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Abstract: 

There have been repeated calls for studies in behavioral science and human-computer interaction (HCI) research to 
measure participants’ actual behaviors. HCI research studies often use multiple constructs as perceived measures of 
behavior, which are captured using participants’ self-reports on surveys. Response biases, however, are a widespread 
threat to the validity of self-report measures. To mitigate this threat to validity, we propose that studies in HCI measure 
actual behaviors in appropriate contexts rather than solely perceptions. We report an example of using movements that 
reflect both actual behavior and behavioral changes measured within a health care IS usage context, specifically the 
detection and alleviation of neuromuscular degenerative disease. We propose and test a method of monitoring mouse-
cursor movements to detect hand tremors in real time when individuals are using websites. Our work suggests that 
analyzing hand movements as an actual (rather than perceptual) measure of usage could enrich other areas of IS 
research (e.g., technology acceptance, efficacy, fear, etc.), in which perceptions of states and behavior are measured 
post hoc to the interaction and subject to the threats of various forms of response bias. 
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1 Introduction 
Several researchers have emphasized the importance of measuring actual behaviors in the behavioral 
sciences, including psychology (Baumeister et al. 2007), personality psychology (Furr 2009), and specific 
areas, such as the study of narcissism (Holtzman et al. 2010). Much like behavioral research, information 
systems (IS) research is often criticized for not measuring actual behaviors. In fact, IS measures in general 
have been criticized as lacking in rigor (Burton-Jones and Lee 2017). In response, some specific areas 
within IS now emphasize the importance of examining actual behavior (e.g., when studying information 
security), rather than just examining intentions (e.g., Boss et al. 2015; Crossler et al. 2013; Moody and 
Galletta 2015). 

We believe that these criticisms are also particularly relevant to human-computer interaction (HCI) research. 
Studies in the field of HCI research often use multiple constructs that are operationalized as perceived 
measures of behavior, which are measured by self-reports on surveys completed by participants. However, 
response biases threaten the validity of surveys. A response bias (also known as a survey bias) is the 
tendency of people to respond to questions on some basis other than the question content (Paulhus 1991). 
For example,  a respondent may misrepresent an answer so that it will be viewed more favorably by others; 
this is known as social desirability bias (Fisher 1993). Likewise, people have the tendency to portray 
themselves in the best light, particularly when they are asked about personal traits, attitudes, and behaviors;  
this tendency often causes people to falsify or exaggerate answers (Paulhus 1991). In other situations, a 
respondent may not be sure how to answer a question because of a lack of knowledge in the area or a lack 
of understanding of the question. There are many types of response biases, and each type represents a 
greater or lesser validity threat depending on the research context (see Table 1 for examples of several 
response biases). 

Table 1. Examples of Response Biases 

Type of Bias Description 
Acquiescence bias The tendency of respondents to agree with all the questions in a measure 
Extreme responding The tendency of respondents to always choose the most extreme options or answers available 
Prestige bias The tendency of respondents to overestimate personal qualities 

Social desirability bias The tendency of respondents to misrepresent an answer in such a manner that it will be viewed 
more favorably by others 

Survey fatigue The tendency of respondents to give less thoughtful answers due to being tired of answering 
questions  

Unfamiliar content The tendency of respondents to randomly choose an answer because they do not understand 
the question or do not have knowledge to answer the question  

Completion / Incentive 
bias 

The tendency of respondents to randomly or systematically choose an answer because their 
primary incentive when answering questions or completing a task is to receive an external 
reward (e.g., payment, extra course credit, etc.) 

1.1 Mouse Cursor Tracking as a Measure of Behavior 
The construct of ease of use (EOU), which is typically operationalized as perceived ease-of-use (PEOU), is 
an example of how perception-based measures are typically collected in HCI and technology acceptance 
literature. PEOU reflects the extent to which a person believes that using a technology will be free of effort 
(Davis 1989; Venkatesh 2000). PEOU is widely validated and cited, and, as noted, is typically measured 
through surveys or other self-report instruments (Venkatesh 2000). In some situations, PEOU provides an 
ideal measure of a system’s EOU. However, in other situations, soliciting self-report measures can be 
challenging. For example, in ‘live’ websites, surveys that ask for self-report measures can be perceived as 
interruptive, annoying, cumbersome, or time-consuming. As a result, asking survey questions during  use 
of a live system can yield low response rates, and these responses are often biased toward those who had 
highly positive (or negative) experiences (Leighton-Boyce 2012). Even in some non-live research settings, 
self-report measures may be influenced by various biases (e.g., Chapman 1967; Fisher 1993; Schuman 
and Presser 1981). Jenkins and Valacich (2015) proposed a behavior-based measure of EOU based on the 
analysis of users’ mouse-cursor movements. Specifically, they theorize how differences in system usability 
would influence various movement characteristics (i.e., movement precision). Such a technique would allow 
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EOU to be unobtrusively measured in live environments and at Internet-scale deployment (e.g., large 
commercial websites). 

In addition to various response biases, other validity threats can result from item effects, including scale 
format and context effects, such as priming and timing (Podsakoff et al. 2003; Schuman and Presser 1981). 
In addition, the implementation of self-report mechanisms can be disruptive to the realism of experimental 
scenarios. If a participant is interrupted to respond to a questionnaire, he/she is removed from immersion in 
the experience, and his/her actions will no longer be the same as if they had remained undisturbed. By 
measuring actual behaviors instead of perceptions and self-reports, many of these issues can be mitigated 
or avoided entirely. Additionally, the incorporation of measurements of actual behaviors helps facilitate 
mixed methods research by providing an alternative data source that can be continuously and unobtrusively 
captured without disrupting task-related activities (i.e., increasing realism of the study – Dennis and Valacich 
(2001)). Likewise, the results reported from mixed method studies are more robust to validity threats and 
other potential issues (Venkatesh et al. 2013). 

An example  of when mouse-cursor tracking was used to infer specific behavior was reported in Hibbeln et 
al. (2014). Specifically, they used mouse-cursor movements to detect possible fraudulent insurance claims 
and found that users who entered fraudulent claims had predictable changes in their movement 
characteristics (i.e., longer and slower movements). In another more recent example, Hibbeln et al. (2017) 
used actual participant behavior to infer emotion, valence, and variations. In this work, three studies are 
reported in which mouse-cursor movements were used as a potential real-time indicator of emotion. In the 
first study, an experiment with 65 participants from Amazon’s Mechanical Turk, negative emotion was 
manipulated by having participants complete a fair or unfair intelligence test (i.e., the unfair test was 
designed to induce negative emotion). Immediately after completing the test, mouse-cursor movements 
were monitored while participants completed a number-ordering task. The results showed that negative 
emotion increased the distance and reduced the speed of mouse cursor movements during the task.  

In the second study, an experiment with 126 participants, negative emotion was manipulated by having 
participants complete the same shopping task while utilizing an e-commerce website with high or low 
usability (i.e., low usability was designed to induce negative emotion). Mouse-cursor movements were 
monitored while participants interacted with the mock e-commerce site. The results showed that mouse-
cursor distance and speed could be used to infer the presence of negative emotion with an overall accuracy 
rate of 81.7 percent.  

In the third study, an observational study with 80 participants, mouse-cursor movements were monitored 
while participants interacted with an online product configurator. Negative emotion was induced by changing 
the relative difficulty of the configuration tasks. After completing each of the configuration tasks, participants 
self-reported their level of emotion. The results showed that mouse-cursor distance and speed could be 
used to infer the level of negative emotion with an out-of-sample R2 of 0.17. The mouse-cursor tracking 
methodology can enable the tracking of emotional reactions during use of live systems. Thus, mouse-cursor 
tracking enables the near real-time measurement of system usability, emotional reactions, fraudulent 
interactions, and a host of other behaviors that were previously difficult to analyze in an unobtrusive or 
unbiased way. We have found that mouse-cursor tracking can be deployed in broad research and 
operational contexts; this allows for better understanding the user without disrupting natural interaction 
through invasive data collection approaches (Grimes et al. 2013; Hibbeln et al. 2014; Hibbeln et al. 2017; 
Jenkins and Valacich 2015; Jenkins et al. 2017; Williams et al. 2016). 

In this paper, we present an example of measuring actual behaviors in HCI research. Our chosen context 
is health care, specifically the detection and mitigation of neuromuscular degenerative disease. We propose 
and test a method of monitoring mouse-cursor movements to detect hand tremors in real time when 
individuals are using websites. Health care is an emerging and important area of research within IS and HCI 
in particular (Wilson and Djamasbi 2015). Recent work in this area spans from the use of wearables for e-
Health monitoring (Castillejo et al. 2013) to more extensive, systematic smart health monitoring systems 
(Baig and Gholamhosseini 2013). Past research has identified various interventions to make computers 
more enjoyable for people with hand tremors, such as filtering out mis-clicks, smoothing algorithms for 
mouse movements, and accentuating intelligent design (Riviere and Thakor 1996). However, an 
understudied area in this research is the ability to first detect if hand tremors are present so that websites 
can offer or deploy the use of such interaction improvement techniques. We address this need by exploring 
how analyzing users’ mouse-cursor movements can be an effective method for detecting hand tremors in 
users. In summary, this research example explores the following research question: what characteristics of 
users’ mouse-cursor movements detect if a user has hand tremors? 
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Using participants from the International Essential Tremor Foundation and Mechanical Turk, we conducted 
an exploratory study that monitored and analyzed mouse-cursor movements on a website. We found five 
characteristics of users’ mouse-cursor movements that were influenced by hand tremors. The results of our 
research will not only help make websites more accessible for users with hand tremors, but also improve 
health monitoring as well as advance mouse-cursor research.  

2 Literature Review 
Neuromuscular degenerative diseases, such as Parkinson's disease and diseases with related 
neurocognitive impairment symptoms, such as Alzheimer's disease, are an area of great interest for HCI 
research. Researchers have used accelerometers to detect and classify movement disorders (Garcia et al. 
2016), proprietary robotic systems to assess Alzheimer's patients (Bartoli et al. 2017), immersive VR 
systems to screen for cognitive impairment using kinematic movement analysis (Seo et al. 2017), and signal 
analysis from multiple body attached sensors for the evaluation of Parkinson's (Dinesh et al. 2016) and 
Alzheimer's (Cheng and Zhuang 2010) symptoms. 

A challenge with this type of research is the use of proprietary sensor technology. A recent work required 
subjects to be connected to EEG and a proprietary accelerometer to differentiate tremor types (Panyakaew 
et al. 2017). These proprietary systems can be highly effective, but they are problematic for wide-scale 
deployment in both research and practice due to their limited availability and cost. Some researchers have 
begun to use more widely available and inexpensive HCI devices, such as smartphones and mice. O'Reilly 
and Plamondon (2012), for example, used computer mice to diagnose neuromuscular disorders and 
separately evaluate the suitability of standard mice for movement analysis against other, less common HCI 
devices, such as digitizer tablets (O’Reilly and Plamondon 2011). In addition, smartphones have been 
evaluated for the detection of tremors in unconstrained environments (García-Magariño et al. 2016). 

2.1 Mouse Tracking 
Mouse-cursor tracking as a scientific methodology that was originally explored as a cost-effective alternative 
to eye tracking to denote where people devote their attention in a human-computer interaction context 
(Byrne et al. 1999; Pappas et al. 2014; Tarafdar et al. 2007). For example, research has shown that eye 
gaze and mouse-cursor movement patterns are highly correlated with each other (Liljander and Strandvik 
1997; Pappas et al. 2014; Tarafdar et al. 2007). When scanning search results, the mouse often follows the 
eye and marks promising search hits (i.e., the mouse pointer stops or lingers near information), and this 
suggests where people devote their attention (Rodden et al. 2008). Likewise, people often move their mouse 
while viewing web pages, suggesting that the mouse may indicate where people focus their attention (Lu 
and Yu-Jen Su 2009). In selecting menu items, the mouse often tags potential targets (i.e., hovers over a 
link) before selecting an item (Unsworth and Spillers 2010).  

As the abilities to collect fine-grained measurements and perform analyses of mouse-cursor movements 
have improved, research has expanded the use of mouse-cursor tracking to explore a more diverse set of 
neuromotor and psychological responses. In a concise review of mouse tracking literature, Freeman and 
Ambady (2011, p. 1) suggest that the “movements of the hand…offer continuous streams of output that can 
reveal ongoing dynamics of processing, potentially capturing the mind in motion with fine-grained temporal 
sensitivity.” Accordingly, hundreds of recent studies have chosen mouse tracking as a methodology for 
studying various cognitive and emotional processes.  

We extend this research to explore how mouse-cursor movement can be used to detect the physiological 
characteristics of users (e.g., hand tremors) in addition to the psychological characteristics. We identify and 
develop mouse-cursor movement measures when the starting position of the mouse-cursor may vary (the 
mouse-cursor may be anywhere on the screen as opposed to always on the lower middle of the screen), 
and the desired final goal of the individual is unknown. We next introduce two theories that we will leverage 
to explain how users’ mouse-cursor movements demonstrate their hand tremors.  

2.2 Hand Tremors 
Hand tremors pose a challenge for effective human-computer interaction. A hand tremor is a rhythmic 
oscillation of the fingers, hand, or arm (Deuschl et al. 2001). Hand tremors are very common. It is estimated 
that 10 million people have essential hand tremors (a common neurological disorder) in the United States 
(Stephens 2011), and the most common movement disorder, “pathological tremor”, increases its prevalence 
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with aging (Rocon et al. 2004). In addition to this, millions of people are affected by various other 
neurological diseases and disorders (e.g., Parkinson’s) that cause hand tremors. People with hand tremors 
typically often have a very difficult time using the computer, specifically with navigating websites. These 
tremors can cause shaking that makes it difficult to navigate a website, select links on a webpage, and 
perform various other everyday computing activities. Such deleterious effects occur because it is difficult to 
click on small targets (e.g., links), difficult to hover over targets, and difficult to select options in web 
applications (Rotondi et al. 2007). Sixty-five percent of people suffering from upper limb tremor report 
serious difficulties in performing their activities related to daily living (Rocon et al. 2004). 

Given the prevalence of hand tremors and their adverse influence on human-computer interactions, 
research has identified ways to make computers more accessible and usable to users. This research is split 
up into two categories: physical tools to reduce hand tremors and digital compensations.  

Physical tools include mechanisms that a) apply friction to the hand to reduce shaking and b) find other 
ways for users to interact with the computer without using the hand (Rocon et al. 2004). In this realm, 
companies have developed specialized arm rests that stop the arm from shaking and input devices (e.g., 
key boards and mice) that require more friction to operate (and thus are not influenced by shaking)1. Sample 
products include the MIT damped joystick, the Controlled Energy Dissipation Orthosis, CEDO, and the 
Modulated Energy Dissipation (MED) Arm. Most HCI futurists envision a future where users with or without 
motor control deficiencies interact using multiple methods that include voice, gestures, and eye movements 
in addition to current approaches (Mannes 2016). 

Digital compensations include software and design layouts that can compensate for hand tremors. Software 
includes digital filters that differentiate between hand tremors and actual movements. Such filtering software 
can be installed on a users’ computer or be deployed dynamically in a website. Features of such systems 
include anti-tremor mouse filtering and removal of accidental mouse clicks, to name a few2. In addition, 
websites can be designed such that they can dynamically adjust to become more usable for people with 
hand tremors. Such systems provide interventions that include larger links, magnetic links (links that grab 
the mouse cursor when it gets close to them), and websites that are compatible with alternative input devices 
made for hand tremors (Riviere and Thakor 1996; Rotondi et al. 2007). 

Our research is particularly relevant to the “digital compensations” area of research. Namely, we investigate 
whether the analysis of users’ mouse cursor movements can be used to detect hand tremors. Using this 
method, websites would be capable of digitally adapting to the user to create a more enjoyable and 
accessible user experience.  

3 Methodology 
To answer our research question, we developed a study in which two groups of participants—those with 
hand tremors and those without hand tremors—navigated a website while mouse-cursor movements were 
monitored. 

3.1 Participants 
Participants were recruited from two sources. In order to find a large enough population of participants with 
hand tremors, we first recruited participants through the International Essential Tremor Foundation (IETF), 
a 501(c)3 non-profit organization that promotes and funds essential tremor (ET) research. These 
participants were pulled from a group of over 1,700 individuals. Second, to find additional participants with 
and without hand tremor, participants were recruited through Amazon’s Mechanical Turk (MTurk). According 
to Berinsky et al. (2012), MTurk has been shown to be an appropriate participant recruitment tool for random 
sampling of populations. 

A total of 200 individuals participated in this study. The average age of participants was 43.6 years, with 
56% being male and 44% being female. Of this sample, 86.9% reported being White/Caucasian, 5.1% 
reported being Hispanic, 4.3% reported being Asian, 2.5% reported being African American, and 1.2% 
reported being other. Of those who participated, 35% stated that they currently have hand tremors. Seventy-

                                                        
1 http://ndipat.org/blog/computer-access-and-parkinsons-3-great-products-and-a-freebie/ 
2 https://www.steadymouse.com/ 
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five percent of those who identified as currently experiencing ET stated that they had experienced ET for 
longer than 10 years. 

3.2 Study Design 
Participants recruited through the IETF were provided a link to an online survey. Individuals recruited 
through MTurk were also provided the same link via MTurk’s HIT system. This survey displayed IRB consent 
forms and informed participants that they could decline or stop participating in the study at any time. The 
survey also asked several questions, including a) whether they had hand tremors, b) if they were currently 
using software or a device to compensate for the tremors while participating in the study, and c) the severity 
of their tremors. Upon completion of this initial survey, a link was provided to a website for participants to 
interact with a fictitious online retailer. When leaving the survey system, a unique ID was passed with the 
link to the website in order to associate participants’ interactions with the website with their survey 
responses.  

At the website, participants were asked to complete one task. The mock e-commerce website had various 
interaction features typical of such sites (i.e., drop-down menus, buttons, links, forms, radio buttons, etc.). 
A sample screenshot from the mock e-commerce website is shown in Figure 1. While participants were 
navigating the website to complete the task, which included finding a specific product, adding the product 
to the cart, and simulating a checkout, mouse-cursor movements were captured. Upon completion of the 
task, participants were redirected to a short follow-up survey. The same unique ID that was passed from 
the initial survey to the mock e-commerce website was also passed from the website to the follow-up survey 
in order to link participants’ interaction and self-report data. In this follow-up survey, participants answered 
questions regarding the website’s ease of use and responded to several demographic-related questions. 

3.3 Measuring Mouse Movement 
In order to track participants’ movements on the website, a JavaScript script was embedded into each page 
of the website. X, Y coordinates and timestamps were captured and stored to calculate various statistics 
such as velocity, acceleration, and distance throughout the interaction. Collecting the coordinates also 
allowed us to visualize the movements. A sample movement from a participant with tremors is shown in 
Figure 2. This method of capturing and storing mouse movement data and timestamps using a JavaScript 
script allowed participants to be tracked unobtrusively and allowed us to record the movements to a secure 
server for later analysis. 
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Figure 1. Screenshot from Website 

 

 
Figure 2. A Sample Mouse Trail from a Participant with Tremors 

4 Analysis 
To explore how hand tremors influence mouse-cursor movements, we first calculated several statistics (see 
Tables 2 and 3). We then specified a multivariate general linear model that explored whether people who 
self-reported hand tremors had significantly different mouse cursor movement statistics than people who 
did not report having hand tremors. We removed any participants who reported that they were currently 
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using a tremor mitigation technique during the study (special hardware or software). As displayed in Table 
2, we found that tremors statistically influenced five different variables. We also found that tremors do not 
statistically influence the remaining five variables, as seen in Table 3. 

Table 2. Variables Statistically Influenced by Tremors 

Variable Name / Description Z-Score P-Value 
Overall area under the curve3 normalized (divided) by speed 15.35 < .001 
The total number of flips on the x axis 6.53 < .001 
The total number of flips on the y axis 10.34 < .001 
The average distance between destinations (clicks) 8.799 < .001 
The average distance between destinations (clicks) normalized (divided) by speed 15.35 < .001 

 

Table 3. Variables Not Statistically Influenced by Tremors 

Variable Name / Description Z-Score P-Value 
Overall area under the curve 0.757 > .05 
The average area under the curve between destinations (clicks) 0.007 > .05 
Overall distance 0.007 > .05 
Overall distance minus the minimum distance required to perform a movement 1.395 > .05 
Total time 0.007 > .05 

5 Discussion 
This research answered the following research question: what characteristics of users’ mouse-cursor 
movements detect if a user has hand tremors? We found that five variables were significantly correlated 
with hand tremors, and therefore could be used as measures of actual behavior of hand tremors in this 
context rather than collecting self-report measures. Below, we discuss the implications of these findings for 
research and practice.  

5.1 Implications for Research  
We report a practical example of the use of movements that reflect both actual behavior and behavioral 
changes measured within an information technology usage context. Our work suggests that analyzing hand 
movements as an actual (rather than perceptual) measure of usage could enrich other areas of IS research 
(e.g., technology acceptance, efficacy, fear, etc.), in which perceptions of states and behavior are measured 
post hoc to the interaction and subject to the threats of various forms of response bias. Clearly, this approach 
suggests there are numerous research opportunities.  

Within its specific health care IS context, this paper contributes to research by extending literature on hand 
tremor mitigation and mouse cursor tracking in several ways. First, past research has examined software 
and design principles for creating websites that are more accessible to people with hand tremors. However, 
very little research has explored how to detect if someone has hand tremors, which can be used to trigger 
these interventions. We contribute to this research by conducting exploratory research that will result in an 
easy-to-deploy and unobtrusive method for detecting hand tremors: the analysis of mouse-cursor 
movements.  

Moreover, we contribute to literature on mouse-cursor tracking. In recent years, there has been increasing 
interest in studying mouse movements within the IS domain; for example, Hibbeln et al. (2017) examined 
the effects of negative emotion on mouse movements, Grimes et al. (2013) examined the effects of valence 
and arousal, and Jenkins and Valacich (2015) employed mouse movements to examine a system’s ease of 
use. 

                                                        
3 The total area bounded by the most direct path between two points (i.e., clicks) and users’ actual path of movement. 
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Past mouse-cursor tracking research has focused on using mouse-cursor tracking as a substitute 
methodology for eye tracking or to infer psychological states (e.g., emotion, cognitive conflict, etc.). We 
extend this research to also explore how mouse cursor movement can be used not only to reliably infer 
emotional states (see Hibbeln et al. 2017), but also as a methodology for detecting other psychological 
states that are relevant to human-computer interaction. In sum, our work adds to the accumulating evidence 
of linking hand movements captured through mouse movements to various emotional and cognitive 
processes (Freeman et al. 2011; Grimes et al. 2013; Hibbeln et al. 2017). 

5.2 Implications for Practice 
Hand tremors can severely deter human-computer interactions, resulting in websites that are difficult to use 
or not accessible to users. Our research can be used to create adaptive websites that are more accessible 
to people with hand tremors. Namely, by unobtrusively monitoring mouse-cursor movement through 
imbedded JavaScript in the webpage, websites can potentially detect mouse-cursor movements and 
dynamically adjust to create a more accessible and enjoyable experience for users. For example, when 
tremors are detected, a website could make selecting regions larger and thus easier to click. Additionally, a 
plug-in could be added to a user’s browser to intercept shaking motion, smoothing the movements on the 
screen, blocking unintentional mouse clicks, and snapping clicks to icons and links when the cursor is within 
a likely selection region (see www.steadymouse.com). Such improvements will not only improve the 
experience for users with hand tremors, but may also lead to increased use and revenue for the website. In 
a broader sense, our work serves to indicate that by measuring mouse movements, businesses and other 
organizations can gain a better understanding of the intent and feelings of their customers and users. This 
is a form of "digital body-language" and will increasingly serve to enhance interactions in an online setting, 
where traditional cues such as eye contact and body posture are not available. Digital body-language can 
be utilized for both risk mitigation in detecting potentially malicious actors and for prioritizing resources and 
enhancing service offerings for particular categories of customers, as we have demonstrated here. 

6 Conclusion 
There have been repeated calls to reemphasize the measurement of actual behaviors in behavioral 
sciences. We believe that these criticisms are also particularly relevant to HCI research. In this paper, we 
report a practical example of the use of movements that reflect both actual behavior and behavioral changes 
measured within an information technology usage context. Our work suggests that analyzing hand 
movements as an actual (rather than perceptual) measure of usage could enrich other areas of IS research 
(e.g., technology acceptance, efficacy, fear, etc.), in which perceptions of states and behavior are measured 
post hoc to the interaction and subject to the threats of various forms of response bias. Clearly, there is 
great potential for the further measurement of actual behaviors in the IS domain. 
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