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Abstract. Polarization occurs within society's networks when highly connected 

groups form with weak intergroup links, leading to echo chambers and filter bub-

bles. These phenomena hinder exposure to diverse viewpoints, posing significant 

challenges to democracy and societal welfare. Despite extensive research on 

measuring and mitigating social network polarization, the effectiveness of exist-

ing metrics remains largely uncharted. This study reevaluates these metrics and 

recommender system-based reduction strategies, pinpointing inherent limita-

tions. It highlights key factors influencing polarization and adopts a design sci-

ence research approach to craft a recommender system-based model for reducing 

polarization in online networks, recognizing its complex nature. 

Keywords: Polarization, Echo Chamber, Filter Bubble, Recommender System, 

Design Science 

1 Introduction 

In the dynamic landscape of modern society, social media serves as a powerful platform 

for exposing individuals to diverse viewpoints. However, increasing content filtering 

risks limiting access to challenging perspectives (Hargittai et al., 2008). These conten-

tious issues often fuel radicalized attitudes and distort perceptions of events, a phenom-

enon known as polarization (Matakos et al., 2017). Polarization refers to the division 

of groups into opposing sub-groups with conflicting positions, leaving few individuals 

neutral or holding intermediate stances (Guerra et al., 2013). This phenomenon has 

given rise to concepts like "echo chambers", where users predominantly encounter in-

formation from like-minded individuals and are exposed to limited opposing views 

(Cossard et al., 2020; Garimella et al., 2017; Markgraf and Schoch, 2019; Matakos et 

al., 2017), and "filter bubbles", where algorithms amplify ideological segregation by 

presenting personalized content aligning with the user's attitudes (Flaxman et al., 2016; 

Matakos et al., 2017). The resulting network polarization divides individuals into fac-

tions and restricts their exposure to a variety of content, exerting a corrosive impact on 

communities, societies, and democracies (Matakos et al., 2017; Sunstein, 2001).  

While polarization sparks public discourse, the unintentional formation of isolated 

echo chambers requires mitigation strategies (Garimella et al., 2018). In this context, 

mailto:elnaz.meydani@upb.de
mailto:trier%7D@upb.de


 

 

Recommender Systems (RS) have emerged as potential tools. Some studies suggest 

that RS, when combined with social network structures, can contribute to the formation 

of filter bubbles (Antikacioglu and Ravi, 2017; Koidl, 2018), while others propose that 

RS enhancements could mitigate polarization (Interian et al., 2023). Past literature fre-

quently relies on one-dimensional measures even though recent surveys suggest that 

polarization can have multiple forms (Tölle and Trier, 2023), highlighting the need for 

reassessment. Similarly, RS-based methods designed to mitigate polarization often nar-

rowly focus on singular aspects without thoroughly validating their effects on polariza-

tion as a complex phenomenon. Recognizing this urgency, evaluating the accuracy of 

polarization measures and corresponding reduction methods are crucial research tasks. 

This study aims to align RS methods with polarization measures, emphasizing mul-

tidimensionality in both measurement and RS-based mitigation strategies. Our research 

involves evaluating polarization measures and RS techniques to construct a model 

aligning strategies with appropriate metrics. We start with related work, highlighting 

the drawbacks of current measures, reorganizing them, introducing important aspects 

in measuring polarization, and presenting RS strategies to reduce polarization in a con-

cept matrix (Section 2). We then detail the Design Science Research Methodology 

(DSRM) for developing an RS-based polarization reduction model (Section 3).  

2 Theoretical Background  

2.1 Polarization Measures  

We initiated our research on Google Scholar with terms like "polarization measures", 

"echo chamber", and "filter bubbles", leading us to a current and comprehensive review 

by Interian et al. (2023) on the Scopus database. Following methodological guidelines 

for conducting a systematic literature review in information systems (Schryen et al., 

2020; vom Brocke et al., 2015), this review initially found 405 publications and nar-

rowed them down to 78 through specific exclusion criteria. While they focused solely 

on five polarization measures, we recognized the imperative for a more comprehensive 

inventory. We initially skipped a forward search due to the recency of Interian et al.'s 

(2023) review but will include it in the extended manuscript. Conducting a backward 

search (Webster and Watson, 2002) from their dataset, we compiled an exhaustive list 

of measures (https://bit.ly/3IFKeWV) and categorized them into network-based, con-

tent-based, and combined measures, inspired by Emamgholizadeh et al. (2020), who 

identified these categories without specifying individual measures. Additionally, we 

discuss studies critiquing the efficacy of these measures in quantifying polarization, 

emphasizing the importance of considering additional aspects for accurate polarization 

assessment before selecting reduction methods. Our study expands upon Interian et al. 

(2023) by offering a broader array of measures and organizing them into distinct cate-

gories. It also differs from Emamgholizadeh et al. (2020), where the authors did not 

explore specific measures within these broad categories. Due to space constraints, we 

only briefly introduce main categories, discuss specific measures, and highlight their 

limitations, shaping our RS-based polarization reduction model.  

The first category, network-based measures, captures the complexities of commu-

nity interactions. Modularity, exemplified by Dal Maso et al. (2014) and Tien et al. 



 

 

(2020), suggests communities should exhibit more internal connections than external 

ones (Dal Maso et al., 2014; Tien et al., 2020). However, modularity alone does not 

invariably indicate polarization; non-polarized networks can also have modular com-

munities (Guerra et al., 2013). Using this metric, Garcia et al. (2015) underscored the 

significance of the temporal dimension in polarization measurement, noting that con-

tradictions may vary in their persistence over time. This highlights the inefficiency of 

network-based measures in capturing the evolution of polarization over time (Garcia et 

al., 2015). Hence, considering the temporal aspect is crucial for understanding polari-

zation dynamics comprehensively (Tsytsarau et al., 2011; Zhang et al., 2008).  

Homophily, the inclination to associate with like-minded individuals, is also a net-

work-based measure that fosters echo chambers and polarization (Samantray and Pin, 

2019). However, Dandekar et al. (2013) argued that homophily alone fails to fully po-

larize society without biased assimilation, where individuals process new information 

based on pre-existing beliefs. Similarly, Interian and Ribeiro (2018) emphasized that 

relying solely on homophily is inadequate for quantifying polarization (Interian and 

Ribeiro, 2018). Surprisingly, Samantray and Pin (2019) found a negative correlation 

between homophily and polarization, underscoring the influence of information credi-

bility, an underexplored aspect despite its significant impact on beliefs and polarization 

dynamics. Information lacking source credibility is less likely to influence individuals.  

Random Walk, a notable network-based metric, assesses opposing opinions within 

conversation groups (Al-Ayyoub et al., 2018). Yet, the Random Walk Controversy 

score, while valuable, may falter on excessively small graphs (Garimella et al., 2018), 

necessitating additional factors like content for better polarization measurement (Garcia 

et al., 2015). While Interian et al. (2023) classified "content" as a polarization measure, 

we argue that content alone does not serve as a measure. Hence, we introduce content-

based measures, focusing on user-generated content, utilizing methods like hand-la-

beling, crowdsourcing, sentiment analysis, and natural language processing techniques 

(Chen et al., 2018; Emamgholizadeh et al., 2020; Garimella et al., 2018).  

Previous research on controversial topics focused on specific network elements like 

boundary nodes (Guerra et al., 2013), structure (Garimella et al., 2018), or signed net-

works (Bonchi et al., 2019), overlooking valuable content and user profile information 

(Emamgholizadeh et al., 2020; Matakos et al., 2017). However, polarization extends 

beyond network states, cautioning that mere segregation does not equate to polarization 

(Dandekar et al., 2013; Matakos et al., 2017; Morales et al., 2015). Conversely, focus-

ing solely on textual content poses challenges in interpreting natural language, particu-

larly in short texts, and risks models becoming language- and topic-dependent. These 

approaches overlook network structure, potentially skewing polarization measurement 

accuracy and distorting polarization dynamics by neglecting group separation within 

the network. Thus, we advocate for combined methods that leverage synergies between 

network and content-based approaches for robust results (Al-Ayyoub et al., 2018; Chen 

et al., 2018; Emamgholizadeh et al., 2020). Hargittai et al. (2008) applied a combined 

measure, insularity alongside context, to analyze link patterns in political blogs and 

stressed the importance of incorporating link context analysis to better understand the 

dynamics of engaging with diverse viewpoints. Similarly, Cossard et al. (2020) high-

lighted context's significance in quantifying polarization, revealing limitations in do-

main-agnostic methods. Defining what is controversial or polarized varies based on 

context, emphasizing its vital role in polarization assessment (Garimella et al., 2018). 



 

 

In concluding this initial phase of our study, we contribute by identifying crucial 

aspects to consider when quantifying polarization in our RS-based polarization reduc-

tion model. These include network structure (Garimella et al., 2018), temporal dimen-

sion (Tsytsarau et al., 2011; Zhang et al., 2008), biased assimilation (Dandekar et al., 

2013), source credibility (Cossard et al., 2020; Samantray and Pin, 2019), content (Mo-

rales et al., 2015), and context (Guerra et al., 2013; Hargittai et al., 2008).   

2.2 Polarization Reduction with Recommender Systems  

After quantifying polarization, it is crucial to develop means to counteract its detri-

mental effects on societies. Interian et al. (2023) reviewed studies focused on mitigating 

polarization's adverse effects. They highlighted RS as a relevant technological approach 

for reducing polarization by promoting diverse and balanced content. To conduct com-

prehensive research, we utilized Google Scholar's advanced search functionality, al-

lowing for complex queries to be performed. Detailed explanations of keywords and 

exclusion criteria are provided in an online supplement (https://bit.ly/3Pp1fbE) due to 

page constraints. After exclusion, 16 articles remained. These studies aimed to expose 

online social media users to diverse content, with a focus on presenting varied infor-

mation and identifying recipients for new information (Matakos et al., 2017). Then, we 

created a concept matrix (Webster and Watson, 2002) outlined in Table 1, featuring 

two primary dimensions, reduction methods and polarization metrics.  

After crafting the concept matrix, we analyzed it to grasp the current state and re-

search prospects for polarization reduction with RS. Our analysis revealed four key 

insights. First, there was a notable focus on network-based measures and edge modifi-

cation reduction approaches. Second, only one study utilized content-based measures 

and corresponding modification strategies to reduce polarization. Third, none of these 

studies employed combined methods for polarization measurement. We advocate for 

their adoption to enable effective strategy selection based on RS, crucial for addressing 

the multidimensional aspects of polarization. Lastly, all studies relied on conventional 

RS, despite the availability of powerful techniques like deep learning-based or graph 

neural network-based RS. In our next phase, we employ a DSRM to develop a model 

for polarization reduction with RS, focusing on the multidimensionality of polarization 

and respective approaches for reduction. 

3 Design Science Research Methodology 

The above overview demonstrates that RS offer a promising approach to counter po-

larization's societal harm. Understanding key aspects in measuring polarization and im-

plementing preventive strategies is crucial to mitigate its impact. To develop a concep-

tual model for RS-based polarization mitigation, prioritizing critical aspects to under-

stand polarization's complexity and select effective mitigation strategies, we adopt the 

DSRM process proposed by Peffers et al. (2007). This process model encompasses six 

primary activities, enabling us to develop an artifact that can be evaluated and imple-

mented to accomplish our research objective. The initial two activities, which involve 

identifying a problem and motivation, as well as establishing objectives for a solution, 

have been discussed in the previous sections of this paper. In this subsection, we look 

into the intricacies of designing and developing our proposed model. 



 

 

Table 1. Conceptual analysis of polarization reduction with recommender systems 
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Reference 

Content-

Based  

Filtering 

  X  X  (Badami et al., 2017) 

 X  X   (Grossetti et al., 2019) 

- X   (Treuillier et al., 2023) 

X X  X   (Giakatos et al., 2023) 

Collabo-

rative 

Filtering 

 X  - (Sacharidis, 2019) 

 X  X   (Ramaciotti Morales and Cointet, 2021) 

 X  X   (Ramaciotti Morales and Cointet, 2021) 

 X  X   (Haddadan et al., 2021) 

 X  X   (Grossetti et al., 2021) 

 X  X   (Donkers and Ziegler, 2021) 

X   X   (Warton et al., 2022) 

 X  X   (Haddadan et al., 2022) 

 X     (Cinus et al., 2023) 

 X  X   (El-Moutaouakkil et al., 2023) 

Hybrid 

Systems 

 X  X   (Fabbri et al., 2022) 

 X  X   (Sánchez et al., 2023) 

3.1 Towards a Conceptual Model for RS-based Polarization Reduction 

In this subsection, we introduce a model as the artifact of the DSRM (Peffers et al., 

2007). The proposed model, depicted in Figure 1, comprises three main components. 

Recognizing the multidimensional nature of polarization, we rigorously reassess quan-

tification methods and identify critical aspects, ensuring the validity of reduction strat-

egies in addressing polarization. Consequently, we introduce the first component of our 

model, which harnesses data extracted from social networks. This component considers 

factors like network structure, temporal dimension, source credibility, biased assimila-

tion, content, and context to quantify polarization. We assert that a robust polarization 

measure should incorporate a combination of these determinants, as neglecting any may 

compromise the reliability of the results. Following this, we systematically explore po-

tential solutions by examining various polarization measures and reduction methods to 

effectively tackle different dimensions of polarization. Subsequently, we introduce the 

second component, which includes the main categories of polarization measures. We 

advocate for a combined approach that integrates both network structure and content. 

Focusing solely on one type of measure may overlook valuable insights. 



 

 

The third component involves RS-based reduction approaches, including edge mod-

ification based on network-based measures and content modification based on content-

based measures. We argue that prioritizing one aspect over the other may lead to inac-

curate polarization detection and ineffective mitigation strategies. We emphasize node 

modification as a potentially effective approach, altering both network structure and 

content by introducing nodes such as bots to reduce polarization. Hence, we believe 

employing combined measures may enhance the effectiveness of this strategy, though 

further empirical evidence or references are needed to substantiate this claim. 

Additionally, it is important to recognize that the description in this section provides 

a broad overview of our approach. While we outline the general methodology, specific 

RS methods, design decisions like edge modifications, architectural details, and other 

nuanced aspects are not extensively explained here. These details are essential for a 

comprehensive understanding of our work and will be expanded upon in future work. 

3.2 Demonstration and Evaluation  

Due to space constraints and a publication that presents research-in-progress, we focus 

on problematization and the early steps of the DSRM process while only briefly ex-

plaining the demonstration and evaluation steps in the revised version. Using a Twitter 

dataset containing social network data and user-generated content, our model employs 

content-based, network-based, and combined measures to accurately quantify polariza-

tion. Gephi will be utilized to visualize polarized networks in the second phase. Fol-

lowing the identification of a polarized network, our focus shifts to reduction tech-

niques, particularly node modification involving the introduction of new nodes such as 

bots, due to practical constraints favoring bots over normal users. Using Gephi, we 

simulate and demonstrate the long-term impact of these interventions.  

For evaluation, we systematically assess network polarization across stages: estab-

lishing a baseline by measuring polarization without intervention, implementing and 

evaluating content modification techniques, and then edge modification techniques. Fi-

nally, we introduce bots for node modification and evaluate the resulting changes using 

specific polarization measures. Comparing these results aims to identify the most ef-

fective strategy and guide necessary adjustments.  

In conclusion, this research introduces a DSRM-based model for quantifying and 

mitigating social network polarization based on RS. Integrating network-based and 

content-based measures, and emphasizing bot-driven node modification, our study 

demonstrates potential effective strategies for reducing polarization while highlighting 

the importance of ongoing refinement and validation in future research. 
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Figure 1. A conceptual model for RS-based polarization reduction 
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