouts.case.edu/2005/050411.pdf 193

 Sprouts - http://sprouts.aisnet.org/5-23

BERENTE AND LYYTINEN/ITERATION IN SYSTEMS ANALYSIS AND DESIGN

Bergman, M., King, J.L., and Lyytinen, K. (2002) “Large Scale Requirements Analysis as
Heterogeneous Engineering”, Scandinavian Journal of Information Systems, vol. 14, no.
1, pp. 37-55.

Beynon-Davies, P., D. Tudhope, Mackay. (1999) “Information Systems Prototyping in Practice,”
Journal of Information Technology. 14(1), 107-120.

Beynon-Davies, P., C. Carne, et al. (1999). “Rapid Application Development: an empirical
review,” European Journal of Information Systems. 8(2), 211-223.

Beynon-Davies, P., Mackay, H., Tudhope, D. (2000) “‘It’s lots of bits of paper and ticks and
post-it notes and things…’: A Case Study of a Rapid Application Development Project,”
Journal of Information Systems. 10(3). 195-216.

Blair, D.C., (2005) Wittgenstein, Language, and Information: Back to the Rough Ground,
Springer, December 2005.

Boehm, B., (1981) Software Engineering Economics Prentice-Hall.
Boehm,B; Gray, TE; Seewaldt, T; (1984) “Prototyping vs. Specification: A MultiProject

Experiment,” IEEE Transactions on Software Engineering, 1984.
Boehm, B, (1988) “The Spiral Model of Software Development and Enhancement,” Computer

21(5), May 1988
Boehm, B, (2002) “Get Ready for Agile Methods, with Care,” IEEE Computer, January 2002
Boland, RJ (1978) “The Process and Product of System Design,” Management Science, 24(9)

May 1978
Boland, RJ; Day, WF; (1989) “The experience of system design: a hermeneutic of organizational

action,” Scandinavian Journal of Management, 1989
Boland, RJ; & Tenkasi, RV; (1995) “Perspective Making and Perspective Taking in

Communities of Knowing,” Organization Science 5(4) July-August 1995
Brewer, W. (1987) “Schemas Versus Mental Models in Human Memory,” In Morris, I.P.,

Modeling Cognition, John Wiley and Sons, 1987.
Brinkkemper, S, (1996) “Method engineering: Engineering of information systems development

methods and tools,” Information and Software Technology, 1996
Brooks, Frederick P. Jr. (1987) “No Silver Bullet: Essence and Accidents of Software

Engineering,” IEEE Computer, April 1987.
Brooks, Frederick, The Mythical Man Month: Essays on Software Engineering, Addison-Wesley

Publishing Company, Anniversary Edition 1995
Bruner, J., (1990) Acts of Meaning, Harvard University Press, 1990.
Bucciarelli, L.L. (1994) Designing Engineers, The MIT Press, 1994.
Checkland, P. (1981). Systems Thinking, Systems Practice, John Wiley & Sons 1981
Checkland, P. & Scholes, J. (1999) Soft Systems Methodology in Action. John Wiley.
Churchman (1968), The Systems Approach, Dell Publishing Co., 1968
Churchman (1971), The Design of Inquiring Systems, 1971, Basic Books, Inc.
Clancey, W.J.; Smoliar, S.W.; & Stefik, M.J. (1994) Contemplating Minds: A Forum for

Artificial Intelligence, The MIT Press, 1994.
Clark & Fujimoto (1991) Product Development Performance : strategy, organization, and

management in the world auto industry, Harvard Business School Press 1991
Cockburn, A. (1998) Surviving Object-Oriented Projects, Addison-Wesley.
Cockburn, A. (2002) Agile Software Development, Addison-Wesley.
Cross, Nigel, (1989) Engineering Design Methods, John Wiley & Sons.

© 2005 Sprouts 5(4), pp 178-197, http://sprouts.case.edu/2005/050411.pdf 194

 Sprouts - http://sprouts.aisnet.org/5-23

BERENTE AND LYYTINEN/ITERATION IN SYSTEMS ANALYSIS AND DESIGN

Curtis, B; Krasner, H; & Iscoe, N; (1988) “A field study of the software design process for large
systems,” Communications of the ACM, 1988

Davis, (1974) Management Information Systems: Conceptual Foundations, Structure, and
Development, McGraw Hill, 1974

Davis, GB; (1982) “Strategies for information requirements determination,” IBM Systems
Journal, 1982

Deephouse, C.; Mukhopadhyay, T.; Goldenson, D.; & Kellner, M. (1996) “Software Processes
and Project Performance.” Journal of Management Information Systems 12, 3 (Winter
1995-96), 187-205.

Dowson, M. (1987) “Iteration in the software process; review of the 3rd International Software
Process Workshop,” ICSE 1987, Proceedings of the 9th international conference on
Software Engineering, Monterey California 1986.

Floyd, C; (1984) “A Systematic Look at Prototyping,” in Budde et al Approaches to Prototyping,
Springer-Verlag 1984

Floyd, C; Mel, WM; Reisin, FM; Schmidt, G; Wolf, G; (1989) “Out of Scandanavia: Alternative
Approaches to Software Design and System Development,” Human-Computer
Interaction, Volume 4, p. 253-350.

Gordon, VS; Biemen, JM; (1993) “Reported effects of rapid prototyping on industrial software
quality,” Software Quality Journal, 1993

Gordon, VS; Biemen, JM; (1995) “Rapid Prototyping: Lessons Learned,” IEEE Software, 1995
Hardgrave, B; Wilson, R; Eastman, K; (1999) “Toward a contingency model for selecting an

information system prototyping strategy,” Journal of Management Information Systems,
1999

Hazzan, O., (2002) “The Reflective Practitioner Perspective in Software Engineering
Education,” The Journal of Systems and Software 63, 2002.

Hirschheim, Klein, Lyytinen (1995) Information Systems Development and Data Modeling:
Conceptual and Philosophical Foundations, Cambridge University Press 1995

Humphrey (1989) Managing the Software Process, Addison-Wesley.
Hutchins, E, (1995) Cognition in the Wild, MIT Press.
Iivari, J. & Koskela, E. (1987) “The PIOCO Model for Information Systems Design,” MIS

Quarterly, September 1987.
Janson & Smith (1985) “Prototyping for Systems Development: A Critical Appraisal,” MIS

Quarterly December 1985
Jeffries, R.; Turner, A.A.; Polson, P.G.; & Atwood, M.E.; (1981) The Processes Involved in

Designing Software, Lawrence Erlbaum Associates, 1981
Johnson-Laird, P.N. (1980) “Mental models in Cognitive Science,” Cognitive Science, Volume

4, p.71-115, 1980.
Keen & Scott Morton (1978) Decision Support Systems: An Organizational Perspective,

Addison Welsley Publishing Co 1978
Kruchten, P, (2000) The Rational Unified Process An Introduction, Second Edition, Addison-

Wesley-Longman.
Larman, C; (2004) Agile and Iterative Development, A Manager’s Guide, Pearson Education
Larman, C; Basili, V; (2003) “Iterative and incremental development: a brief history,” Computer,

2003

© 2005 Sprouts 5(4), pp 178-197, http://sprouts.case.edu/2005/050411.pdf 195

 Sprouts - http://sprouts.aisnet.org/5-23

BERENTE AND LYYTINEN/ITERATION IN SYSTEMS ANALYSIS AND DESIGN

Lichter, H.; Schneider-Hufschmidt, M.; & Sullighoven, H.; (1993) “Prototyping in Industrial
Software Projects – Bridging the Gap Between Theory and Practice,” IEEE Transactions
on Software Engineering, November 1994

Lindvall, M; Basili, V; Boehm, B; et al (2003) “Empirical Findings in Agile Methods,” in
Maurer, Frank, & Wells, Don, eds, Extreme Programming and Agile Methods – XP/Agile
Universe 2002, Lecture Notes in Computer Science 2753, August 2003

Lyytinen, K. (1987) “A Taxonomic Perspective of Information Systems Development:
Theoretical Constructs and Recommendations,” in Boland and Hirschheim, Critical
Issues in Information Systems Research, 1987 John Wiley & Sons Ltd.

Lyytinen,K; Mathiassen, L; Ropponen, J; (1998) “Attention Shaping and Software Risk-A
Categorical Analysis of Four Classical Risk Management Approaches,” Information
Systems Research, 9(3) March 1998

Mahmood, MA, (1987) “System development methods—a comparative investigation,” MIS
Quarterly, 11(3) 1987

Matthiassen, L; Seewaldt, T; Stage, J; (1995) “Prototyping and Specifying: Principles and
Practices of a Mixed Approach,” Scandanavian Journal of Information Systems, 1995,
7(1): 55-72.

McCracken, D.D., "A maverick approach to systems analysis and design", pp. 446-451, in
Cotterman, W.W, et al (ed.), Systems Analysis and Design. A foundation for the 1980's,
New York, North-Holland, 1981.

Mumford (2003) Redesigning Human Systems, Idea Group Inc. 2003
Nauman, J.D.;Jenkins, M. (1982) “Prototyping: The New Paradigm for Systems Development,”

MIS Quarterly, 6, 3, 29-44.
Necco,CR; Gordon, CL; Tsai, NW; (1987) “Systems analysis and design: current practices,”

MIS Quarterly, 1987 Newell & Simon 1976
Orlikowski, W; Iacono, S; (2001) “Desperately Seeking the .IT. in IT Research: A Call to

Theorizing the IT Artifact,” Information Systems Research (12:2), 2001, pp. 121-124.
Parnas & Clements “A Rational Design Process: How and why to fake it” IEEE Transactions on

Software Engineering, SE-12, 2 (Feb. 1986)
Peirce, C.S.; (1992) Reasoning and the Logic of Things, Harvard University Press.
Potts,C; Takahashi, K; & Anton, AI; (1994) “Inquiry-Based Requirements Analysis,” IEEE

Software, 1994
Prietula, M.J., & March, S.T., (1991) “Form and Substance in Physical Database Design: An

Empirical Study,” Information Systems Research 2:4 1991.
Rossi, M; Ramesh, B; Lyytinen, K; Tolvanen, JP; (2005) “Managing Evolutionary Method

Engineering by Method Rationale,” Journal of the AIS, 5(9), September, 2004.
Royce (1970) “Managing the Development of Large-Scale Software Systems,” Proceedings of

IEEE WESCON, pp 1-9, August 1970
Simon, Herbert (1996) The Sciences of the Artificial, third edition, 1996 The MIT Press
Subramanian GH, Zarnich GE (1996) “An examination of some software development effort and

productivity determinants in ICASE tool projects,” Journal of Management Information
Systems 1996; 12: 143-160

Suchman, Lucy A., (1987) Plans and Situated Actions: The Problem of Human-Machine
Communication, Cambridge University Press

© 2005 Sprouts 5(4), pp 178-197, http://sprouts.case.edu/2005/050411.pdf 196

 Sprouts - http://sprouts.aisnet.org/5-23

BERENTE AND LYYTINEN/ITERATION IN SYSTEMS ANALYSIS AND DESIGN

Suchman, Lucy A., (1994) Review of Winograd & Flores: Understanding Computers and
Cognition, in Clancey, W.J.; Smoliar, S.W.; & Stefik, M.J. (1994) Contemplating Minds:
A Forum for Artificial Intelligence, The MIT Press, 1994.

Tolvanen, JP; & Lyytinen, K.; (1993) “Flexible method adaptation in CASE. The Metamodeling
Approach,” Scandinavian Journal of Information Systems, 1993

Turk, D.; France, R.; & Rumpe, B..; (2005) “Assumptions Underlying Agile Software
Development Processes,” Journal of Database Management, 16(4), October-December
2005.

Turner, Jon (1987) “Understanding the Elements of System Design” in Boland and Hirschheim,
Critical Issues in Information Systems Research, 1987 John Wiley & Sons Ltd.

Weick, Karl, (1979) The Social Psychology of Organizing, McGraw-Hill, 1979
Wikipedia, 2005 http://en.wikipedia.org/wiki/Iteration
Winograd, T., & Flores, F. (1986) Understanding Computers and Cognition: A New Foundation

for Design, Ablex Publishing Corporation, 1986.
Wirth, Niklaus (1971) “Program development by stepwise refinement,” Communications of the

ACM, v.14 n.4, p.221-227, April 1971
Wynekoop, JL; & Russo, NL (1997) “Studying system development methodologies: an

examination of research methods,” Information Systems Journal, 7, 47-65.

© 2005 Sprouts 5(4), pp 178-197, http://sprouts.case.edu/2005/050411.pdf 197

 Sprouts - http://sprouts.aisnet.org/5-23

 Working Papers on Information Systems | ISSN 1535-6078

Editors:
Michel Avital, University of Amsterdam
Kevin Crowston, Syracuse University

Advisory Board:
Kalle Lyytinen, Case Western Reserve University
Roger Clarke, Australian National University
Sue Conger, University of Dallas
Marco De Marco, Universita’ Cattolica di Milano
Guy Fitzgerald, Brunel University
Rudy Hirschheim, Louisiana State University
Blake Ives, University of Houston
Sirkka Jarvenpaa, University of Texas at Austin
John King, University of Michigan
Rik Maes, University of Amsterdam
Dan Robey, Georgia State University
Frantz Rowe, University of Nantes
Detmar Straub, Georgia State University
Richard T. Watson, University of Georgia
Ron Weber, Monash University
Kwok Kee Wei, City University of Hong Kong

Sponsors:
Association for Information Systems (AIS)
AIM
itAIS
Addis Ababa University, Ethiopia
American University, USA
Case Western Reserve University, USA
City University of Hong Kong, China
Copenhagen Business School, Denmark
Hanken School of Economics, Finland
Helsinki School of Economics, Finland
Indiana University, USA
Katholieke Universiteit Leuven, Belgium
Lancaster University, UK
Leeds Metropolitan University, UK
National University of Ireland Galway, Ireland
New York University, USA
Pennsylvania State University, USA
Pepperdine University, USA
Syracuse University, USA
University of Amsterdam, Netherlands
University of Dallas, USA
University of Georgia, USA
University of Groningen, Netherlands
University of Limerick, Ireland
University of Oslo, Norway
University of San Francisco, USA
University of Washington, USA
Victoria University of Wellington, New Zealand
Viktoria Institute, Sweden

Editorial Board:
Margunn Aanestad, University of Oslo
Steven Alter, University of San Francisco
Egon Berghout, University of Groningen
Bo-Christer Bjork, Hanken School of Economics
Tony Bryant, Leeds Metropolitan University
Erran Carmel, American University
Kieran Conboy, National U. of Ireland Galway
Jan Damsgaard, Copenhagen Business School
Robert Davison, City University of Hong Kong
Guido Dedene, Katholieke Universiteit Leuven
Alan Dennis, Indiana University
Brian Fitzgerald, University of Limerick
Ole Hanseth, University of Oslo
Ola Henfridsson, Viktoria Institute
Sid Huff, Victoria University of Wellington
Ard Huizing, University of Amsterdam
Lucas Introna, Lancaster University
Panos Ipeirotis, New York University
Robert Mason, University of Washington
John Mooney, Pepperdine University
Steve Sawyer, Pennsylvania State University
Virpi Tuunainen, Helsinki School of Economics
Francesco Virili, Universita' degli Studi di Cassino

Managing Editor:
Bas Smit, University of Amsterdam

Office:
Sprouts
University of Amsterdam
Roetersstraat 11, Room E 2.74
1018 WB Amsterdam, Netherlands
Email: admin@sprouts.aisnet.org

	Association for Information Systems
	AIS Electronic Library (AISeL)
	4-10-2008

	Iteration in Systems Analysis and Design: Cognitive Processes and Representational Artifacts
	Nicholas Berente
	Kalle Lyytinen
	Recommended Citation

	htmldoc200.html

