Overlap-Driven Approach for the Conceptualization of Consistency Preserving Modeling Tools

Abstract

Inter-model consistency has gained a lot of interest in the area of business process modeling, where different sources of inconsistency exist. Variability modeling and multi-view modeling are two samples of these sources. In the lack of support in the conceptualization of consistency preserving modeling (CPM) tools, their development tends to be source-oriented. This paper introduces an overlap-driven approach for the conceptualization of such tools regardless of whether the inconsistency source is multi-view modeling or variability modeling. The approach is focused on how the type of overlap (what should be implemented in terms of consistency) can guide the design decisions (how it should be implemented and at which level it should be implemented). In this way, the approach fosters bridging the gap between methods engineers and tools developers. Applicability of the approach is illustrated by a case study, hereby defining the conceptualization of a CPM tool for an enterprise modeling method.

Keywords

Business process models, variants, views, overlap, consistency, conceptualization, modeling tools.

Introduction

A Business Process (BP) is a set of related activities performed to achieve a specific business outcome using the resources of an organization. It is common for contemporary organizations to manage multiple variants of the same BP (e.g., multiple sales processes tied to different products). The co-existence of these variants asks more and more for BP variability modeling. The latter refers to the representation of a family of BP variants so that redundancy can be avoided and improvements and automation efforts made on one variant can benefit other variants (Rosa et al., 2017). At the same time, the complexity of today's business processes makes it costly to develop and implement specialized software to properly support a modern enterprise. Such complexity requires multi-view modeling - a widely accepted approach for reducing the complexity of the system by decomposing its overarching model into views (i.e. sub-models).

Nevertheless, BP variability modeling and BP multi-view modeling do not come cost-free. Indeed, they are considered as sources of inconsistency (Awadid and Nurcan., 2017). The term inconsistency denotes any situation in which two specifications do not obey some relationship that is prescribed to hold between them, meaning that a logical contradiction can be derived from them (Nuseibeh et al., 2001). Because of the inherent need for variability modeling and multi-view modeling in contemporary organizations, preserving inter-model consistency is seen as vital for an efficient application of both approaches. Albeit authors like Finkelstein (2000) advocated the need for generic consistency preserving tools, existing tools have a narrow scope. Recent literature tends to argue that the conceptualization of generic consistency preserving modeling (CPM) tools has to be Context-Related Knowledge (CRK)- driven, where a CRK reverts to any information that helps in eliciting what is needed in terms of consistency (cf. Awadid and Nurcan, 2017). Conventional software development approaches lack in supporting these specific requirements of CPM tools conceptualization (Bork, 2015).
The aim of this paper is to fill that research gap by introducing an overlap-driven approach serving to guide method engineers and tools developers during the conceptualization of CPM tools. In this approach, the type of overlap is regarded as an instance of CRK. The approach builds on relevant literature from the fields of requirement engineering, cyber-physical systems and enterprise modeling.

The rest of the paper is structured as follows. First, the theoretical background for the definition of the approach is introduced. In the following section, the emphasis is put on the presentation of the approach. Afterwards, a case study from the enterprise modeling domain has been used to illustrate the application of the approach and to evaluate its utility. Finally, the paper is closed with a discussion of related work and a SWOT analysis.

Problem Statement and Background

Motivation

By inter-model consistency, we mean the absence of any contradiction between multiple models. This definition is in line with that given by Nuseibeh et al (2001). It has been argued that inter-model consistency is context-dependent. This means that consistency requirements depend heavily on the inconsistency source (viz., variability modeling and multi-view modeling) and hence on the type of overlap between the considered models. This idea is well illustrated by the statement of Spanoudakis and Finkelstein (1997): “The distinction among different types of overlap relations is important because not only may these have a different impact on the consistency status of two specifications but also because the resolution of inconsistencies might not be the same for these types of overlap”. Following this line of thought leads to two conclusions. First, the overlap type can be seen as a CRK. Second, the conceptualization of generic consistency preserving tools has to be overlap-driven.

Albeit there is a general agreement on the need for preserving consistency in the context of BP variability modeling as well as BP multi-view modeling, none of the existing tools is, to the best of our knowledge, "generic" in the sense that it preserves consistency regardless of whether the inconsistency source is multi-view modeling or variability modeling. The reason for this might be the lack of approaches supporting the conceptualization of generic tools. The solution proposed in this paper builds on one hand on two overlap taxonomies originating from requirement engineering and cyber-physical systems disciplines, and on the other hand on consistency patterns proposed in our previous work in the enterprise modeling field. We describe these taxonomies and patterns in the next two sub-sections.

Inter-Model Overlap

Referring to Spanoudakis and Finkelstein (1997), an overlap is defined in the requirement engineering field as "a relation between the interpretations of the components of two specifications”. The authors propose a taxonomy of four possible types of overlap between a pair of specification components. First, a total overlap if the sets of the objects they designate are the same. Second, partial overlap if their designated sets have both elements in common and non-common elements. Third, inclusive overlap if one of the designated sets is a proper subset of the other. Fourth, no overlap if their designated sets have no elements in common. Another taxonomy is given by Persson et al. (2013). The taxonomy is derived from the cyber-physical systems field and is shown in Figure 1.

![Figure 1. Taxonomy of Overlap Types (Persson et al., 2013)](image-url)
As illustrated in Figure 1, the taxonomy is based on the ground that two specifications may overlap syntactically and semantically. Consequently, the type of overlap is determined with reference to their syntax and semantics. The syntax is represented by a circle and the symbol 'M' referring to Modeling language (cf. Figure 1). While the semantics is depicted by a circle and the symbol 'S' referring to the Semantic meaning. The motivation for choosing these two taxonomies lies in two aspects. First, although they are associated with particular fields, these taxonomies seem to have a broad scope of applicability. Second, they are highly in line with each other, so that they can be connected in a coherent way.

Consistency Patterns

In a recent work (Awadid et al., 2018), we proposed generic consistency patterns in multi-view enterprise modeling. The patterns are based on the notion of "Overlapping Concept (OC)" referring to any information shared between two viewpoints (i.e., modeling languages). Concretely, each OC is defined in terms of two linked concepts (C and C'). Each concept, in its turn, is drawn in terms of four criteria: Syntax (Syn), Semantics (Sem), Notation (Not) and Cardinality (Card). Syntax refers to the syntactic elements affected by the overlap. A syntactic element can be either a modelling class, a relation class, or an attribute that depicts a semantic link to a modelling class or a relation class. Semantics describes the semantic meaning of the concepts affected by the overlap. Notation denotes the graphical representation of the affected concepts. Lastly, the criterion cardinality stands for the quantitative aspects for the syntactic elements affected by the overlap.

The consistency patterns can be summarized as follows. Pattern (C, C') = (Syn → Syn', Sem → Sem', Not → Not', Card → Card'). The symbol → denotes the relation (e.g., similarity) between C and C' with respect to a particular criterion. For each overlapping concept (OC), this relation needs to be analyzed independently for all the criteria. The "OC" - cornerstone of these patterns makes it possible the connection with the aforementioned taxonomies. Moreover, the consistency patterns are specified in a technology-agnostic manner, which helps in bridging the gap between methods engineers and tools developers.

Research Questions

The contribution of this paper is an overlap-driven approach for the conceptualization of CPM tools. The approach enables the shift from the overlap type (reflecting what should be implemented in terms of consistency) to design decisions (regarding how it should be implemented and at which level it should be implemented). In this way, the approach fosters bridging the gap between methods engineers and tools developers. One of the originalities of this work is to combine different approaches originating from various fields. The following research questions constitute the building blocks of the approach:

- **RQ-1**: How to conceptualize the CPM tools regardless of the inconsistency source (viz., variability modeling, and multi-view modeling)?
- **RQ-2**: How to shift from the overlap type to design decisions?

Conceptualization of CPM Tools: An Overlap-Driven Approach

Research Approach

The proposed approach has been performed following the Design Science Research (DSR) process as promoted by Peffers et al. (2006). This process serves as a methodical framework for structuring the activities to be carried out. The authors advocated a sequence of six activities. In the following, the corresponding coverage of each of these activities in this paper is given. Problem identification and motivation (sections 1 and 2), objectives of a solution (sections 2.4 and 3.2), design and development (section 3.3), demonstration (section 4), evaluation (sections 4 and 5) and lastly communication (the paper at hand).

Requirements towards an Approach for the Conceptualization of CPM Tools

Before an approach for supporting the conceptualization of CPM tools is made, generic requirements of the application domains should be gathered. The requirements elicitation rests on two pillars. First, a systematic literature review of consistency between BP models (Awadid and Nurcan., 2016). Second, our
experience in applying BP variability modeling and BP multi-view modeling as modelers. In total, five basic aspects that should be accounted for when dealing with inter-model consistency have been identified. These aspects are presented as follows:

- **Modeling language**: A modeling language is specified by a meta-model providing the set of concepts that can be used in models. Hence, this aspect focuses on the metamodel(s) to which the considered models are compliant.
- **Overlap type**: This aspect emphasizes on the type of inter-model overlap such as syntactic and semantic overlaps.
- **Consistency criteria**: At the heart of this aspect are the comparison criteria of pairs of linked concepts. Examples of comparison criteria are the syntax and the semantics of modeling concepts.
- **Mapping type**: The focus of this aspect is on the type of correspondence between a pair of comparable consistency criteria (e.g., one-to-one and one-to-many correspondences).
- **Abstraction level of meta-modeling**: In this aspect, the emphasis is on the abstraction level at which consistency rules have been implemented. A consistency rule represents a requirement that is implied by an overlap relation and is defined in terms of consistency criteria. Generally, to implement consistency rules, two abstraction levels are considered: the meta-level (i.e., when defining the modeling language) and the model level (i.e., when creating models in a specific language).

Table 1 illustrates the requirements of the application domains with respect to each of these aspects, as well as the implication of these requirements for the approach to be designed.

<table>
<thead>
<tr>
<th>Basic Aspect</th>
<th>Application Domain</th>
<th>Implication for the Approach to be Designed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modeling Language</td>
<td>BP variants are compliant to the same or different metamodel(s) (i.e., modeling language(s)).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BP views are compliant to different meta-models. Each view has its corresponding meta-model.</td>
<td>R1: The approach should consider that a BP model can refer to either a BP variant or a BP view.</td>
</tr>
<tr>
<td>Overlap Type</td>
<td>Different types of overlap such as syntactic and semantic overlaps, but very often refinement/abstraction. The reason for this is that "the variants have much in common" (La Rosa et al., 2013).</td>
<td>R2: The approach has to take heed of the existence of different overlap types. Moreover, it should accentuate that refinement/abstraction is a recurrent overlap type in BP variability modeling.</td>
</tr>
<tr>
<td></td>
<td>Mainly Syntactic and/or semantic overlaps.</td>
<td></td>
</tr>
<tr>
<td>Consistency Criteria</td>
<td>Syntax, Semantics, and/or Occurrence order of overlapping concepts.</td>
<td>R3: The approach should reflect that having an area of overlap is a prerequisite for dealing with inter-model consistency. Moreover, it should account for basic consistency criteria, which are different from each other.</td>
</tr>
<tr>
<td>Mapping Type</td>
<td>Mainly one-to-one and one-to-many mappings.</td>
<td>R4: The approach has to take into account that different mappings are possible when dealing with inter-model consistency.</td>
</tr>
</tbody>
</table>
Abstraction Level | Mainly the model level. | Meta and model levels. | **R5**: The approach should accentuate the abstraction level aspect.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Proposed Coverage in the Meta-Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>The inheritance relationship between the “Model” as superclass and “View” and “Variant” as subclasses.</td>
</tr>
<tr>
<td>R2</td>
<td>The inheritance relationship from the superclass “Overlap Type”. In this vein, two overlap taxonomies (cf. section 2.2) have been aligned and used (e.g., “Syntactic Overlap”, “Semantic Overlap” and “Association” in the second taxonomy are considered as instances of “Partial Overlap” in the first taxonomy, and so on). Moreover, the link between the syntactic and semantic overlaps and that between BP variability modeling and the overlap type “Refinement/Abstraction” have been made explicit using two OCL statements (the two blue dotted rectangles at the right of Figure 2).</td>
</tr>
</tbody>
</table>
First, the “No Overlap” case in the first taxonomy and the corresponding case (viz., “Orthogonal/Independent”) in the second taxonomy have been excluded. Second, consistency patterns and the associated consistency criteria (viz., Syntactic, Semantics, Notation, and Cardinality) (cf. section 2.3) have been used. Moreover, the “Occurrence Order” needed in the context of BP variability modeling has been added to these criteria. As its name implies, the criterion “Occurrence Order” refers to the occurrence order of a given modeling concept in each variant. Third, the need to differentiate between the consistency criteria of a modeling concept has been specified by an OCL statement (the blue dotted rectangle at the bottom left of Figure 2).

Following the mathematical concept, four possible types of mapping have been considered: no mapping, one-to-one, one-to-many and many-to-one (Smith, 1974).

The superclass "Abstraction Level" and its recurrent subclasses namely "Meta-Model Level" and "Model Level" have been considered.

Table 2. Coverage of Requirements in the Meta-Model

A closer look at Figure 2 reveals that the overlap-driven approach we propose is made up of two steps. First, overlap identification in which the overlap type is determined and the overlapping concepts are collected. This step raises the question of what consistency requirements should be implemented and is performed by the method engineer who is familiar with the various method components including the modeling language and its semantics. Second, design decisions where the overlapping concepts are defined in terms of consistency criteria, and the abstraction levels to implement the mapping between these criteria are identified. Consequently, this step approaches the technical implementation of the CPM tool (how consistency requirements should be implemented and at which level they should be implemented). It is hence at this step that the tool developer decides on the tool development environment to use (e.g., meta-modelling platform) and on the appropriate development environment component for each determined abstraction level.

The use of "Overlapping Concept" as the backbone of the approach fosters a close connection between the two steps and therefore a common understanding between the method engineer and the tool developer, allowing them to work together during the conceptualization of the desired tool. The two steps are non-disjoint and have been specified in a formalized way as illustrated in Figure 3.

It is worth noting that this paper is part of a research project aiming to develop a method for the conceptualization of CPM tools. The intended method is regarded as a specialized instantiation of the generic modelling method framework as introduced by (Karagiannis and Kühn., 2002). It is hence made up of three building blocks. First, a modeling language that is concretized in this paper by the meta-model presented in Figure 2. Second, a modeling procedure that focuses on how to use the modeling language to achieve results. It is illustrated in this paper by the formalized specification highlighted in Figure 3. Third, mechanisms & algorithms that emphasizes on the way of supporting (i.e. the tool support) - aspect that is not covered in this paper.
Case Study: Conceptualization of a CPM Tool for the EKD-CMM Method

The goal of the case study is to conceptualize a CPM tool for the Enterprise Knowledge Development - Change Management Method (EKD-CMM) (Nurcan and Rolland, 1999). As the proposal targets the area of business process modeling, EKD-CMM has been chosen as representative of modeling methods allowing both BP variability modeling and BP multi-view modeling. Thanks to the proposed approach, we the tool developer and the method engineer have been worked together to conceptualize the desired tool. EKD-CMM allows the variability modeling and the multi-view modeling of business processes by providing mainly four complementary modeling languages (i.e., meta-models): the actor-role, role-activity, business objects, and road map meta-models.

The first meta-model enables the representation of "where" and "by whom" the BP activities are performed. The second focuses on "what" activities should be performed, and on "when" and "how" they are performed. As its name indicates, the third meta-model supports the depiction of the business objects handled by a BP. Last but not least, the fourth meta-model permits the description of a BP in terms of goals (intentions) and strategies to achieve these goals. The three first meta-models empower the multi-view modeling, whereas the fourth one supports the variability modeling. Due to space limitation, the meta-models have not been included in this paper (but the interested reader may refer to e.g., Nurcan et al. 1999; Awadid and Nurcan, 2016).

As the modeling procedure suggests, we started by collecting the modeling concepts from the four meta-models of EKD-CMM method and identifying the overlap types. Indeed, three main types of overlaps have been detected: syntactic overlap, semantic overlap and refinement/ Abstraction. Table 3 presents the results of applying the modeling procedure to the case of the EKD-CMM method. Section 2.3, R3 in Table 2, together with Figure 2 and Figure 3 can foster a better understanding of these results.
<table>
<thead>
<tr>
<th>OC(C, C')</th>
<th>C</th>
<th>C'</th>
<th>RCC'</th>
<th>MT_k</th>
<th>AL_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC(Role, Role)</td>
<td>(Syn_R = Role, Sem_R = the responsibilities of a BP participant, Not_R = Rounded rectangle with goals, Card_R = 1)</td>
<td>(Syn_R' = Role, Sem_R' = the responsibilities of a BP participant, Not_R' = Rounded rectangle with activities, Card_R' = 1)</td>
<td>(Syn_R->Syn_R', Sem_R->Sem_R', Not_R->Not_R', Card_R->Card_R')</td>
<td>(One-to-one, one-to-one, no mapping, one-to-one)</td>
<td>(Model level, Model Level, 0, Model Level)</td>
</tr>
<tr>
<td>OC(Actor, Business object)</td>
<td>(Syn_A = Actor, Sem_A = a BP participant, Not_A = Rectangle, Card_A = 1)</td>
<td>(Syn_A' = Business object, Sem_A' = required resource, Not_A' = class, Card_A' = 1)</td>
<td>(Syn_A->Syn_A', Sem_A->Sem_A', Not_A->Not_A', Card_A->Card_A')</td>
<td>(One-to-one, one-to-one, no mapping, one-to-one)</td>
<td>(Model level, Model Level, 0, Model Level)</td>
</tr>
<tr>
<td>OC(Operation goal, Activity)</td>
<td>(Syn_O = Operational goal, Sem_O = a goal, Not_O = A list, Card_O = 1)</td>
<td>(Syn_O' = Activity, Sem_O' = An action, Not_O' = small square, Card_O' = 2..*)</td>
<td>(Syn_O->Syn_O', Sem_O->Sem_O', Not_O->Not_O', Card_O->Card_O')</td>
<td>(no mapping, no mapping, no mapping, one-to-many)</td>
<td>(0, 0, 0, Model Level)</td>
</tr>
<tr>
<td>OC(Dependency resource, Business object)</td>
<td>(Syn_D = Dependency resource, Sem_D = required resource, Not_D = Arrow with 'R', Card_D = 1)</td>
<td>(Syn_D' = Business object, Sem_D' = required resource, Not_D' = class, Card_D' = 1)</td>
<td>(Syn_D->Syn_D', Sem_D->Sem_D', Not_D->Not_D', Card_D->Card_D')</td>
<td>(no mapping, no mapping, no mapping, one-to-one)</td>
<td>(0, Model Level, 0, Model Level)</td>
</tr>
<tr>
<td>OC(Section, Section)</td>
<td>(Syn_S = Section, Sem_S = a triplet < source intention I_i, target intention I_j, strategy S_ij >, Not_S = two ellipses connected by an edge, Card_S = 1, Occ_S = x (x<>0))</td>
<td>(Syn_S' = Section, Sem_S' = a triplet <I_i,I_j, S_ij>, Not_S' = two ellipses connected by an edge, Card_S' = 1, Occ_S' = 1, Oocc_S' = x)</td>
<td>(Syn_S->Syn_S', Sem_S->Sem_S', Not_S->Not_S', Card_S->Card_S', Occ_S->Occ_S')</td>
<td>(one-to-one, one-to-one, one-to-one, one-to-one)</td>
<td>(Model level, Model Level, Meta Level, Model Level, Model Level)</td>
</tr>
<tr>
<td>OC(Section, Refined section)</td>
<td>(Syn_S = Section, Sem_S = a triplet < source intention I_i, target intention I_j, strategy S_ij >, Not_S = two ellipses connected by an edge, Card_S = 1, Occ_S = x (x<>0))</td>
<td>(Syn_S' = Refined section, Sem_S' = a refinement of a complex section, Not_S' = a set of ellipses connected by edges, Card_S' = 2..*, Occ_S' = x)</td>
<td>(Syn_S->Syn_S', Sem_S->Sem_S', Not_S->Not_S', Card_S->Card_S', Occ_S->Occ_S')</td>
<td>(no mapping, no mapping, one-to-many, one-to-many, no mapping)</td>
<td>(0, 0, Meta Level, Model Level, 0)</td>
</tr>
</tbody>
</table>

Table 3. Results of Applying the Modeling Procedure

Following the modeling procedure, we chose the ADOxx meta-modeling platform as a tool development environment. This platform well supports the implementation at each of the determined abstraction level (i.e., AL). Indeed, the ADOxx Event Handlers (AdoScripts that are executed when certain events occur) can assist the implementation of the mappings (MT_k) at the model level. While, the ADOxx graphical representation (GraphRep) grammar can serve the implementation at the meta-level.
Related Work

In the following, an overview of some research on conceptualization and development of CPM tools is given. Kramer et al. (2013) focus on the multi-view modeling of software systems and on mechanisms for ensuring consistency between flexible views using model transformations. They base their approach on Orthographic Software Modeling. Following a model-driven approach, Grundy et al. (2013) propose a meta-toolset enabling the generation of multi-view modeling environments. The approach allows the specification of viewpoints and their transformations. By targeting the early stages of tool development, Cicchetti et al. (2011) provide guidance in the creation of viewpoints, which are derived from a common Ecore meta model. The approach emphasizes on syntactic consistency constraints between viewpoints. Similarly to the aforementioned ones, this approach is conceived for software development purposes. In their approach, Kusel et al. (2012) direct attention to the integration and synchronization between several modeling viewpoints using one comprehensive ontology model. Bork (2015) introduces the MUVIEMOT method, which advocates the design of multi-view modeling tools by means of conceptual modeling. Another approach for managing the consistency of knowledge captured in multi-view enterprise models is given by Karagiannis et al. (2016). The approach is based on semantic graphs derived from diagrammatic models, and queries acting upon these graphs.

A common feature between the aforementioned approaches is the focus on multi-view modeling. Restricting inconsistency sources to multi-view modeling leads to ignoring some overlap types and hence to an incomplete specification of consistency requirements. We distinguish ourselves from existing approaches by focusing on the BP as system of interest and by accounting for more than one source of inconsistency. The proposal builds on our previous work (Awadid et al., 2018) and is part of a research project aiming to design and develop a method for the conceptualization of CPM tools (cf. section 3.3). In this paper, we define the language of this method (the meta-model) and the modeling procedure (the formalized description of the approach steps). The consistency patterns proposed in the earlier work constitute a small part of this language (only one aspect - the consistency criteria in Table 1).

Concluding Remarks

A SWOT analysis of applying the approach led to the following conclusions.

Strengths: The presented approach supports the conceptualization of CPM tools by means of a formalized specification (viz., a meta-model along with modeling procedure). Hence, it avoids multiple interpretations and forestalls confusions when conceptualizing the desired tool. This implies fostering a common understanding between the method engineer and the tool developer, allowing them to work together. Moreover, being overlap type-driven, the approach accounts for more than one consistency source enabling it to target a domain-independent application. In this vein, the approach builds on existing frameworks originating from different disciplines (viz., requirement engineering, cyber-physical systems, and enterprise modeling).

Weaknesses: The proposal is primarily dedicated towards general-purpose modeling methods. With today's increased interest in domain-specific modeling methods, the approach needs to be evaluated against this kind of methods and extended if necessary.

Opportunities: We are currently working on integrating the approach in a model driven engineering development environment towards an automatic derivation of consistency-preserving modeling tools. The originality of such tools lies in preserving consistency in two different contexts: variability modeling and multi-view modeling.

Threats: One threat to the validity of the presented approach is the potential bias by the authors who were in charge of both, defining the approach and performing the evaluation. We aim to work on this threat in our future work by involving independent experts in the evaluation process.

In this paper, we introduced an approach aiming to support method engineers and tools developers during the conceptualization of CPM tools. The approach targets the area of business process modeling. It has been evaluated using a case study, thereby specifying the conceptualization of a CPM tool for the process-related aspects of EKD-CMM. One of the future perspectives of this research is a deep comparison based on a formal definition of consistency between the proposed approach results and those of the related work.
REFERENCES

